
DATABA SES

MySQL Cookbook

ISBN: 978-1-449-37402-0

US $79.99 CAN $83.99

“�A�true�classic,�this�remains��
the�best�collection�of�
MySQL�recipes�available.�
This�book�covers�basics�
needed�by�beginners,��
and�presents�the�very��
latest�developments�that�
advanced�users�can�use��
to�deepen�their�knowledge.�
And�it’s�crowded�with��
tips�that�make�it�even��
more�valuable�to�MySQL�
professionals.”

—Ulf Wendel,
Senior Software Engineer for MySQL and

co-author of the mysqlnd PHP library

Twitter: @oreillymedia
facebook.com/oreilly

MySQL’s popularity has brought a flood of questions about how to solve
specific problems, and that’s where this cookbook is essential. When you
need quick solutions or techniques, this handy resource provides scores
of short, focused pieces of code, hundreds of worked-out examples, and
clear, concise explanations for programmers who don’t have the time (or
expertise) to solve MySQL problems from scratch.

Ideal for beginners and professional database and web developers, this
updated third edition covers powerful features in MySQL 5.6 (and some
in 5.7). The book focuses on programming APIs in Python, PHP, Java, Perl,
and Ruby. With more than 200+ recipes, you’ll learn how to:

 ■ Use the mysql client and write MySQL-based programs

 ■ Create, populate, and select data from tables

 ■ Store, retrieve, and manipulate strings

 ■ Work with dates and times

 ■ Sort query results and generate summaries

 ■ Use stored routines, triggers, and scheduled events

 ■ Import, export, validate, and reformat data

 ■ Perform transactions and work with statistics

 ■ Process web input, and generate web content from
query results

 ■ Use MySQL-based web session management

 ■ Provide security and server administration

Paul DuBois is one of the primary contributors to the MySQL Reference Manual,
a renowned online manual that has supported MySQL administrators and
database developers for years. He’s a member of the MySQL documentation
team at Oracle and author of several books.

M
ySQ

L�C
ookbook

THIRD EDITION

D
uBois

Paul DuBois

 MySQL
 Cookbook
SOLUTIONS FOR DATABASE DEVELOPERS AND ADMINISTR ATORS

3rd Edition

Revised and Updated

www.it-ebooks.info

http://www.it-ebooks.info/

DATABA SES

MySQL Cookbook

ISBN: 978-1-449-37402-0

US $79.99 CAN $83.99

“�A�true�classic,�this�remains��
the�best�collection�of�
MySQL�recipes�available.�
This�book�covers�basics�
needed�by�beginners,��
and�presents�the�very��
latest�developments�that�
advanced�users�can�use��
to�deepen�their�knowledge.�
And�it’s�crowded�with��
tips�that�make�it�even��
more�valuable�to�MySQL�
professionals.”

—Ulf Wendel,
Senior Software Engineer for MySQL and

co-author of the mysqlnd PHP library

Twitter: @oreillymedia
facebook.com/oreilly

MySQL’s popularity has brought a flood of questions about how to solve
specific problems, and that’s where this cookbook is essential. When you
need quick solutions or techniques, this handy resource provides scores
of short, focused pieces of code, hundreds of worked-out examples, and
clear, concise explanations for programmers who don’t have the time (or
expertise) to solve MySQL problems from scratch.

Ideal for beginners and professional database and web developers, this
updated third edition covers powerful features in MySQL 5.6 (and some
in 5.7). The book focuses on programming APIs in Python, PHP, Java, Perl,
and Ruby. With more than 200+ recipes, you’ll learn how to:

 ■ Use the mysql client and write MySQL-based programs

 ■ Create, populate, and select data from tables

 ■ Store, retrieve, and manipulate strings

 ■ Work with dates and times

 ■ Sort query results and generate summaries

 ■ Use stored routines, triggers, and scheduled events

 ■ Import, export, validate, and reformat data

 ■ Perform transactions and work with statistics

 ■ Process web input, and generate web content from
query results

 ■ Use MySQL-based web session management

 ■ Provide security and server administration

Paul DuBois is one of the primary contributors to the MySQL Reference Manual,
a renowned online manual that has supported MySQL administrators and
database developers for years. He’s a member of the MySQL documentation
team at Oracle and author of several books.

M
ySQ

L�C
ookbook

THIRD EDITION

D
uBois

Paul DuBois

 MySQL
 Cookbook
SOLUTIONS FOR DATABASE DEVELOPERS AND ADMINISTR ATORS

3rd Edition

Revised and Updated

www.it-ebooks.info

http://www.it-ebooks.info/

Paul DuBois

THIRD EDITION

MySQL Cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

MySQL Cookbook , Third Edition
by Paul DuBois

Copyright © 2014 Paul DuBois and O’Reilly Media, Inc.. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Allyson MacDonald
Production Editor: Nicole Shelby
Proofreader: Kim Cofer
Indexer: Lucie Haskins

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

October 2002: First Edition

November 2006: Second Edition

August 2014: Third Edition

Revision History for the Third Edition:

2014-07-25: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449374020 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. MySQL Cookbook, the picture of a green anole, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-37402-0

[LSI]

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449374020
http://www.it-ebooks.info/

Table of Contents

Preface. xi

1. Using the mysql Client Program. 1
1.1. Setting Up a MySQL User Account 2
1.2. Creating a Database and a Sample Table 4
1.3. What to Do if mysql Cannot Be Found 6
1.4. Specifying mysql Command Options 8
1.5. Executing SQL Statements Interactively 13
1.6. Executing SQL Statements Read from a File or Program 15
1.7. Controlling mysql Output Destination and Format 17
1.8. Using User-Defined Variables in SQL Statements 22

2. Writing MySQL-Based Programs. 25
2.1. Connecting, Selecting a Database, and Disconnecting 29
2.2. Checking for Errors 42
2.3. Writing Library Files 51
2.4. Executing Statements and Retrieving Results 65
2.5. Handling Special Characters and NULL Values in Statements 79
2.6. Handling Special Characters in Identifiers 89
2.7. Identifying NULL Values in Result Sets 91
2.8. Techniques for Obtaining Connection Parameters 95
2.9. Conclusion and Words of Advice 103

3. Selecting Data from Tables. 105
3.1. Specifying Which Columns and Rows to Select 106
3.2. Naming Query Result Columns 108
3.3. Sorting Query Results 112
3.4. Removing Duplicate Rows 113
3.5. Working with NULL Values 114

iii

www.it-ebooks.info

http://www.it-ebooks.info/

3.6. Writing Comparisons Involving NULL in Programs 116
3.7. Using Views to Simplify Table Access 117
3.8. Selecting Data from Multiple Tables 119
3.9. Selecting Rows from the Beginning, End, or Middle of Query Results 121
3.10. What to Do When LIMIT Requires the “Wrong” Sort Order 124
3.11. Calculating LIMIT Values from Expressions 125

4. Table Management. 127
4.1. Cloning a Table 127
4.2. Saving a Query Result in a Table 128
4.3. Creating Temporary Tables 131
4.4. Generating Unique Table Names 133
4.5. Checking or Changing a Table Storage Engine 135
4.6. Copying a Table Using mysqldump 136

5. Working with Strings. 139
5.1. String Properties 140
5.2. Choosing a String Data Type 144
5.3. Setting the Client Connection Character Set 146
5.4. Writing String Literals 148
5.5. Checking or Changing a String’s Character Set or Collation 150
5.6. Converting the Lettercase of a String 153
5.7. Controlling Case Sensitivity in String Comparisons 155
5.8. Pattern Matching with SQL Patterns 158
5.9. Pattern Matching with Regular Expressions 160
5.10. Breaking Apart or Combining Strings 165
5.11. Searching for Substrings 168
5.12. Using Full-Text Searches 169
5.13. Using a Full-Text Search with Short Words 173
5.14. Requiring or Prohibiting Full-Text Search Words 175
5.15. Performing Full-Text Phrase Searches 177

6. Working with Dates and Times. 179
6.1. Choosing a Temporal Data Type 180
6.2. Using Fractional Seconds Support 182
6.3. Changing MySQL’s Date Format 183
6.4. Setting the Client Time Zone 187
6.5. Shifting Temporal Values Between Time Zones 189
6.6. Determining the Current Date or Time 190
6.7. Using TIMESTAMP or DATETIME to Track Row-Modification Times 191
6.8. Extracting Parts of Dates or Times 194
6.9. Synthesizing Dates or Times from Component Values 199

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

6.10. Converting Between Temporal Values and Basic Units 201
6.11. Calculating Intervals Between Dates or Times 205
6.12. Adding Date or Time Values 210
6.13. Calculating Ages 215
6.14. Finding the First Day, Last Day, or Length of a Month 216
6.15. Calculating Dates by Substring Replacement 219
6.16. Finding the Day of the Week for a Date 220
6.17. Finding Dates for Any Weekday of a Given Week 221
6.18. Performing Leap-Year Calculations 224
6.19. Canonizing Not-Quite-ISO Date Strings 227
6.20. Selecting Rows Based on Temporal Characteristics 228

7. Sorting Query Results. 233
7.1. Using ORDER BY to Sort Query Results 234
7.2. Using Expressions for Sorting 238
7.3. Displaying One Set of Values While Sorting by Another 239
7.4. Controlling Case Sensitivity of String Sorts 243
7.5. Date-Based Sorting 246
7.6. Sorting by Substrings of Column Values 250
7.7. Sorting by Fixed-Length Substrings 250
7.8. Sorting by Variable-Length Substrings 254
7.9. Sorting Hostnames in Domain Order 258
7.10. Sorting Dotted-Quad IP Values in Numeric Order 261
7.11. Floating Values to the Head or Tail of the Sort Order 263
7.12. Defining a Custom Sort Order 266
7.13. Sorting ENUM Values 267

8. Generating Summaries. 271
8.1. Basic Summary Techniques 273
8.2. Creating a View to Simplify Using a Summary 279
8.3. Finding Values Associated with Minimum and Maximum Values 280
8.4. Controlling String Case Sensitivity for MIN() and MAX() 282
8.5. Dividing a Summary into Subgroups 283
8.6. Summaries and NULL Values 287
8.7. Selecting Only Groups with Certain Characteristics 290
8.8. Using Counts to Determine Whether Values Are Unique 291
8.9. Grouping by Expression Results 292
8.10. Summarizing Noncategorical Data 293
8.11. Finding Smallest or Largest Summary Values 296
8.12. Date-Based Summaries 298
8.13. Working with Per-Group and Overall Summary Values Simultaneously 300
8.14. Generating a Report That Includes a Summary and a List 303

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

9. Using Stored Routines, Triggers, and Scheduled Events. 307
9.1. Creating Compound-Statement Objects 310
9.2. Using Stored Functions to Encapsulate Calculations 312
9.3. Using Stored Procedures to “Return” Multiple Values 314
9.4. Using Triggers to Implement Dynamic Default Column Values 315
9.5. Using Triggers to Simulate Function-Based Indexes 317
9.6. Simulating TIMESTAMP Properties for Other Date and Time Types 320
9.7. Using Triggers to Log Changes to a Table 322
9.8. Using Events to Schedule Database Actions 325
9.9. Writing Helper Routines for Executing Dynamic SQL 327
9.10. Handling Errors Within Stored Programs 328
9.11. Using Triggers to Preprocess or Reject Data 332

10. Working with Metadata. 335
10.1. Determining the Number of Rows Affected by a Statement 337
10.2. Obtaining Result Set Metadata 340
10.3. Determining Whether a Statement Produced a Result Set 350
10.4. Using Metadata to Format Query Output 350
10.5. Listing or Checking Existence of Databases or Tables 354
10.6. Accessing Table Column Definitions 356
10.7. Getting ENUM and SET Column Information 361
10.8. Getting Server Metadata 363
10.9. Writing Applications That Adapt to the MySQL Server Version 364

11. Importing and Exporting Data. 367
11.1. Importing Data with LOAD DATA and mysqlimport 371
11.2. Importing CSV Files 383
11.3. Exporting Query Results from MySQL 383
11.4. Importing and Exporting NULL Values 385
11.5. Writing Your Own Data Export Programs 387
11.6. Converting Datafiles from One Format to Another 392
11.7. Extracting and Rearranging Datafile Columns 393
11.8. Exchanging Data Between MySQL and Microsoft Excel 396
11.9. Exporting Query Results as XML 398
11.10. Importing XML into MySQL 401
11.11. Guessing Table Structure from a Datafile 404

12. Validating and Reformatting Data. 409
12.1. Using the SQL Mode to Reject Bad Input Values 410
12.2. Validating and Transforming Data 411
12.3. Using Pattern Matching to Validate Data 415
12.4. Using Patterns to Match Broad Content Types 417

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

12.5. Using Patterns to Match Numeric Values 418
12.6. Using Patterns to Match Dates or Times 420
12.7. Using Patterns to Match Email Addresses or URLs 424
12.8. Using Table Metadata to Validate Data 425
12.9. Using a Lookup Table to Validate Data 428
12.10. Converting Two-Digit Year Values to Four-Digit Form 431
12.11. Performing Validity Checking on Date or Time Subparts 432
12.12. Writing Date-Processing Utilities 435
12.13. Importing Non-ISO Date Values 440
12.14. Exporting Dates Using Non-ISO Formats 441
12.15. Epilogue 442

13. Generating and Using Sequences. 445
13.1. Creating a Sequence Column and Generating Sequence Values 446
13.2. Choosing the Definition for a Sequence Column 449
13.3. The Effect of Row Deletions on Sequence Generation 451
13.4. Retrieving Sequence Values 453
13.5. Renumbering an Existing Sequence 457
13.6. Extending the Range of a Sequence Column 460
13.7. Reusing Values at the Top of a Sequence 460
13.8. Ensuring That Rows Are Renumbered in a Particular Order 461
13.9. Sequencing an Unsequenced Table 462
13.10. Managing Multiple Auto-Increment Values Simultaneously 464
13.11. Using Auto-Increment Values to Associate Tables 465
13.12. Using Sequence Generators as Counters 467
13.13. Generating Repeating Sequences 471

14. Using Joins and Subqueries. 473
14.1. Finding Matches Between Tables 474
14.2. Finding Mismatches Between Tables 482
14.3. Identifying and Removing Mismatched or Unattached Rows 487
14.4. Comparing a Table to Itself 490
14.5. Producing Master-Detail Lists and Summaries 494
14.6. Enumerating a Many-to-Many Relationship 497
14.7. Finding Per-Group Minimum or Maximum Values 501
14.8. Using a Join to Fill or Identify Holes in a List 504
14.9. Using a Join to Control Query Sort Order 507
14.10. Referring to Join Output Column Names in Programs 509

15. Statistical Techniques. 511
15.1. Calculating Descriptive Statistics 512
15.2. Per-Group Descriptive Statistics 515

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

15.3. Generating Frequency Distributions 517
15.4. Counting Missing Values 520
15.5. Calculating Linear Regressions or Correlation Coefficients 522
15.6. Generating Random Numbers 525
15.7. Randomizing a Set of Rows 527
15.8. Selecting Random Items from a Set of Rows 529
15.9. Calculating Successive-Row Differences 531
15.10. Finding Cumulative Sums and Running Averages 533
15.11. Assigning Ranks 538
15.12. Computing Team Standings 541

16. Handling Duplicates. 549
16.1. Preventing Duplicates from Occurring in a Table 550
16.2. Dealing with Duplicates When Loading Rows into a Table 552
16.3. Counting and Identifying Duplicates 556
16.4. Eliminating Duplicates from a Table 560

17. Performing Transactions. 565
17.1. Choosing a Transactional Storage Engine 566
17.2. Performing Transactions Using SQL 567
17.3. Performing Transactions from Within Programs 569
17.4. Using Transactions in Perl Programs 571
17.5. Using Transactions in Ruby Programs 573
17.6. Using Transactions in PHP Programs 574
17.7. Using Transactions in Python Programs 575
17.8. Using Transactions in Java Programs 576

18. Introduction to MySQL on the Web. 577
18.1. Basic Principles of Web Page Generation 579
18.2. Using Apache to Run Web Scripts 581
18.3. Using Tomcat to Run Web Scripts 591
18.4. Encoding Special Characters in Web Output 596

19. Generating Web Content from Query Results. 605
19.1. Displaying Query Results as Paragraphs 606
19.2. Displaying Query Results as Lists 608
19.3. Displaying Query Results as Tables 618
19.4. Displaying Query Results as Hyperlinks 622
19.5. Creating Navigation Indexes from Database Content 626
19.6. Storing Images or Other Binary Data 631
19.7. Serving Images or Other Binary Data 638
19.8. Serving Banner Ads 641

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

19.9. Serving Query Results for Download 643

20. Processing Web Input with MySQL. 647
20.1. Writing Scripts That Generate Web Forms 650
20.2. Creating Single-Pick Form Elements from Database Content 653
20.3. Creating Multiple-Pick Form Elements from Database Content 669
20.4. Loading Database Content into a Form 674
20.5. Collecting Web Input 679
20.6. Validating Web Input 689
20.7. Storing Web Input in a Database 691
20.8. Processing File Uploads 694
20.9. Performing Web-Based Database Searches 700
20.10. Generating Previous-Page and Next-Page Links 703
20.11. Generating “Click to Sort” Table Headings 708
20.12. Web Page Access Counting 712
20.13. Web Page Access Logging 716
20.14. Using MySQL for Apache Logging 717

21. Using MySQL-Based Web Session Management. 725
21.1. Using MySQL-Based Sessions in Perl Applications 728
21.2. Using MySQL-Based Storage in Ruby Applications 734
21.3. Using MySQL-Based Storage with the PHP Session Manager 738
21.4. Using MySQL for Session-Backing Store with Tomcat 748

22. Server Administration. 757
22.1. Configuring the Server 757
22.2. Managing the Plug-In Interface 760
22.3. Controlling Server Logging 762
22.4. Rotating or Expiring Logfiles 765
22.5. Rotating Log Tables or Expiring Log Table Rows 768
22.6. Monitoring the MySQL Server 769
22.7. Creating and Using Backups 780

23. Security. 783
23.1. Understanding the mysql.user Table 784
23.2. Managing User Accounts 785
23.3. Implementing a Password Policy 790
23.4. Checking Password Strength 793
23.5. Expiring Passwords 794
23.6. Assigning Yourself a New Password 795
23.7. Resetting an Expired Password 795
23.8. Finding and Fixing Insecure Accounts 796

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

23.9. Disabling Use of Accounts with Pre-4.1 Passwords 800
23.10. Finding and Removing Anonymous Accounts 801
23.11. Modifying “Any Host” and “Many Host” Accounts 802

Index. 805

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The MySQL database management system is popular for many reasons. It’s fast, and it’s
easy to set up, use, and administer. It runs under many varieties of Unix and Windows,
and MySQL-based programs can be written in many languages.

MySQL’s popularity raises the need to address questions its users have about how to
solve specific problems. That is the purpose of MySQL Cookbook: to serve as a handy
resource to which you can turn for quick solutions or techniques for attacking particular
types of questions that come up when you use MySQL. Naturally, because it’s a cookbook,
it contains recipes: straightforward instructions you can follow rather than develop your
own code from scratch. It’s written using a problem-and-solution format designed to
be extremely practical and to make the contents easy to read and assimilate. It contains
many short sections, each describing how to write a query, apply a technique, or develop
a script to solve a problem of limited and specific scope. This book doesn’t develop full-
fledged, complex applications. Instead, it assists you in developing such applications
yourself by helping you get past problems that have you stumped.

For example, a common question is, “How can I deal with quotes and special characters
in data values when I’m writing queries?” That’s not difficult, but figuring out how to
do it is frustrating when you’re not sure where to start. This book demonstrates what
to do; it shows you where to begin and how to proceed from there. This knowledge will
serve you repeatedly because after you see what’s involved, you’ll be able to apply the
technique to any kind of data, such as text, images, sound or video clips, news articles,
compressed files, or PDF documents. Another common question is, “Can I access data
from multiple tables at the same time?” The answer is “Yes,” and it’s easy to do because
it’s just a matter of knowing the proper SQL syntax. But it’s not always clear how until
you see examples, which this book gives you. Other techniques that you’ll learn from
this book include how to:

• Use SQL to select, sort, and summarize rows
• Find matches or mismatches between tables

xi

www.it-ebooks.info

http://www.it-ebooks.info/

• Perform transactions
• Determine intervals between dates or times, including age calculations
• Identify or remove duplicate rows
• Use LOAD DATA to read your datafiles properly or find which values in the file are

invalid
• Use strict mode to prevent entry of bad data into your database
• Generate sequence numbers to use as unique row identifiers
• Use a view as a “virtual table”
• Write stored procedures and functions, set up triggers that activate to perform

specific data-handling operations when you insert or update table rows, and use
the Event Scheduler to run queries on a schedule

• Generate web pages from database content
• Manage user accounts
• Control server logging

One part of using MySQL is understanding how to communicate with the server—that
is, how to use SQL, the language in which queries are formulated. Therefore, one major
emphasis of this book is using SQL to formulate queries that answer particular kinds of
questions. One helpful tool for learning and using SQL is the mysql client program that
is included in MySQL distributions. You can use client interactively to send SQL state‐
ments to the server and see the results. This is extremely useful because it provides a
direct interface to SQL; so useful, in fact, that the first chapter is devoted to mysql.

But the ability to issue SQL queries alone is not enough. Information extracted from a
database often requires further processing or presentation in a particular way. What if
you have queries with complex interrelationships, such as when you need to use the
results of one query as the basis for others? What if you need to generate a specialized
report with very specific formatting requirements? These problems bring us to the other
major emphasis of the book—how to write programs that interact with the MySQL
server through an application programming interface (API). When you know how to
use MySQL from within the context of a programming language, you gain other ways
to exploit MySQL’s capabilities:

• You can save query results and reuse them later.
• You have full access to the expressive power of a general-purpose programming

language. This enables you to make decisions based on success or failure of a query,
or on the content of the rows that are returned, and then tailor the actions taken
accordingly.

xii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

• You can format and display query results however you like. If you’re writing a
command-line script, you can generate plain text. If it’s a web-based script, you can
generate an HTML table. If it’s an application that extracts information for transfer
to some other system, you might generate a datafile expressed in XML.

Combining SQL with a general-purpose programming language gives you an extremely
flexible framework for issuing queries and processing their results. Programming lan‐
guages increase your capability to perform complex database operations. But that
doesn’t mean this book is complex. It keeps things simple, showing how to construct
small building blocks using techniques that are easy to understand and easily mastered.

I’ll leave it to you to combine these techniques in your own programs, which you can
do to produce arbitrarily complex applications. After all, the genetic code is based on
only four nucleic acids, but these basic elements have been combined to produce the
astonishing array of biological life we see all around us. Similarly, there are only 12 notes
in the scale, but in the hands of skilled composers, they are interwoven to produce a
rich and endless variety of music. In the same way, when you take a set of simple recipes,
add your imagination, and apply them to the database programming problems you want
to solve, you can produce applications that perhaps are not works of art, but are certainly
useful and will help you and others be more productive.

Who This Book Is For
This book will be useful for anybody who uses MySQL, ranging from individuals who
want to use a database for personal projects such as a blog or wiki, to professional
database and web developers. The book is also intended for people who do not now use
MySQL, but would like to. For example, it will be useful if you want to learn about
databases but realize that a “big” database system such as Oracle can be daunting as a
learning tool. (Perhaps I shouldn’t say that. Oracle bought MySQL in 2010 and is now
my employer!)

If you’re new to MySQL, you’ll find lots of ways to use it here that may be new to you.
If you’re more experienced, you’re probably already familiar with many of the problems
addressed here, but may not have had to solve them before and should find the book a
great timesaver. Take advantage of the recipes given in the book and use them in your
own programs rather than writing the code from scratch.

The material ranges from introductory to advanced, so if a recipe describes techniques
that seem obvious to you, skip it. Conversely, if you don’t understand a recipe, set it
aside and come back to it later, perhaps after reading some of the other recipes.

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

What’s in This Book
It’s very likely when you use this book that you’re trying to develop an application but
are not sure how to implement certain pieces of it. In this case, you already know what
type of problem you want to solve; check the table of contents or the index for a recipe
that shows how to do what you want. Ideally, the recipe will be just what you had in
mind. Alternatively, you may be able to adapt a recipe for a similar problem to suit the
issue at hand. I explain the principles involved in developing each technique so that you
can modify it to fit the particular requirements of your own applications.

Another way to approach this book is to just read through it with no specific problem
in mind. This can give you a broader understanding of the things MySQL can do, so I
recommend that you page through the book occasionally. It’s a more effective tool if
you know the kinds of problems it addresses.

As you get into later chapters, you’ll find recipes that assume a knowledge of topics
covered in earlier chapters. This also applies within a chapter, where later sections often
use techniques discussed earlier in the chapter. If you jump into a chapter and find a
recipe that uses a technique with which you’re not familiar, check the table of contents
or the index to find where the technique is explained earlier. For example, if a recipe
sorts a query result using an ORDER BY clause that you don’t understand, turn to Chap‐
ter 7, which discusses various sorting methods and explains how they work.

Here’s a summary of each chapter to give you an overview of the book’s contents.

Chapter 1, Using the mysql Client Program, describes how to use the standard MySQL
command-line client. mysql is often the first or primary interface to MySQL that people
use, and it’s important to know how to exploit its capabilities. This program enables you
to issue queries and see their results interactively, so it’s good for quick experimentation.
You can also use it in batch mode to execute canned SQL scripts or send its output into
other programs. In addition, the chapter discusses other ways to use mysql, such as how
to make long lines more readable or generate output in various formats.

Chapter 2, Writing MySQL-Based Programs, demonstrates the essential elements of
MySQL programming: how to connect to the server, issue queries, retrieve the results,
and handle errors. It also discusses how to handle special characters and NULL values in
queries, how to write library files to encapsulate code for commonly used operations,
and various ways to gather the parameters needed for making connections to the server.

Chapter 3, Selecting Data from Tables, covers several aspects of the SELECT statement,
which is the primary vehicle for retrieving data from the MySQL server: specifying
which columns and rows you want to retrieve, dealing with NULL values, and selecting
one section of a query result. Later chapters cover some of these topics in more detail,
but this chapter provides an overview of the concepts on which they depend if you need
some introductory background on row selection or don’t yet know a lot about SQL.

xiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4, Table Management, covers table cloning, copying results into other tables,
using temporary tables, and checking or changing a table’s storage engine.

Chapter 5, Working with Strings, describes how to deal with string data. It covers char‐
acter sets and collations, string comparisons, dealing with case-sensitivity issues, pattern
matching, breaking apart and combining strings, and performing FULLTEXT searches.

Chapter 6, Working with Dates and Times, shows how to work with temporal data. It
describes MySQL’s date format and how to display date values in other formats. It also
covers how to use MySQL’s special TIMESTAMP data type, how to set the time zone, how
to convert between different temporal units, how to perform date arithmetic to compute
intervals or generate one date from another, and how to perform leap-year calculations.

Chapter 7, Sorting Query Results, describes how to put the rows of a query result in the
order you want. This includes specifying the sort direction, dealing with NULL values,
accounting for string case sensitivity, and sorting by dates or partial column values. It
also provides examples that show how to sort special kinds of values, such as domain
names, IP numbers, and ENUM values.

Chapter 8, Generating Summaries, shows techniques for assessing the general charac‐
teristics of a set of data, such as how many values it contains or its minimum, maximum,
and average values.

Chapter 9, Using Stored Routines, Triggers, and Scheduled Events, describes how to write
stored functions and procedures that are stored on the server side, triggers that activate
when tables are modified, and events that execute on a scheduled basis.

Chapter 10, Working with Metadata, discusses how to get information about the data
that a query returns, such as the number of rows or columns in the result, or the name
and data type of each column. It also shows how to ask MySQL what databases and
tables are available or determine the structure of a table.

Chapter 11, Importing and Exporting Data, describes how to transfer information be‐
tween MySQL and other programs. This includes how to use LOAD DATA, convert files
from one format to another, and determine table structure appropriate for a dataset.

Chapter 12, Validating and Reformatting Data, describes how to extract or rearrange
columns in datafiles, check and validate data, and rewrite values such as dates that often
come in a variety of formats.

Chapter 13, Generating and Using Sequences, discusses AUTO_INCREMENT columns,
MySQL’s mechanism for producing sequence numbers. It shows how to generate new
sequence values or determine the most recent value, how to resequence a column, and
how to use sequences to generate counters. It also shows how to use AUTO_INCREMENT
values to maintain a master-detail relationship between tables, including pitfalls to
avoid.

Preface | xv

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14, Using Joins and Subqueries, shows how to perform operations that select
rows from multiple tables. It demonstrates how to compare tables to find matches or
mismatches, produce master-detail lists and summaries, and enumerate many-to-many
relationships.

Chapter 15, Statistical Techniques, illustrates how to produce descriptive statistics, fre‐
quency distributions, regressions, and correlations. It also covers how to randomize a
set of rows or pick rows at random from the set.

Chapter 16, Handling Duplicates, discusses how to identify, count, and remove duplicate
rows—and how to prevent them from occurring in the first place.

Chapter 17, Performing Transactions, shows how to handle multiple SQL statements
that must execute together as a unit. It discusses how to control MySQL’s auto-commit
mode and how to commit or roll back transactions.

Chapter 18, Introduction to MySQL on the Web, gets you set up to write web-based
MySQL scripts. Web programming enables you to generate dynamic pages from data‐
base content or collect information for storage in your database. The chapter discusses
how to configure Apache to run Perl, Ruby, PHP, and Python scripts, and how to con‐
figure Tomcat to run Java scripts written using JSP notation.

Chapter 19, Generating Web Content from Query Results, shows how to use the query
results to generate various HTML structures such as paragraphs, lists, tables, hyperlinks,
and navigation indexes. It also describes how to store images into MySQL and retrieve
and display them later, and how to generate downloadable result sets.

Chapter 20, Processing Web Input with MySQL, discusses how to obtain input from
users over the Web and use it to create new database rows or as the basis for performing
searches. It deals heavily with form processing, including how to construct form ele‐
ments such as radio buttons, pop-up menus, or checkboxes, based on information con‐
tained in your database.

Chapter 21, Using MySQL-Based Web Session Management, describes how to write web
applications that remember information across multiple requests, using MySQL for
backing store. This is useful for collecting information in stages, or when you need to
make decisions based on prior user actions.

Chapter 22, Server Administration, is written for database administrators. It covers
server configuration, the plug-in interface, log management, server monitoring, and
making backups.

Chapter 23, Security, is another administrative chapter. It discusses user account man‐
agement, including creating accounts, setting passwords, and assigning privileges. It
also describes how to implement password policy, find and fix insecure accounts, and
expire or unexpire passwords.

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

MySQL APIs Used in This Book
MySQL programming interfaces exist for many languages, including C, C++, Eiffel, Go,
Java, Perl, PHP, Python, Ruby, and Tcl. Given this fact, writing a MySQL cookbook
presents an author with a challenge. The book should provide recipes for doing many
interesting and useful things with MySQL, but which API or APIs should the book use?
Showing an implementation of every recipe in every language results either in covering
very few recipes or in a very, very large book! It also results in redundancies when
implementations in different languages bear a strong resemblance to each other. On the
other hand, it’s worthwhile taking advantage of multiple languages, because one often
is more suitable than another for solving a particular problem.

To resolve this dilemma, I’ve chosen a small number of APIs to write the recipes in this
book. This makes its scope manageable while permitting latitude to choose from mul‐
tiple APIs:

• The Perl and Ruby DBI modules
• PHP, using the PDO extension
• Python, using the MySQL Connector/Python driver for the DB API
• Java, using the MySQL Connector/J driver for the JDBC interface

Why these languages? Perl and PHP were easy to pick. Perl is a widely used language
that became so based on certain strengths such as its text-processing capabilities. In
addition, it’s very popular for writing MySQL programs. Ruby has an easy-to-use
database-access module modeled after the Perl module. PHP is widely deployed, espe‐
cially on the Web. One of PHP’s strengths is the ease with which you can use it to access
databases, making it a natural choice for MySQL scripting. Python and Java are perhaps
not as popular as Perl or PHP for MySQL programming, but each has a significant
number of followers. In the Java community in particular, MySQL has a strong following
among developers who use JavaServer Pages (JSP) technology to build database-backed
web applications.

I believe these languages taken together reflect pretty well the majority of the existing
user base of MySQL programmers. If you prefer some language not shown here, be sure
to pay careful attention to Chapter 2, to familiarize yourself with the book’s primary
APIs. Knowing how to perform database operations with the programming interfaces
used here will help you translate recipes for other languages.

Version and Platform Notes
Development of the code in this book took place under MySQL 5.5, 5.6, and 5.7. Because
new features are added to MySQL on a regular basis, some examples will not work under
older versions. For example, MySQL 5.5 introduces authentication plug-ins, and

Preface | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

MySQL 5.6 introduces TIMESTAMP-like auto-initialization and auto-update properties
for the DATETIME data type.

I do not assume that you are using Unix, although that is my own preferred development
platform. (In this book, “Unix” also refers to Unix-like systems such as Linux and Mac
OS X.) Most of the material here is applicable both to Unix and Windows.

Conventions Used in This Book
This book uses the following font conventions:
Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Used to indicate text that you type when running commands.

Constant width italic
Used to indicate variable input; you should substitute a value of your own choosing.

Italic
Used for URLs, hostnames, names of directories and files, Unix commands and
options, programs, and occasionally for emphasis.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

This element signifies a general note.

Commands often are shown with a prompt to illustrate the context in which they are
used. Commands issued from the command line are shown with a % prompt:

xviii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

% chmod 600 my.cnf

That prompt is one that Unix users are used to seeing, but it doesn’t necessarily signify
that a command works only under Unix. Unless indicated otherwise, commands shown
with a % prompt generally should work under Windows, too.

If you should run a command under Unix as the root user, the prompt is # instead:
perl -MCPAN -e shell

Commands that are specific to Windows use the C:\> prompt:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql"

SQL statements that are issued from within the mysql client program are shown with a
mysql> prompt and terminated with a semicolon:

mysql> SELECT * FROM my_table;

For examples that show a query result as you would see it when using mysql, I sometimes
truncate the output, using an ellipsis (...) to indicate that the result consists of more
rows than are shown. The following query produces many rows of output, from which
those in the middle have been omitted:

mysql> SELECT name, abbrev FROM states ORDER BY name;
+----------------+--------+
| name | abbrev |
+----------------+--------+
Alabama	AL
Alaska	AK
Arizona	AZ
…	
West Virginia	WV
Wisconsin	WI
Wyoming	WY
+----------------+--------+

Examples that show only the syntax for SQL statements do not include the mysql>
prompt, but they do include semicolons as necessary to make it clearer where statements
end. For example, this is a single statement:

CREATE TABLE t1 (i INT)
SELECT * FROM t2;

But this example represents two statements:
CREATE TABLE t1 (i INT);
SELECT * FROM t2;

The semicolon is a notational convenience used within mysql as a statement terminator.
But it is not part of SQL itself, so when you issue SQL statements from within programs
that you write (for example, using Perl or Java), don’t include terminating semicolons.

Preface | xix

www.it-ebooks.info

http://www.it-ebooks.info/

The MySQL Cookbook Companion Website
MySQL Cookbook has a companion website where you can obtain source code and
sample data for examples developed throughout this book, errata, and auxiliary docu‐
mentation.

The website also makes examples from the book available online so you can try them
from your browser.

Recipe Source Code and Data
The examples in this book are based on source code and sample data from two distri‐
butions named recipes and mcb-kjv available at the companion website.

The recipes distribution is the primary source of examples, and references to it occur
throughout the book. The distribution is available as a compressed TAR file (rec
ipes.tar.gz) or as a ZIP file (recipes.zip). Either distribution format when unpacked cre‐
ates a directory named recipes.

Use the recipes distribution to save yourself a lot of typing. For example, when you see
a CREATE TABLE statement in the book that describes what a database table looks like,
you’ll usually find an SQL batch file in the tables directory that you can use to create the
table instead of entering the definition manually. Change location into the tables direc‐
tory and execute the following command, where filename is the name of the file con‐
taining the CREATE TABLE statement:

% mysql cookbook < filename

If you need to specify MySQL username or password options, add them to the command
line.

The recipes distribution contains programs as shown in the book, but in many cases
also includes implementations in additional languages. For example, a script shown in
the book using Python may be available in the recipes distribution in Perl, Ruby, PHP,
or Java as well. This may save you translation effort should you wish to convert a program
shown in the book to a different language.

The other distribution is named mcb-kjv and contains the text of the King James Version
of the Bible, formatted suitably for loading into MySQL. It’s used in Chapter 5 as the
source of a reasonably large body of text for examples that demonstrate FULLTEXT
searches, and occasionally elsewhere in the book. This distribution is provided sepa‐
rately from the recipes distribution due to its size. It’s available as a compressed TAR
file (mcb-kjv.tar.gz) or as a ZIP file (mcb-kjv.zip). Either distribution format when un‐
packed creates a directory named mcb-kjv.

xx | Preface

www.it-ebooks.info

http://www.kitebird.com/mysql-cookbook
http://www.it-ebooks.info/

The mcb-kjv distribution is derived from KJV text originally found on the Unbound
Bible site, restructured to be more usable for examples in the book. The distribution
includes notes that describe the modifications I made.

MySQL Cookbook Companion Documents
Some appendixes included in previous MySQL Cookbook editions are now available in
standalone form at the companion website. They provide background information for
topics covered in the book.

• “Executing Programs from the Command Line” provides instructions for executing
commands at the command prompt and setting environment variables such as
PATH.

• “JSP, JSTL, and Tomcat Primer” provides a general overview of JavaServer Pages
(JSP) programming and installation instructions for the Tomcat web server. Read
this document if you need to install Tomcat or are not familiar with it, or if you’ve
never written pages using JSP notation. It also provides an overview of the Java
Standard Tag Library (JSTL) that is used heavily for JSP pages in this book. This
material is background for topics covered in the web programming chapters, be‐
ginning with Chapter 18.

Obtaining MySQL and Related Software
To run the examples in this book, you need access to MySQL, as well as the appropriate
MySQL-specific interfaces for the programming languages that you want to use. The
following notes describe what software is required and where to get it.

If you access a MySQL server run by somebody else, you need only the MySQL client
software on your own machine. To run your own server, you need a full MySQL dis‐
tribution.

To write your own MySQL-based programs, you communicate with the server through
a language-specific API. The Perl and Ruby interfaces rely on the MySQL C API client
library to handle the low-level client-server protocol. This is also true for the PHP
interface, unless PHP is configured to use mysqlnd, the native protocol driver. For Perl
and Ruby, you must install the C client library and header files first. PHP includes the
required MySQL client support files, but must be compiled with MySQL support en‐
abled or you won’t be able to use it. The Python and Java drivers for MySQL implement
the client-server protocol directly, so they do not require the MySQL C client library.

You may not need to install the client software yourself—it might already be present on
your system. This is a common situation if you have an account with an Internet service

Preface | xxi

www.it-ebooks.info

http://www.unboundbible.org
http://www.unboundbible.org
http://www.it-ebooks.info/

provider (ISP) that provides services such as a web server already enabled for access to
MySQL.

MySQL
MySQL distributions and documentation, including the MySQL Reference Manual, are
available from http://dev.mysql.com/downloads and http://dev.mysql.com/doc.

If you need to install the MySQL C client library and header files, they’re included when
you install MySQL from a source distribution, or when you install MySQL using a binary
(precompiled) distribution other than an RPM binary distribution. Under Linux, you
have the option of installing MySQL using RPM files, but the client library and header
files are not installed unless you install the development RPM. (There are separate RPM
files for the server, the standard client programs, and the development libraries and
header files.) If you don’t install the development RPM, you’ll join the many Linux users
who’ve asked, “I installed MySQL, but I cannot find the libraries or header files; where
are they?”

Perl Support
General Perl information is available on the Perl Programming Language website.

You can obtain Perl software from the Comprehensive Perl Archive Network (CPAN).

To write MySQL-based Perl programs, you need the DBI module and the MySQL-
specific DBD module, DBD::mysql.

To install these modules under Unix, let Perl itself help you. For example, to install DBI
and DBD::mysql, run the following commands (you’ll probably need to do this as root):

perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

If the last command complains about failed tests, use force install DBD::mysql in‐
stead. Under ActiveState Perl for Windows, use the ppm utility:

C:\> ppm
ppm> install DBI
ppm> install DBD-mysql

You can also use the CPAN shell or ppm to install other Perl modules mentioned in this
book.

Once the DBI and DBD::mysql modules are installed, documentation is available from
the command line:

% perldoc DBI
% perldoc DBI::FAQ
% perldoc DBD::mysql

xxii | Preface

www.it-ebooks.info

http://dev.mysql.com/downloads
http://dev.mysql.com/doc
http://www.perl.org
http://cpan.perl.org
http://www.it-ebooks.info/

Documentation is also available from the Perl website.

Ruby Support
The primary Ruby website provides access to Ruby distributions and documentation.

The Ruby DBI and MySQL driver modules are available from RubyGems; the Ruby DBI
driver for MySQL requires the mysql-ruby module, also available from RubyGems.

To use session support as described in Chapter 21, you need the mysql-session package.
It’s available from the MySQL Cookbook companion website described earlier in this
Preface. Obtain the mysql-session package, unpack it, and install its mysqlstore.rb and
sqlthrow.rb files in some directory that your Ruby interpreter searches when looking
for library files (see Recipe 2.3).

PHP Support
The primary PHP website provides access to PHP distributions and documentation,
including PDO documentation.

PHP source distributions include PDO support, so you need not obtain it separately.
However, you must enable PDO support for MySQL when you configure the distribu‐
tion. If you use a binary distribution, be sure that it includes PDO MySQL support.

Python Support
The primary Python website provides access to Python distributions and documenta‐
tion. General documentation for the DB API database access interface is on the Python
Wiki.

For MySQL Connector/Python, the driver module that provides MySQL connectivity
for the DB API, distributions and documentation are available from http://bit.ly/py-
connect and http://bit.ly/py-dev-guide.

Java Support
You need a Java compiler to build and run Java programs. The javac and jikes compilers
are two possible choices. On many systems, you’ll find one or both installed already.
Otherwise, you can get a compiler as part of the Java Development Kit (JDK). If no JDK
is installed on your system, versions are available for Solaris, Linux, and Windows at
Oracle’s Java site. The same site provides access to documentation (including the spec‐
ifications) for JDBC, servlets, JavaServer Pages (JSP), and the JSP Standard Tag Library
(JSTL).

Preface | xxiii

www.it-ebooks.info

http://dbi.perl.org
http://www.ruby-lang.org
http://www.rubygems.org
http://www.php.net
http://www.python.org
http://bit.ly/py-wiki
http://bit.ly/py-wiki
http://bit.ly/py-connect
http://bit.ly/py-connect
http://bit.ly/py-dev-guide
http://www.oracle.com/technetwork/java
http://www.it-ebooks.info/

For MySQL Connector/J, the driver that provides MySQL connectivity for the JDBC
interface, distributions and documentation are available from http://bit.ly/jconn-dl and
http://bit.ly/j-dev-guide.

Using Code Examples
This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MySQL Cookbook, Third Edition by Paul
DuBois (O’Reilly). Copyright 2014 Paul DuBois, 978-1-449-37402-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both
book and video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xxiv | Preface

www.it-ebooks.info

http://bit.ly/jconn-dl
http://bit.ly/j-dev-guide
mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/mysql_ckbk_3e.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
To each reader, thank you for reading my book. I hope that it serves you well and that
you find it useful.

Thanks to my technical reviewers, Johannes Schlüter, Geert Vanderkelen, and Ulf Wen‐
del. They made several corrections and suggestions that improved the text in many ways,
and I appreciate their help.

Andy Oram prodded me to begin the third edition and served as its editor, Nicole Shelby
guided the book through production, and Kim Cofer and Lucie Haskins provided
proofreading and indexing.

Thanks to my wife Karen, whose encouragement and support throughout the writing
process means more than I can say.

Preface | xxv

www.it-ebooks.info

http://bit.ly/mysql_ckbk_3e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Using the mysql Client Program

1.0. Introduction
The MySQL database system uses a client-server architecture. The server, mysqld, is the
program that actually manipulates databases. To tell the server what to do, use a client
program that communicates your intent by means of statements written in Structured
Query Language (SQL). Client programs are written for diverse purposes, but each
interacts with the server by connecting to it, sending SQL statements to have database
operations performed, and receiving the results.

Clients are installed locally on the machine from which you want to access MySQL, but
the server can be installed anywhere, as long as clients can connect to it. Because MySQL
is an inherently networked database system, clients can communicate with a server
running locally on your own machine or somewhere on the other side of the planet.

The mysql program is one of the clients included in MySQL distributions. When used
interactively, mysql prompts you for a statement, sends it to the MySQL server for ex‐
ecution, and displays the results. mysql also can be used noninteractively in batch mode
to read statements stored in files or produced by programs. This enables use of mysql
from within scripts or cron jobs, or in conjunction with other applications.

This chapter describes mysql’s capabilities so that you can use it more effectively:

• Setting up a MySQL account for using the cookbook database
• Specifying connection parameters and using option files
• Executing SQL statements interactively and in batch mode
• Controlling mysql output format
• Using user-defined variables to save information

1

www.it-ebooks.info

http://www.it-ebooks.info/

To try for yourself the examples shown in this book, you need a MySQL user account
and a database. The first two recipes in this chapter describe how to use mysql to set
those up, based on these assumptions:

• The MySQL server is running locally on your own system
• Your MySQL username and password are cbuser and cbpass
• Your database is named cookbook

If you like, you can violate any of the assumptions. Your server need not be running
locally, and you need not use the username, password, or database name that are used
in this book. Naturally, in such cases, you must modify the examples accordingly.

Even if you choose not to use cookbook as your database name, I recommend that you
use a database dedicated to the examples shown here, not one that you also use for other
purposes. Otherwise, the names of existing tables may conflict with those used in the
examples, and you’ll have to make modifications that would be unnecessary with a
dedicated database.

Scripts that create the tables used in this chapter are located in the tables directory of
the recipes distribution that accompanies MySQL Cookbook. Other scripts are located
in the mysql directory. To get the recipes distribution, see the Preface.

Alternatives to the mysql Program
The mysql client is not the only program you can use for executing queries. For example,
you might prefer the graphical MySQL Workbench program, which provides a point-
and-click interface to MySQL servers. Another popular interface is phpMyAdmin,
which enables you to access MySQL through your web browser. If you execute queries
other than by using mysql, some concepts covered in this chapter may not apply.

1.1. Setting Up a MySQL User Account
Problem
You need an account for connecting to your MySQL server.

Solution
Use CREATE USER and GRANT statements to set up the account. Then use the account
name and password to make connections to the server.

2 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Connecting to a MySQL server requires a username and password. You may also need
to specify the name of the host on which the server is running. If you don’t specify
connection parameters explicitly, mysql assumes default values. For example, given no
explicit hostname, mysql assumes that the server is running on the local host.

If someone else has already set up an account for you, just use that account. Otherwise,
the following example shows how to use the mysql program to connect to the server
and issue the statements that set up a user account with privileges for accessing a data‐
base named cookbook. The arguments to mysql include -h localhost to connect to the
MySQL server running on the local host, -u root to connect as the MySQL root user,
and -p to tell mysql to prompt for a password:

% mysql -h localhost -u root -p
Enter password: ******
mysql> CREATE USER 'cbuser'@'localhost' IDENTIFIED BY 'cbpass';
mysql> GRANT ALL ON cookbook.* TO 'cbuser'@'localhost';
Query OK, 0 rows affected (0.09 sec)
mysql> quit
Bye

If when you attempt to invoke mysql the result is an error message that it cannot be
found or is an invalid command, that means your command interpreter doesn’t know
where mysql is installed. See Recipe 1.3 for information about setting the PATH envi‐
ronment variable that the interpreter uses to find commands.

In the commands shown, the % represents the prompt displayed by your shell or com‐
mand interpreter, and mysql> is the prompt displayed by mysql. Text that you type is
shown in bold. Nonbold text (including the prompts) is program output; don’t type any
of that.

When mysql prints the password prompt, enter the MySQL root password where you
see the ******; if the MySQL root user has no password, just press the Enter (or Return)
key at the password prompt. Then enter the CREATE USER and GRANT statements as shown.

The quit command terminates your mysql session. You can also terminate a session by
using an exit command or (under Unix) by typing Ctrl-D.

To grant the cbuser account access to a database other than cookbook, substitute the
database name where you see cookbook in the GRANT statement. To grant access for the
cookbook database to an existing account, omit the CREATE USER statement and substi‐
tute that account for 'cbuser'@'localhost' in the GRANT statement.

The hostname part of 'cbuser'@'localhost' indicates the host from which you’ll con‐
nect to the MySQL server. To set up an account that will connect to a server running on
the local host, use localhost, as shown. If you plan to connect to the server from another
host, substitute that host in the CREATE USER and GRANT statements. For example, if you’ll

1.1. Setting Up a MySQL User Account | 3

www.it-ebooks.info

http://www.it-ebooks.info/

connect to the server from a host named myhost.example.com, the statements look like
this:

mysql> CREATE USER 'cbuser'@'myhost.example.com' IDENTIFIED BY 'cbpass';
mysql> GRANT ALL ON cookbook.* TO 'cbuser'@'myhost.example.com';

It may have occurred to you that there’s a paradox in the procedure just described: to
set up a cbuser account that can connect to the MySQL server, you must first connect
to the server so that you can execute the CREATE USER and GRANT statements. I’m as‐
suming that you can already connect as the MySQL root user because CREATE USER and
GRANT can be used only by a user such as root that has the administrative privileges
needed to set up other user accounts. If you can’t connect to the server as root, ask your
MySQL administrator to create the cbuser account for you.

MySQL Accounts and Login Accounts
MySQL accounts differ from login accounts for your operating system. For example,
the MySQL root user and the Unix root user are separate and have nothing to do with
each other, even though the username is the same in each case. This means they very
likely have different passwords. It also means you don’t create new MySQL accounts by
creating login accounts for your operating system; use CREATE USER and GRANT instead.

After creating the cbuser account, verify that you can use it to connect to the MySQL
server. From the host that was named in the CREATE USER statement, run the following
command to do this (the host named after -h should be the host where the MySQL
server is running):

% mysql -h localhost -u cbuser -p
Enter password: cbpass

Now you can proceed to create the cookbook database and tables within it, as described
in Recipe 1.2. To make it easier to invoke mysql without specifying connection param‐
eters each time, put them in an option file (see Recipe 1.4).

See Also
For additional information about administering MySQL accounts, see Chapter 23.

1.2. Creating a Database and a Sample Table
Problem
You want to create a database and set up tables within it.

4 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use a CREATE DATABASE statement to create the database, a CREATE TABLE statement for
each table, and INSERT statements to add rows to the tables.

Discussion
The GRANT statement shown in Recipe 1.1 sets up privileges for accessing the cook
book database but does not create the database. This section shows how to do that, and
also how to create a table and load it with the sample data used for examples in the
following sections. Similar instructions apply for creating other tables used elsewhere
in this book.

Connect to the MySQL server as shown at the end of Recipe 1.1, then create the database
like this:

mysql> CREATE DATABASE cookbook;

Now that you have a database, you can create tables in it. First, select cookbook as the
default database:

mysql> USE cookbook;

Then create a simple table:
mysql> CREATE TABLE limbs (thing VARCHAR(20), legs INT, arms INT);

And populate it with a few rows:
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('human',2,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('insect',6,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('squid',0,10);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('fish',0,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('centipede',100,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('table',4,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('armchair',4,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('phonograph',0,1);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('tripod',3,0);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('Peg Leg Pete',1,2);
mysql> INSERT INTO limbs (thing,legs,arms) VALUES('space alien',NULL,NULL);

Here’s a tip for entering the INSERT statements more easily: after entering the first one,
press the up arrow to recall it, press Backspace (or Delete) a few times to erase characters
back to the last open parenthesis, then type the data values for the next statement. Or,
to avoid typing the INSERT statements altogether, skip ahead to Recipe 1.6.

The table you just created is named limbs and contains three columns to record the
number of legs and arms possessed by various life forms and objects. The physiology
of the alien in the last row is such that the proper values for the arms and legs columns
cannot be determined; NULL indicates “unknown value.”

1.2. Creating a Database and a Sample Table | 5

www.it-ebooks.info

http://www.it-ebooks.info/

Verify that the rows were added to the limbs table by executing a SELECT statement:
mysql> SELECT * FROM limbs;
+--------------+------+------+
| thing | legs | arms |
+--------------+------+------+
human	2	2
insect	6	0
squid	0	10
fish	0	0
centipede	100	0
table	4	0
armchair	4	2
phonograph	0	1
tripod	3	0
Peg Leg Pete	1	2
space alien	NULL	NULL
+--------------+------+------+

At this point, you’re all set up with a database and a table. For additional information
about executing SQL statements, see Recipes 1.5 and 1.6.

In this book, statements show SQL keywords such as SELECT or IN
SERT in uppercase for distinctiveness. That’s only a typographical
convention; keywords can be any lettercase.

1.3. What to Do if mysql Cannot Be Found
Problem
When you invoke mysql from the command line, your command interpreter can’t find
it.

Solution
Add the directory where mysql is installed to your PATH setting. Then you can run mysql
from any directory easily.

Discussion
If your shell or command interpreter can’t find mysql when you invoke it, you’ll see
some sort of error message. It might look like this under Unix:

% mysql
mysql: Command not found.

Or like this under Windows:

6 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

C:\> mysql
Bad command or invalid filename

One way to tell your command interpreter where to find mysql is to type its full pathname
each time you run it. The command might look like this under Unix:

% /usr/local/mysql/bin/mysql

Or like this under Windows:
C:\> "C:\Program Files\MySQL\MySQL Server 5.6\bin\mysql"

Typing long pathnames gets tiresome pretty quickly. You can avoid doing so by changing
location into the directory where mysql is installed before you run it. But if you do that,
you may be tempted to put all your datafiles and SQL batch files in the same directory
as mysql, thus unnecessarily cluttering up a location intended only for programs.

A better solution is to modify your PATH search-path environment variable, which
specifies directories where the command interpreter looks for commands. Add to the
PATH value the directory where mysql is installed. Then you can invoke mysql from any
location by entering only its name, which eliminates pathname typing. For instructions
on setting your PATH variable, read “Executing Programs from the Command Line” on
the companion website (see the Preface).

A significant additional benefit of being able to easily run mysql from anywhere is that
you need not put your datafiles in the directory where mysql is located. You’re free to
organize your files in a way that makes sense to you, not a way imposed by some artificial
necessity. For example, you can create a directory under your home directory for each
database you have and put the work files associated with a given database in the appro‐
priate directory. (I point out the importance of PATH here because many newcomers to
MySQL aren’t aware of the existence of such a thing, and consequently try to do all their
MySQL-related work in the bin directory where mysql is installed.)

On Windows, another way to avoid typing the pathname or changing into the mysql
directory is to create a shortcut and place it in a more convenient location such as the
desktop. This makes it easy to start mysql simply by opening the shortcut. To specify
command options or the startup directory, edit the shortcut’s properties. If you don’t
always invoke mysql with the same options, it might be useful to create one shortcut for
each set of options you need. For example, create one shortcut to connect as an ordinary
user for general work and another to connect as the MySQL root user for administrative
purposes.

1.3. What to Do if mysql Cannot Be Found | 7

www.it-ebooks.info

http://www.it-ebooks.info/

1.4. Specifying mysql Command Options
Problem
When you invoke the mysql program without command options, it exits immediately
with an “access denied” message.

Solution
You must specify connection parameters. Do this on the command line, in an option
file, or using a mix of the two.

Discussion
If you invoke mysql with no command options, the result may be an “access denied”
error. To avoid that, connect to the MySQL server as shown in Recipe 1.1, using mysql
like this:

% mysql -h localhost -u cbuser -p
Enter password: cbpass

Each option is the single-dash “short” form: -h and -u to specify the hostname and
username, and -p to be prompted for the password. There are also corresponding
double-dash “long” forms: --host, --user, and --password. Use them like this:

% mysql --host=localhost --user=cbuser --password
Enter password: cbpass

To see all options that mysql supports, use this command:
% mysql --help

The way you specify command options for mysql also applies to other MySQL programs
such as mysqldump and mysqladmin. For example, to generate a dump file named
cookbook.sql that contains a backup of the tables in the cookbook database, execute
mysqldump like this:

% mysqldump -h localhost -u cbuser -p cookbook > cookbook.sql
Enter password: cbpass

Some operations require an administrative MySQL account. The mysqladmin program
can perform operations that are available only to the MySQL root account. For example,
to stop the server, invoke mysqladmin as follows:

% mysqladmin -h localhost -u root -p shutdown
Enter password: ← enter MySQL root account password here

If the value that you use for an option is the same as its default value, you can omit the
option. However, there is no default password. If you like, you can specify the password
directly on the command line by using -ppassword (with no space between the option

8 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

and the password) or --password=password. I don’t recommend this because the pass‐
word is visible to onlookers and, on multiple-user systems, may be discoverable to other
users who run tools such as ps that report process information.

Because the default host is localhost, the same value we’ve been specifying explicitly,
you can omit the -h (or --host) option from the command line:

% mysql -u cbuser -p

But suppose that you’d really rather not specify any options. How can you get mysql to
“just know” what values to use? That’s easy because MySQL programs support option
files:

• If you put an option in an option file, you need not specify it on the command line
each time you invoke a given program.

• You can mix command-line and option-file options. This enables you to store the
most commonly used option values in a file but override them as desired on the
command line.

The rest of this section describes these capabilities.

The Meaning of localhost in MySQL
One of the parameters you specify when connecting to a MySQL server is the host where
the server is running. Most programs treat the hostname localhost and the IP address
127.0.0.1 as synonyms for “the local host.” Under Unix, MySQL programs behave
differently: by convention, they treat the hostname localhost specially and attempt to
connect to the local server using a Unix domain socket file. To force a TCP/IP connection
to the local server, use the IP address 127.0.0.1 (or ::1 if your system is configured to
support IPv6) rather than the hostname localhost. Alternatively, you can specify a --
protocol=tcp option to force use of TCP/IP for connecting.

The default port number is 3306 for TCP/IP connections. The pathname for the Unix
domain socket varies, although it’s often /tmp/mysql.sock. To name the socket file path‐
name explicitly, use -S file_name or --socket=file_name.

Specifying connection parameters using option files

To avoid entering options on the command line each time you invoke mysql, put them
in an option file for mysql to read automatically. Option files are plain-text files:

• Under Unix, your personal option file is named .my.cnf in your home directory.
There are also site-wide option files that administrators can use to specify param‐

1.4. Specifying mysql Command Options | 9

www.it-ebooks.info

http://www.it-ebooks.info/

eters that apply globally to all users. You can use the my.cnf file in the /etc or /etc/
mysql directory, or in the etc directory under the MySQL installation directory.

• Under Windows, files you can use include the my.ini or my.cnf file in your MySQL
installation directory (for example, C:\Program Files\MySQL\MySQL Server 5.6),
your Windows directory (likely C:\WINDOWS), or the C:\ directory.

To see the exact list of permitted option-file locations, invoke mysql --help.

The following example illustrates the format used in MySQL option files:
general client program connection options
[client]
host = localhost
user = cbuser
password = cbpass

options specific to the mysql program
[mysql]
skip-auto-rehash
pager="/usr/bin/less -E" # specify pager for interactive mode

With connection parameters listed in the [client] group as just shown, you can con‐
nect as cbuser by invoking mysql with no options on the command line:

% mysql

The same holds for other MySQL client programs, such as mysqldump.

MySQL option files have these characteristics:

• Lines are written in groups (or sections). The first line of a group specifies the group
name within square brackets, and the remaining lines specify options associated
with the group. The example file just shown has a [client] group and a [mysql]
group. To specify options for the server, mysqld, put them in a [mysqld] group.

• The usual option group for specifying client connection parameters is [client].
This group actually is used by all the standard MySQL clients. By listing an option
in this group, you make it easier to invoke not only mysql, but also other programs
such as mysqldump and mysqladmin. Just make sure that any option you put in this
group is understood by all client programs. Otherwise, invoking any client that does
not understand it results in an “unknown option” error.

• You can define multiple groups in an option file. By convention, MySQL clients
look for parameters in the [client] group and in the group named for the program
itself. This provides a convenient way to list general client parameters that you want
all client programs to use, but you can still specify options that apply only to a
particular program. The preceding sample option file illustrates this convention for
the mysql program, which gets general connection parameters from the [client]

10 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

group and also picks up the skip-auto-rehash and pager options from the [mysql]
group.

• Within a group, write option lines in name=value format, where name corresponds
to an option name (without leading dashes) and value is the option’s value. If an
option takes no value (such as skip-auto-rehash), list the name by itself with no
trailing =value part.

• In option files, only the long form of an option is permitted, not the short form.
For example, on the command line, the hostname can be given using either -h
host_name or --host=host_name. In an option file, only host=host_name is per‐
mitted.

• Many programs, mysql and mysqld included, have program variables in addition
to command options. (For the server, these are called system variables; see
Recipe 22.1.) Program variables can be specified in option files, just like options.
Internally, program variable names use underscores, but in option files, you can
write options and variables using dashes or underscores interchangeably. For ex‐
ample, skip-auto-rehash and skip_auto_rehash are equivalent. To set the server’s
sql_mode system variable in a [mysqld] option group, sql_mode=value and sql-
mode=value are equivalent. (Interchangeability of dash and underscore also applies
for options or variables specified on the command line.)

• In option files, spaces are permitted around the = that separates an option name
and value. This contrasts with command lines, where no spaces around = are per‐
mitted.

• If an option value contains spaces or other special characters, you can quote it using
single or double quotes. The pager option illustrates this.

• It’s common to use an option file to specify options for connection parameters (such
as host, user, and password). However, the file can list options that have other
purposes. The pager option shown for the [mysql] group specifies the paging pro‐
gram that mysql should use for displaying output in interactive mode. It has nothing
to do with how the program connects to the server.

• If a parameter appears multiple times in an option file, the last value found takes
precedence. Normally, you should list any program-specific groups following the
[client] group so that if there is any overlap in the options set by the two groups,
the more general options are overridden by the program-specific values.

• Lines beginning with # or ; characters are ignored as comments. Blank lines are
ignored, too. # can be used to write comments at the end of option lines, as shown
for the pager option.

• Options that specify file or directory pathnames should be written using / as the
pathname separator character, even under Windows, which uses \ as the pathname

1.4. Specifying mysql Command Options | 11

www.it-ebooks.info

http://www.it-ebooks.info/

separator. Alternatively, write \ by doubling it as \\ (this is necessary because \ is
the MySQL escape character in strings).

To find out which options the mysql program will read from option files, use this com‐
mand:

% mysql --print-defaults

You can also use the my_print_defaults utility, which takes as arguments the names of
the option-file groups that it should read. For example, mysqldump looks in both the
[client] and [mysqldump] groups for options. To check which option-file settings are
in those groups, use this command:

% my_print_defaults client mysqldump

Mixing command-line and option-file parameters

It’s possible to mix command-line options and options in option files. Perhaps you want
to list your username and server host in an option file, but would rather not store your
password there. That’s okay; MySQL programs first read your option file to see what
connection parameters are listed there, then check the command line for additional
parameters. This means you can specify some options one way, and some the other way.
For example, you can list your username and hostname in an option file, but use a
password option on the command line:

% mysql -p
Enter password: ← enter your password here

Command-line parameters take precedence over parameters found in your option file,
so to override an option file parameter, just specify it on the command line. For example,
you can list your regular MySQL username and password in the option-file for general-
purpose use. Then, if you must connect on occasion as the MySQL root user, specify
the user and password options on the command line to override the option-file values:

% mysql -u root -p
Enter password: ← enter MySQL root account password here

To explicitly specify “no password” when there is a nonempty password in the option
file, use --skip-password on the command line:

% mysql --skip-password

From this point on, I’ll usually show commands for MySQL pro‐
grams with no connection-parameter options. I assume that you’ll
supply any parameters that you need, either on the command line or
in an option file.

12 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

Protecting option files from other users

On a multiple-user operating system such as Unix, protect the option file located in
your home directory to prevent other users from reading it and finding out how to
connect to MySQL using your account. Use chmod to make the file private by setting
its mode to enable access only by yourself. Either of the following commands do this:

% chmod 600 .my.cnf
% chmod go-rwx .my.cnf

On Windows, you can use Windows Explorer to set file permissions.

1.5. Executing SQL Statements Interactively
Problem
You’ve started mysql. Now you want to send SQL statements to the MySQL server to be
executed.

Solution
Just type them in, letting mysql know where each one ends. Or specify “one-liners”
directly on the command line.

Discussion
When you invoke mysql, it displays a mysql> prompt to tell you that it’s ready for input.
To execute an SQL statement at the mysql> prompt, type it in, add a semicolon (;) at
the end to signify the end of the statement, and press Enter. An explicit statement ter‐
minator is necessary; mysql doesn’t interpret Enter as a terminator because you can enter
a statement using multiple input lines. The semicolon is the most common terminator,
but you can also use \g (“go”) as a synonym for the semicolon. Thus, the following
examples are equivalent ways of issuing the same statement, even though they are en‐
tered differently and terminated differently:

mysql> SELECT NOW();
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:52 |
+---------------------+
mysql> SELECT
 -> NOW()\g
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:57 |
+---------------------+

1.5. Executing SQL Statements Interactively | 13

www.it-ebooks.info

http://www.it-ebooks.info/

For the second statement, mysql changes the prompt from mysql> to -> to let you know
that it’s still waiting to see the statement terminator.

The ; and \g statement terminators are not part of the statement itself. They’re con‐
ventions used by the mysql program, which recognizes these terminators and strips
them from the input before sending the statement to the MySQL server.

Some statements generate output lines that are so long they take up more than one line
on your terminal, which can make query results difficult to read. To avoid this problem,
generate “vertical” output by terminating the statement with \G rather than with ; or
\g. The output shows column values on separate lines:

mysql> SHOW FULL COLUMNS FROM limbs LIKE 'thing'\G
*************************** 1. row ***************************
 Field: thing
 Type: varchar(20)
 Collation: latin1_swedish_ci
 Null: YES
 Key:
 Default: NULL
 Extra:
Privileges: select,insert,update,references
 Comment:

To produce vertical output for all statements executed within a session, invoke mysql
with the -E (or --vertical) option. To produce vertical output only for those results
that exceed your terminal width, use --auto-vertical-output.

To execute a statement directly from the command line, specify it using the -e (or --
execute) option. This is useful for “one-liners.” For example, to count the rows in the
limbs table, use this command:

% mysql -e "SELECT COUNT(*) FROM limbs" cookbook
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+

To execute multiple statements, separate them with semicolons:
% mysql -e "SELECT COUNT(*) FROM limbs;SELECT NOW()" cookbook
+----------+
| COUNT(*) |
+----------+
| 11 |
+----------+
+---------------------+
| NOW() |
+---------------------+
| 2014-04-06 17:43:57 |
+---------------------+

14 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

mysql can also read statements from a file or from another program (see Recipe 1.6).

1.6. Executing SQL Statements Read from a File or
Program
Problem
You want mysql to read statements stored in a file so that you need not enter them
manually. Or you want mysql to read the output from another program.

Solution
To read a file, redirect mysql’s input, or use the source command. To read from a pro‐
gram, use a pipe.

Discussion
By default, the mysql program reads input interactively from the terminal, but you can
feed it statements using other input sources such as a file or program.

To create an SQL script for mysql to execute in batch mode, put your statements in a
text file. Then invoke mysql and redirect its input to read from that file:

% mysql cookbook < file_name

Statements read from an input file substitute for what you’d normally enter interactively
by hand, so they must be terminated with ;, \g, or \G, just as if you were entering them
manually. Interactive and batch modes do differ in default output format. For interactive
mode, the default is tabular (boxed) format. For batch mode, the default is tab-delimited
format. To override the default, use the appropriate command option (see Recipe 1.7).

Batch mode is convenient for executing a set of statements on repeated occasions
without entering them manually each time. Batch mode makes it easy to set up cron
jobs that run with no user intervention. SQL scripts also are useful for distributing
statements to other people. That is, in fact, how I distribute SQL examples for this book.
Many of the examples shown here can be run using script files available in the accom‐
panying recipes distribution (see the Preface). Feed these files to mysql in batch mode
to avoid typing statements yourself. For example, when a recipe shows a CREATE TABLE
statement that defines a table, you’ll usually find an SQL batch file in the recipes
distribution that you can use to create (and perhaps load data into) the table. Recall that
Recipe 1.2 shows the statements for creating and populating the limbs table. Those
statements were shown as you would enter them manually, but the tables directory of
the recipes distribution includes a limbs.sql file that contains statements to do the same
thing. The file looks like this:

1.6. Executing SQL Statements Read from a File or Program | 15

www.it-ebooks.info

http://www.it-ebooks.info/

DROP TABLE IF EXISTS limbs;
CREATE TABLE limbs
(
 thing VARCHAR(20), # what the thing is
 legs INT, # number of legs it has
 arms INT # number of arms it has
);

INSERT INTO limbs (thing,legs,arms) VALUES('human',2,2);
INSERT INTO limbs (thing,legs,arms) VALUES('insect',6,0);
INSERT INTO limbs (thing,legs,arms) VALUES('squid',0,10);
INSERT INTO limbs (thing,legs,arms) VALUES('fish',0,0);
INSERT INTO limbs (thing,legs,arms) VALUES('centipede',100,0);
INSERT INTO limbs (thing,legs,arms) VALUES('table',4,0);
INSERT INTO limbs (thing,legs,arms) VALUES('armchair',4,2);
INSERT INTO limbs (thing,legs,arms) VALUES('phonograph',0,1);
INSERT INTO limbs (thing,legs,arms) VALUES('tripod',3,0);
INSERT INTO limbs (thing,legs,arms) VALUES('Peg Leg Pete',1,2);
INSERT INTO limbs (thing,legs,arms) VALUES('space alien',NULL,NULL);

To execute the statements in this SQL script file, change location into the tables directory
of the recipes distribution and run this command:

% mysql cookbook < limbs.sql

You’ll note that the script contains a statement to drop the table if it exists before creating
the table anew and loading it with data. That enables you to experiment with the table,
perhaps making changes to it, confident that you can easily restore it to its baseline state
any time by running the script again.

The command just shown illustrates how to specify an input file for mysql on the com‐
mand line. Alternatively, to read a file of SQL statements from within a mysql session,
use a source filename command (or \. filename, which is synonymous):

mysql> source limbs.sql;
mysql> \. limbs.sql;

SQL scripts can themselves include source or \. commands to include other scripts.
This gives you additional flexibility, but take care to avoid source loops.

A file to be read by mysql need not be written by hand; it could be program generated.
For example, the mysqldump utility generates database backups by writing a set of SQL
statements that re-create the database. To reload mysqldump output, feed it to mysql.
For example, you can copy a database over the network to another MySQL server like
this:

% mysqldump cookbook > dump.sql
% mysql -h other-host.example.com cookbook < dump.sql

mysql can also read a pipe, so it can take output from other programs as its input. Any
command that produces output consisting of properly terminated SQL statements can
be used as an input source for mysql. The dump-and-reload example can be rewritten

16 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

to connect the two programs directly with a pipe, avoiding the need for an intermediary
file:

% mysqldump cookbook | mysql -h other-host.example.com cookbook

Program-generated SQL also can be useful for populating a table with test data without
writing the INSERT statements by hand. Create a program that generates the statements,
then send its output to mysql using a pipe:

% generate-test-data | mysql cookbook

Recipe 4.6 discusses mysqldump further.

1.7. Controlling mysql Output Destination and Format
Problem
You want mysql output to go somewhere other than your screen. And you don’t neces‐
sarily want the default output format.

Solution
Redirect the output to a file, or use a pipe to send the output to a program. You can also
control other aspects of mysql output to produce tabular, tab-delimited, HTML, or XML
output; suppress column headers; or make mysql more or less verbose.

Discussion
Unless you send mysql output elsewhere, it goes to your screen. To save output from
mysql in a file, use your shell’s redirection capability:

% mysql cookbook > outputfile

If you run mysql interactively with the output redirected, you can’t see what you type,
so in this case you usually also read the input from a file (or another program):

% mysql cookbook < inputfile > outputfile

To send the output to another program (for example, to mail query results to someone),
use a pipe:

% mysql cookbook < inputfile | mail paul

The rest of this section shows how to control mysql output format.

Producing tabular or tab-delimited output

mysql chooses its default output format by whether it runs interactively or noninterac‐
tively. For interactive use, mysql writes output to the terminal using tabular (boxed)
format:

1.7. Controlling mysql Output Destination and Format | 17

www.it-ebooks.info

http://www.it-ebooks.info/

% mysql
mysql> SELECT * FROM limbs WHERE legs=0;
+------------+------+------+
| thing | legs | arms |
+------------+------+------+
squid	0	10
fish	0	0
phonograph	0	1
+------------+------+------+
3 rows in set (0.00 sec)

For noninteractive use (when the input or output is redirected), mysql writes tab-
delimited output:

% echo "SELECT * FROM limbs WHERE legs=0" | mysql cookbook
thing legs arms
squid 0 10
fish 0 0
phonograph 0 1

To override the default output format, use the appropriate command option. Consider
this command shown earlier:

% mysql cookbook < inputfile | mail paul

Because mysql runs noninteractively in that context, it produces tab-delimited output,
which the mail recipient may find more difficult to read than tabular output. Use the -
t (or --table) option to produce more readable tabular output:

% mysql -t cookbook < inputfile | mail paul

The inverse operation is to produce batch (tab-delimited) output in interactive mode.
To do this, use -B or --batch.

Producing HTML or XML output

mysql generates an HTML table from each query result set if you use the -H (or --
html) option. This enables you to easily produce output for inclusion in a web page that
shows a query result. Here’s an example (with line breaks added to make the output
easier to read):

% mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook
<TABLE BORDER=1>
<TR><TH>thing</TH><TH>legs</TH><TH>arms</TH></TR>
<TR><TD>squid</TD><TD>0</TD><TD>10</TD></TR>
<TR><TD>fish</TD><TD>0</TD><TD>0</TD></TR>
<TR><TD>phonograph</TD><TD>0</TD><TD>1</TD></TR>
</TABLE>

The first row of the table contains column headings. If you don’t want a header row, see
the next section for instructions.

18 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

You can save the output in a file, then view it with a web browser. For example, on Mac
OS X, do this:

% mysql -H -e "SELECT * FROM limbs WHERE legs=0" cookbook > limbs.html
% open -a safari limbs.html

To generate an XML document instead of HTML, use the -X (or --xml) option:
% mysql -X -e "SELECT * FROM limbs WHERE legs=0" cookbook
<?xml version="1.0"?>

<resultset statement="select * from limbs where legs=0
">
 <row>
 <field name="thing">squid</field>
 <field name="legs">0</field>
 <field name="arms">10</field>
 </row>

 <row>
 <field name="thing">fish</field>
 <field name="legs">0</field>
 <field name="arms">0</field>
 </row>

 <row>
 <field name="thing">phonograph</field>
 <field name="legs">0</field>
 <field name="arms">1</field>
 </row>
</resultset>

You can reformat XML to suit a variety of purposes by running it through XSLT trans‐
forms. This enables you to use the same input to produce many output formats. Here
is a basic transform that produces plain-text output showing the original query, plus
the row values separated by commas:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<!-- mysql-xml.xsl: interpret XML-format output from mysql client -->

<xsl:output method="text"/>

<!-- Process rows in each resultset -->
<xsl:template match="resultset">
 <xsl:text>Query: </xsl:text>
 <xsl:value-of select="@statement"/>
 <xsl:value-of select="'
'"/>
 <xsl:text>Result set:
</xsl:text>
 <xsl:apply-templates select="row"/>
</xsl:template>

1.7. Controlling mysql Output Destination and Format | 19

www.it-ebooks.info

http://www.it-ebooks.info/

<!-- Process fields in each row -->
<xsl:template match="row">
 <xsl:apply-templates select="field"/>
</xsl:template>

<!-- Display text content of each field -->
<xsl:template match="field">
 <xsl:value-of select="."/>
 <xsl:choose>
 <xsl:when test="position() != last()">
 <xsl:text>, </xsl:text> <!-- comma after all but last field -->
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="'
'"/> <!-- newline after last field -->
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>

Use the transform like this:
% mysql -X -e "SELECT * FROM limbs WHERE legs=0" cookbook \
 | xsltproc mysql-xml.xsl -
Query: SELECT * FROM limbs WHERE legs=0
Result set:
squid, 0, 10
fish, 0, 0
phonograph, 0, 1

The -H, --html -X, and --xml options produce output only for statements that generate
a result set, not for statements such as INSERT or UPDATE.

To write your own programs that generate XML from query results, see Recipe 11.9. To
write web scripts that generate HTML from query results, see Chapter 18.

Suppressing column headings in query output

Tab-delimited format is convenient for generating datafiles for import into other pro‐
grams. However, the first row of output for each query lists the column headings by
default, which may not always be what you want. Suppose that a program named sum‐
marize produces descriptive statistics for a column of numbers. If you produce output
from mysql to be used with this program, a column header row would throw off the
results because summarize would treat it as data. To create output that contains only
data values, suppress the header row with the --skip-column-names option:

% mysql --skip-column-names -e "SELECT arms FROM limbs" cookbook | summarize

Specifying the “silent” option (-s or --silent) twice achieves the same effect:
% mysql -ss -e "SELECT arms FROM limbs" cookbook | summarize

20 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

Specifying the output column delimiter

In noninteractive mode, mysql separates output columns by tabs and there is no option
for specifying the output delimiter. To produce output that uses a different delimiter,
postprocess mysql output. Suppose that you want to create an output file for use by a
program that expects values to be separated by colon characters (:) rather than tabs.
Under Unix, you can convert tabs to arbitrary delimiters by using a utility such as tr or
sed. Any of the following commands change tabs to colons (TAB indicates where you
type a tab character):

% mysql cookbook < inputfile | sed -e "s/TAB/:/g" > outputfile
% mysql cookbook < inputfile | tr "TAB" ":" > outputfile
% mysql cookbook < inputfile | tr "\011" ":" > outputfile

The syntax differs among versions of tr; consult your local documentation. Also, some
shells use the tab character for special purposes such as filename completion. For such
shells, type a literal tab into the command by preceding it with Ctrl-V.

sed is more powerful than tr because it understands regular expressions and permits
multiple substitutions. This is useful for producing output in something like comma-
separated values (CSV) format, which requires three substitutions:

1. Escape any quote characters that appear in the data by doubling them, so that when
you use the resulting CSV file, they won’t be interpreted as column delimiters.

2. Change the tabs to commas.
3. Surround column values with quotes.

sed permits all three substitutions to be performed in a single command line:
% mysql cookbook < inputfile \
 | sed -e 's/"/""/g' -e 's/TAB/","/g' -e 's/^/"/' -e 's/$/"/' > outputfile

That’s cryptic, to say the least. You can achieve the same result with other languages that
may be easier to read. Here’s a short Perl script that does the same thing as the sed
command (it converts tab-delimited input to CSV output), and includes comments to
document how it works:

#!/usr/bin/perl
csv.pl: convert tab-delimited input to comma-separated values output
while (<>) # read next input line
{
 s/"/""/g; # double quotes within column values
 s/\t/","/g; # put "," between column values
 s/^/"/; # add " before the first value
 s/$/"/; # add " after the last value
 print; # print the result
}

If you name the script csv.pl, use it like this:

1.7. Controlling mysql Output Destination and Format | 21

www.it-ebooks.info

http://www.it-ebooks.info/

% mysql cookbook < inputfile | perl csv.pl > outputfile

tr and sed normally are unavailable under Windows. Perl may be more suitable as a
cross-platform solution because it runs under both Unix and Windows. (On Unix sys‐
tems, Perl is usually preinstalled. On Windows, it is freely available for you to install.)

Another way to produce CSV output is to use the Perl Text::CSV_XS module, which
was designed for that purpose. Recipe 11.5 discusses this module and uses it to construct
a general-purpose file reformatter.

Controlling mysql’s verbosity level

When you run mysql noninteractively, not only does the default output format change,
but it becomes more terse. For example, mysql doesn’t print row counts or indicate how
long statements took to execute. To tell mysql to be more verbose, use -v or --
verbose, specifying the option multiple times for increasing verbosity. Try the following
commands to see how the output differs:

% echo "SELECT NOW()" | mysql
% echo "SELECT NOW()" | mysql -v
% echo "SELECT NOW()" | mysql -vv
% echo "SELECT NOW()" | mysql -vvv

The counterparts of -v and --verbose are -s and --silent, which also can be used
multiple times for increased effect.

1.8. Using User-Defined Variables in SQL Statements
Problem
You want to use a value in one statement that is produced by an earlier statement.

Solution
Save the value in a user-defined variable to store it for later use.

Discussion
To save a value returned by a SELECT statement, assign it to a user-defined variable. This
enables you to refer to it in other statements later in the same session (but not across
sessions). User variables are a MySQL-specific extension to standard SQL. They will not
work with other database engines.

To assign a value to a user variable within a SELECT statement, use @var_name := val
ue syntax. The variable can be used in subsequent statements wherever an expression
is permitted, such as in a WHERE clause or in an INSERT statement.

22 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example that assigns a value to a user variable, then refers to that variable
later. This is a simple way to determine a value that characterizes some row in a table,
then select that particular row:

mysql> SELECT @max_limbs := MAX(arms+legs) FROM limbs;
+------------------------------+
| @max_limbs := MAX(arms+legs) |
+------------------------------+
| 100 |
+------------------------------+
mysql> SELECT * FROM limbs WHERE arms+legs = @max_limbs;
+-----------+------+------+
| thing | legs | arms |
+-----------+------+------+
| centipede | 100 | 0 |
+-----------+------+------+

Another use for a variable is to save the result from LAST_INSERT_ID() after creating a
new row in a table that has an AUTO_INCREMENT column:

mysql> SELECT @last_id := LAST_INSERT_ID();

LAST_INSERT_ID() returns the most recent AUTO_INCREMENT value. By saving it in a
variable, you can refer to the value several times in subsequent statements, even if you
issue other statements that create their own AUTO_INCREMENT values and thus change
the value returned by LAST_INSERT_ID(). Recipe 13.10 discusses this technique further.

User variables hold single values. If a statement returns multiple rows, the value from
the last row is assigned:

mysql> SELECT @name := thing FROM limbs WHERE legs = 0;
+----------------+
| @name := thing |
+----------------+
| squid |
| fish |
| phonograph |
+----------------+
mysql> SELECT @name;
+------------+
| @name |
+------------+
| phonograph |
+------------+

If the statement returns no rows, no assignment takes place, and the variable retains its
previous value. If the variable has not been used previously, its value is NULL:

mysql> SELECT @name2 := thing FROM limbs WHERE legs < 0;
Empty set (0.00 sec)
mysql> SELECT @name2;
+--------+
| @name2 |

1.8. Using User-Defined Variables in SQL Statements | 23

www.it-ebooks.info

http://www.it-ebooks.info/

+--------+
| NULL |
+--------+

To set a variable explicitly to a particular value, use a SET statement. SET syntax can use
either := or = as the assignment operator:

mysql> SET @sum = 4 + 7;
mysql> SELECT @sum;
+------+
| @sum |
+------+
| 11 |
+------+

You can assign a SELECT result to a variable, provided that you write it as a scalar sub‐
query (a query within parentheses that returns a single value):

mysql> SET @max_limbs = (SELECT MAX(arms+legs) FROM limbs);

User variable names are not case sensitive:
mysql> SET @x = 1, @X = 2; SELECT @x, @X;
+------+------+
| @x | @X |
+------+------+
| 2 | 2 |
+------+------+

User variables can appear only where expressions are permitted, not where constants
or literal identifiers must be provided. It’s tempting to attempt to use variables for such
things as table names, but it doesn’t work. For example, if you try to generate a temporary
table name using a variable as follows, it fails:

mysql> SET @tbl_name = CONCAT('tmp_tbl_', CONNECTION_ID());
mysql> CREATE TABLE @tbl_name (int_col INT);
ERROR 1064: You have an error in your SQL syntax near '@tbl_name
(int_col INT)'

However, you can generate a prepared SQL statement that incorporates @tbl_name, then
execute the result. Recipe 4.4 shows how.

SET is also used to assign values to stored program parameters and local variables, and
to system variables. For examples, see Chapter 9 and Recipe 22.1.

24 | Chapter 1: Using the mysql Client Program

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Writing MySQL-Based Programs

2.0. Introduction
This chapter discusses how to use MySQL from within the context of a general-purpose
programming language. It covers basic application programming interface (API) op‐
erations that are fundamental to and form the basis for the programming recipes de‐
veloped in later chapters. These operations include connecting to the MySQL server,
executing statements, and retrieving the results.

MySQL-based client programs can be written using many languages. This book covers
the languages and interfaces shown in the following table (for information on obtaining
the interface software, see the Preface):

Language Interface

Perl Perl DBI

Ruby Ruby DBI

PHP PDO

Python DB API

Java JDBC

MySQL client APIs provide these capabilities, each covered in a section of this chapter:
Connecting to the MySQL server, selecting a database, and disconnecting from the
server

Every program that uses MySQL must first establish a connection to the server.
Most programs also select a default database, and well-behaved MySQL programs
close the connection to the server when they’re done with it.

25

www.it-ebooks.info

http://www.it-ebooks.info/

Checking for errors
Any database operation can fail. If you should know how to find out when that
occurs and why, you can take appropriate action such as terminating the program
or informing the user of the problem.

Executing SQL statements and retrieving results
The point of connecting to a database server is to execute SQL statements. Each
API provides at least one way to do this, as well as methods for processing statement
results.

Handling special characters and NULL values in statements
Data values can be embedded directly in statement strings. However, some char‐
acters such as quotes and backslashes have special meaning, and their use requires
certain precautions. The same is true for NULL values. If you handle these improp‐
erly, your programs will generate SQL statements that are erroneous or yield un‐
expected results. If you incorporate data from external sources into queries, your
program might become subject to SQL injection attacks. Most APIs enable you to
avoid these problems by using placeholders: refer to data values symbolically in a
statement to be executed and supply those values separately. The API inserts them
into the statement string after properly encoding any special characters or NULL
values. Placeholders are also known as parameter markers.

Identifying NULL values in result sets
NULL values are special not only when you construct statements, but also in results
returned from them. Each API provides a convention for recognizing and dealing
with them.

No matter which programming language you use, it’s necessary to know how to perform
each of the fundamental database API operations just described, so this chapter shows
each operation in all five languages. Seeing how each API handles a given operation
should help you see the correspondences between APIs more easily and better under‐
stand the recipes shown in the following chapters, even if they’re written in a language
you don’t use much. (Later chapters usually implement recipes using only one or two
languages.)

It may seem overwhelming to see each recipe in several languages if your interest is in
only one particular API. If so, I advise you to read just the introductory recipe part that
provides the general background, then go directly to the section for the language in
which you’re interested. Skip the other languages; should you develop an interest in
them later, come back and read about them then.

This chapter also discusses the following topics, which are not directly part of the
MySQL APIs but help you use them more easily:

26 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Writing library files
As you write program after program, you find that you carry out certain operations
repeatedly. Library files enable encapsulating code for those operations so they can
be performed easily from multiple scripts without repeating the code in each one.
This reduces code duplication and makes your programs more portable. This
chapter shows how to write a library file for each API that includes a routine for
connecting to the server—one operation that every program that uses MySQL must
perform. Later chapters develop additional library routines for other operations.

Additional techniques for obtaining connection parameters
An early section on establishing connections to the MySQL server relies on con‐
nection parameters hardwired into the code. However, there are other (and better)
ways to obtain parameters, ranging from storing them in a separate file to enabling
the user to specify them at runtime.

To avoid manually typing in the example programs, get a copy of the recipes source
distribution (see the Preface). Then, when an example says something like “create a file
named xyz that contains the following information ...,” you can use the corresponding
file from the recipes distribution. Most scripts for this chapter are located under the
api directory; library files are located in the lib directory.

The primary table used for examples in this chapter is named profile. It first appears
in Recipe 2.4, which you should know in case you skip around in the chapter and wonder
where it came from. See also the section at the very end of the chapter about resetting
the profile table to a known state for use in other chapters.

The programs discussed here can be run from the command line. For
instructions on invoking programs for each language covered here,
read “Executing Programs from the Command Line” on the com‐
panion website (see the Preface).

Assumptions
To use the material in this chapter most effectively, make sure to satisfy these require‐
ments:

• Install MySQL programming support for any languages that you plan to use (see
the Preface).

• You should already have set up a MySQL user account for accessing the server and
a database for executing SQL statements. As described in Recipe 1.1, the examples
in this book use a MySQL account that has a username and password of cbuser
and cbpass, and we’ll connect to a MySQL server running on the local host to access

2.0. Introduction | 27

www.it-ebooks.info

http://www.it-ebooks.info/

a database named cookbook. To create the account or the database, see the instruc‐
tions in that recipe.

• The discussion here shows how to use each API language to perform database
operations, but assumes a basic understanding of the language itself. If a recipe uses
programming constructs with which you’re unfamiliar, consult a general reference
for the language of interest.

• Proper execution of some of the programs might require that you set certain envi‐
ronment variables. General syntax for doing so is covered in “Executing Programs
from the Command Line” on the companion website (see the Preface). For details
about environment variables that apply specifically to library file locations, see
Recipe 2.3.

MySQL Client API Architecture
Each MySQL programming interface covered in this book uses a two-level architecture:

• The upper level provides database-independent methods that implement database
access in a portable way that’s the same whether you use MySQL, PostgreSQL, Ora‐
cle, or whatever.

• The lower level consists of a set of drivers, each of which implements the details for
a single database system.

This two-level architecture enables application programs to use an abstract interface
not tied to details specific to any particular database server. This enhances portability
of your programs: to use a different database system, just select a different lower-level
driver. However, perfect portability is elusive:

• The interface methods provided by the upper level of the architecture are consistent
regardless of the driver you use, but it’s still possible to write SQL statements that
use constructs supported only by a particular server. For example, MySQL has SHOW
statements that provide information about database and table structure, but using
SHOW with a non-MySQL server likely will produce an error.

• Lower-level drivers often extend the abstract interface to make it more convenient
to access database-specific features. For example, the MySQL driver for Perl DBI
makes the most recent AUTO_INCREMENT value available as a database handle at‐
tribute accessible as $dbh->{mysql_insertid}. Such features make a program eas‐
ier to write, but less portable. To use the program with another database system will
require some rewriting.

28 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Despite these factors that compromise portability to some extent, the general portability
characteristics of the two-level architecture provide significant benefits for MySQL de‐
velopers.

Another characteristic common to the APIs used in this book is that they are object
oriented. Whether you write in Perl, Ruby, PHP, Python, or Java, the operation that
connects to the MySQL server returns an object that enables you to process statements
in an object-oriented manner. For example, when you connect to the database server,
you get a database connection object with which to further interact with the server. The
interfaces also provide objects for statements, result sets, metadata, and so forth.

Now let’s see how to use these programming interfaces to perform the most fundamental
MySQL operations: connecting to and disconnecting from the server.

2.1. Connecting, Selecting a Database, and Disconnecting
Problem
You need to establish a connection to the database server and shut down the connection
when you’re done.

Solution
Each API provides routines for connecting and disconnecting. The connection routines
require that you provide parameters specifying the host on which the MySQL server is
running and the MySQL account to use. You can also select a default database.

Discussion
This section shows how to perform some fundamental operations common to most
MySQL programs:
Establishing a connection to the MySQL server

Every program that uses MySQL does this, no matter which API you use. The details
on specifying connection parameters vary between APIs, and some APIs provide
more flexibility than others. However, there are many common parameters, such
as the host on which the server is running, and the username and password of the
MySQL account to use for accessing the server.

Selecting a database
Most MySQL programs select a default database.

Disconnecting from the server
Each API provides a way to close an open connection. It’s best to do so as soon as
you’re done using the server. If your program holds the connection open longer
than necessary, the server cannot free up resources allocated to servicing the con‐

2.1. Connecting, Selecting a Database, and Disconnecting | 29

www.it-ebooks.info

http://www.it-ebooks.info/

nection. It’s also preferable to close the connection explicitly. If a program simply
terminates, the MySQL server eventually notices, but an explicit close on the user
end enables the server to perform an immediate orderly close on its end.

This section includes example programs that show how to use each API to connect to
the server, select the cookbook database, and disconnect. The discussion for each API
also indicates how to connect without selecting any default database. This might be the
case if you plan to execute a statement that doesn’t require a default database, such as
SHOW VARIABLES or SELECT VERSION(). Or perhaps you’re writing a program that enables
the user to specify the database after the connection has been made.

The scripts shown here use localhost as the hostname. If they pro‐
duce a connection error indicating that a socket file cannot be found,
try changing localhost to 127.0.0.1, the TCP/IP address of the local
host. This tip applies throughout the book.

Perl

To write MySQL scripts in Perl, the DBI module must be installed, as well as the MySQL-
specific driver module, DBD::mysql. To obtain these modules if they’re not already
installed, see the Preface.

The following Perl script, connect.pl, connects to the MySQL server, selects cookbook
as the default database, and disconnects:

#!/usr/bin/perl
connect.pl: connect to the MySQL server

use strict;
use warnings;
use DBI;

my $dsn = "DBI:mysql:host=localhost;database=cookbook";
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass")
 or die "Cannot connect to server\n";
print "Connected\n";
$dbh->disconnect ();
print "Disconnected\n";

To try connect.pl, locate it under the api directory of the recipes distribution and run
it from the command line. The program should print two lines indicating that it con‐
nected and disconnected successfully:

% perl connect.pl
Connected
Disconnected

30 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

For background on running Perl programs, read “Executing Programs from the Com‐
mand Line” on the companion website (see the Preface).

The use strict line turns on strict variable checking and causes Perl to complain about
any variables that are used without having been declared first. This precaution helps
find errors that might otherwise go undetected.

The use warnings line turns on warning mode so that Perl produces warnings for any
questionable constructs. Our example script has none, but it’s a good idea to get in the
habit of enabling warnings to catch problems that occur during the script development
process. use warnings is similar to specifying the Perl -w command-line option, but
provides more control over which warnings to display. (For more information, execute
a perldoc warnings command.)

The use DBI statement tells Perl to load the DBI module. It’s unnecessary to load the
MySQL driver module (DBD::mysql) explicitly. DBI does that itself when the script
connects to the database server.

The next two lines establish the connection to MySQL by setting up a data source name
(DSN) and calling the DBI connect() method. The arguments to connect() are the
DSN, the MySQL username and password, and any connection attributes you want to
specify. The DSN is required. The other arguments are optional, although usually it’s
necessary to supply a username and password.

The DSN specifies which database driver to use and other options that indicate where
to connect. For MySQL programs, the DSN has the format DBI:mysql:options. The
second colon in the DSN is required even if you specify no following options.

Use the DSN components as follows:

• The first component is always DBI. It’s not case sensitive.
• The second component tells DBI which database driver to use, and it is case sensi‐

tive. For MySQL, the name must be mysql.
• The third component, if present, is a semicolon-separated list of name=value pairs

that specify additional connection options, in any order. For our purposes, the two
most relevant options are host and database, to specify the hostname where the
MySQL server is running and the default database.

Based on that information, the DSN for connecting to the cookbook database on the
local host localhost looks like this:

DBI:mysql:host=localhost;database=cookbook

If you omit the host option, its default value is localhost. These two DSNs are
equivalent:

2.1. Connecting, Selecting a Database, and Disconnecting | 31

www.it-ebooks.info

http://www.it-ebooks.info/

DBI:mysql:host=localhost;database=cookbook
DBI:mysql:database=cookbook

To select no default database, omit the database option.

The second and third arguments of the connect() call are your MySQL username and
password. Following the password, you can also provide a fourth argument to specify
attributes that control DBI’s behavior when errors occur. With no attributes, DBI by
default prints error messages when errors occur but does not terminate your script.
That’s why connect.pl checks whether connect() returns undef, which indicates failure:

my $dbh = DBI->connect ($dsn, "cbuser", "cbpass")
 or die "Cannot connect to server\n";

Other error-handling strategies are possible. For example, to tell DBI to terminate the
script if an error occurs in any DBI call, disable the PrintError attribute and enable
RaiseError instead:

my $dbh = DBI->connect ($dsn, "cbuser", "cbpass",
 {PrintError => 0, RaiseError => 1});

Then you need not check for errors yourself. The trade-off is that you also lose the ability
to decide how your program recovers from errors. Recipe 2.2 discusses error handling
further.

Another common attribute is AutoCommit, which sets the connection’s auto-commit
mode for transactions. MySQL enables this by default for new connections, but we’ll
set it from this point on to make the initial connection state explicit:

my $dbh = DBI->connect ($dsn, "cbuser", "cbpass",
 {PrintError => 0, RaiseError => 1, AutoCommit => 1});

As shown, the fourth argument to connect() is a reference to a hash of attribute name/
value pairs. An alternative way of writing this code follows:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass", $conn_attrs);

Use whichever style you prefer. Scripts in this book use the $conn_attr hashref to make
connect() calls simpler to read.

Assuming that connect() succeeds, it returns a database handle that contains infor‐
mation about the state of the connection. (In DBI parlance, references to objects are
called handles.) Later we’ll see other handles such as statement handles, which are as‐
sociated with particular statements. Perl DBI scripts in this book conventionally use
$dbh and $sth to signify database and statement handles.

Additional connection parameters. To specify the path to a socket file for localhost con‐
nections on Unix, provide a mysql_socket option in the DSN:

32 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

my $dsn = "DBI:mysql:host=localhost;database=cookbook"
 . ";mysql_socket=/var/tmp/mysql.sock";

To specify the port number for non-localhost (TCP/IP) connections, provide a port
option:

my $dsn = "DBI:mysql:host=127.0.0.1;database=cookbook;port=3307";

Ruby

To write MySQL scripts in Ruby, the DBI module must be installed, as well as the
MySQL-specific driver module. To obtain these modules if they’re not already installed,
see the Preface.

The following Ruby script, connect.rb, connects to the MySQL server, selects cook
book as the default database, and disconnects:

#!/usr/bin/ruby -w
connect.rb: connect to the MySQL server

require "dbi"

begin
 dsn = "DBI:Mysql:host=localhost;database=cookbook"
 dbh = DBI.connect(dsn, "cbuser", "cbpass")
 puts "Connected"
rescue
 puts "Cannot connect to server"
 exit(1)
end
dbh.disconnect
puts "Disconnected"

To try connect.rb, locate it under the api directory of the recipes distribution and run
it from the command line. The program should print two lines indicating that it con‐
nected and disconnected successfully:

% ruby connect.rb
Connected
Disconnected

For background on running Ruby programs, read “Executing Programs from the Com‐
mand Line” on the companion website (see the Preface).

The -w option turns on warning mode so that Ruby produces warnings for any ques‐
tionable constructs. Our example script has no such constructs, but it’s a good idea to
get in the habit of using -w to catch problems that occur during the script development
process.

2.1. Connecting, Selecting a Database, and Disconnecting | 33

www.it-ebooks.info

http://www.it-ebooks.info/

The require statement tells Ruby to load the DBI module. It’s unnecessary to load the
MySQL driver module explicitly. DBI does that itself when the script connects to the
database server.

To establish the connection, pass a data source name (DSN) and the MySQL username
and password to the connect() method. The DSN is required. The other arguments are
optional, although usually it’s necessary to supply a username and password.

The DSN specifies which database driver to use and other options that indicate where
to connect. For MySQL programs, the DSN typically has one of these formats:

DBI:Mysql:db_name:host_name
DBI:Mysql:name=value;name=value ...

As with Perl DBI, the second colon in the DSN is required even if you specify no fol‐
lowing options.

Use the DSN components as follows:

• The first component is always DBI or dbi.
• The second component tells DBI which database driver to use. For MySQL, the

name is Mysql.
• The third component, if present, is either a database name and hostname separated

by a colon, or a semicolon-separated list of name=value pairs that specify additional
connection options, in any order. For our purposes, the two most relevant options
are host and database, to specify the hostname where the MySQL server is running
and the default database.

Based on that information, the DSN for connecting to the cookbook database on the
local host localhost looks like this:

DBI:Mysql:host=localhost;database=cookbook

If you omit the host option, its default value is localhost. These two DSNs are equiv‐
alent:

DBI:Mysql:host=localhost;database=cookbook
DBI:Mysql:database=cookbook

To select no default database, omit the database option.

Assuming that connect() succeeds, it returns a database handle that contains infor‐
mation about the state of the connection. Ruby DBI scripts in this book conventionally
use dbh to signify a database handle.

If the connect() method fails, DBI raises an exception. To handle exceptions, put the
statements that might fail inside a begin block, and use a rescue clause that contains
the error-handling code. Exceptions that occur at the top level of a script (that is, outside

34 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

of any begin block) are caught by the default exception handler, which prints a stack
trace and exits. Recipe 2.2 discusses error handling further.

Additional connection parameters. To specify the path to a socket file for localhost con‐
nections on Unix, provide a socket option in the DSN:

dsn = "DBI:Mysql:host=localhost;database=cookbook" +
 ";socket=/var/tmp/mysql.sock"

To specify the port number for non-localhost (TCP/IP) connections, provide a port
option:

dsn = "DBI:Mysql:host=127.0.0.1;database=cookbook;port=3307"

PHP

To write PHP scripts that use MySQL, your PHP interpreter must have MySQL support
compiled in. If your scripts are unable to connect to your MySQL server, check the
instructions included with your PHP distribution to see how to enable MySQL support.

PHP actually has multiple extensions that enable the use of MySQL, such as mysql, the
original (and now deprecated) MySQL extension; mysqli, the “MySQL improved” ex‐
tension; and, more recently, the MySQL driver for the PDO (PHP Data Objects) inter‐
face. PHP scripts in this book use PDO. To obtain PHP and PDO if they’re not already
installed, see the Preface.

PHP scripts usually are written for use with a web server. I assume that if you use PHP
that way, you can copy PHP scripts into your server’s document tree, request them from
your browser, and they will execute. For example, if you run Apache as the web server
on the host localhost and you install a PHP script named myscript.php at the top level
of the Apache document tree, you should be able to access the script by requesting this
URL:

http://localhost/myscript.php

This book uses the .php extension (suffix) for PHP script filenames, so your web server
must be configured to recognize the .php extension (for Apache, see Recipe 18.2).
Otherwise, when you request a PHP script from your browser, the server simply sends
the literal text of the script and that’s what appears in your browser window. You don’t
want this to happen, particularly if the script contains the username and password for
connecting to MySQL.

PHP scripts often are written as a mixture of HTML and PHP code, with the PHP code
embedded between the special <?php and ?> tags. Here is an example:

<html>
<head><title>A simple page</title></head>
<body>
<p>

2.1. Connecting, Selecting a Database, and Disconnecting | 35

www.it-ebooks.info

http://www.it-ebooks.info/

<?php
 print ("I am PHP code, hear me roar!");
?>
</p>
</body>
</html>

For brevity in examples consisting entirely of PHP code, typically I’ll omit the enclosing
<?php and ?> tags. If you see no tags in a PHP example, assume that <?php and ?>
surround the entire block of code that is shown. Examples that switch between HTML
and PHP code do include the tags, to make it clear what is PHP code and what is not.

PHP can be configured to recognize “short” tags as well, written as <? and ?>. This book
does not assume that you have short tags enabled and does not use them.

The following PHP script, connect.php, connects to the MySQL server, selects cook
book as the default database, and disconnects:

<?php
connect.php: connect to the MySQL server

try
{
 $dsn = "mysql:host=localhost;dbname=cookbook";
 $dbh = new PDO ($dsn, "cbuser", "cbpass");
 print ("Connected\n");
}
catch (PDOException $e)
{
 die ("Cannot connect to server\n");
}
$dbh = NULL;
print ("Disconnected\n");
?>

To try connect.php, locate it under the api directory of the recipes distribution, copy
it to your web server’s document tree, and request it using your browser. Alternatively,
if you have a standalone version of the PHP interpreter for use from the command line,
execute the script directly:

% php connect.php
Connected
Disconnected

For background on running PHP programs, read “Executing Programs from the Com‐
mand Line” on the companion website (see the Preface).

$dsn is the data source name (DSN) that indicates how to connect to the database server.
It has this general syntax:

driver:name=value;name=value ...

36 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

The driver value is the PDO driver type. For MySQL, this is mysql.

Following the driver name, semicolon-separated name=value pairs specify connection
parameters, in any order. For our purposes, the two most relevant options are host and
dbname, to specify the hostname where the MySQL server is running and the default
database. To select no default database, omit the dbname option.

To establish the connection, invoke the new PDO() class constructor, passing to it the
appropriate arguments. The DSN is required. The other arguments are optional, al‐
though usually it’s necessary to supply a username and password. If the connection
attempt succeeds, new PDO() returns a database-handle object that is used to access other
MySQL-related methods. PHP scripts in this book conventionally use $dbh to signify a
database handle.

If the connection attempt fails, PDO raises an exception. To handle this, put the con‐
nection attempt within a try block and use a catch block that contains the error-
handling code, or just let the exception terminate your script. Recipe 2.2 discusses error
handling further.

To disconnect, set the database handle to NULL. There is no explicit disconnect call.

Additional connection parameters. To specify the path to a socket file for localhost con‐
nections on Unix, provide a unix_socket option in the DSN:

$dsn = "mysql:host=localhost;dbname=cookbook"
 . ";unix_socket=/var/tmp/mysql.sock";

To specify the port number for non-localhost (TCP/IP) connections, provide a port
option:

$dsn = "mysql:host=127.0.0.1;database=cookbook;port=3307";

Python

To write MySQL programs in Python, a module must be installed that provides MySQL
connectivity for the Python DB API, also known as Python Database API Specification
v2.0 (PEP 249). This book uses MySQL Connector/Python. To obtain it if it’s not already
installed, see the Preface.

To use the DB API, import the database driver module that you want to use (which is
mysql.connector for MySQL programs that use Connector/Python). Then create a
database connection object by calling the driver’s connect() method. This object pro‐
vides access to other DB API methods, such as the close() method that severs the
connection to the database server.

The following Python script, connect.py, connects to the MySQL server, selects cook
book as the default database, and disconnects:

2.1. Connecting, Selecting a Database, and Disconnecting | 37

www.it-ebooks.info

http://www.it-ebooks.info/

#!/usr/bin/python
connect.py: connect to the MySQL server

import mysql.connector

try:
 conn = mysql.connector.connect(database="cookbook",
 host="localhost",
 user="cbuser",
 password="cbpass")
 print("Connected")
except:
 print("Cannot connect to server")
else:
 conn.close()
 print("Disconnected")

To try connect.py, locate it under the api directory of the recipes distribution and run
it from the command line. The program should print two lines indicating that it con‐
nected and disconnected successfully:

% python connect.py
Connected
Disconnected

For background on running Python programs, read “Executing Programs from the
Command Line” on the companion website (see the Preface).

The import line tells Python to load the mysql.connector module. Then the script
attempts to establish a connection to the MySQL server by calling connect() to obtain
a connection object. Python scripts in this book conventionally use conn to signify
connection objects.

If the connect() method fails, Connector/Python raises an exception. To handle ex‐
ceptions, put the statements that might fail inside a try statement and use an except
clause that contains the error-handling code. Exceptions that occur at the top level of a
script (that is, outside of any try statement) are caught by the default exception handler,
which prints a stack trace and exits. Recipe 2.2 discusses error handling further.

The else clause contains statements that execute if the try clause produces no excep‐
tion. It’s used here to close the successfully opened connection.

Because the connect() call uses named arguments, their order does not matter. If you
omit the host argument from the connect() call, its default value is 127.0.0.1. To select
no default database, omit the database argument or pass a database value of "" (the
empty string) or None.

Another way to connect is to specify the parameters using a Python dictionary and pass
the dictionary to connect():

38 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)
print("Connected")

This book generally uses that style from now on.

Additional connection parameters. To specify the path to a socket file for local host con‐
nections on Unix, omit the host parameter and provide a unix_socket parameter:

conn_params = {
 "database": "cookbook",
 "unix_socket": "/var/tmp/mysql.sock",
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)
print("Connected")

To specify the port number for TCP/IP connections, include the host parameter and
provide an integer-valued port parameter:

conn_params = {
 "database": "cookbook",
 "host": "127.0.0.1",
 "port": 3307,
 "user": "cbuser",
 "password": "cbpass",
}
conn = mysql.connector.connect(**conn_params)

Java

Database programs in Java use the JDBC interface, together with a driver for the par‐
ticular database engine you want to access. That is, the JDBC architecture provides a
generic interface used in conjunction with a database-specific driver.

Java programming requires a Java Development Kit (JDK), and you must set your
JAVA_HOME environment variable to the location where your JDK is installed. To write
MySQL-based Java programs, you’ll also need a MySQL-specific JDBC driver. Programs
in this book use MySQL Connector/J. To obtain it if it’s not already installed, see the
Preface. For information about obtaining a JDK and setting JAVA_HOME, read “Executing
Programs from the Command Line” on the companion website (see the Preface).

The following Java program, Connect.java, connects to the MySQL server, selects cook
book as the default database, and disconnects:

2.1. Connecting, Selecting a Database, and Disconnecting | 39

www.it-ebooks.info

http://www.it-ebooks.info/

// Connect.java: connect to the MySQL server

import java.sql.*;

public class Connect
{
 public static void main (String[] args)
 {
 Connection conn = null;
 String url = "jdbc:mysql://localhost/cookbook";
 String userName = "cbuser";
 String password = "cbpass";

 try
 {
 Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 conn = DriverManager.getConnection (url, userName, password);
 System.out.println ("Connected");
 }
 catch (Exception e)
 {
 System.err.println ("Cannot connect to server");
 System.exit (1);
 }
 if (conn != null)
 {
 try
 {
 conn.close ();
 System.out.println ("Disconnected");
 }
 catch (Exception e) { /* ignore close errors */ }
 }
 }
}

To try Connect.java, locate it under the api directory of the recipes distribution, com‐
pile it, and execute it. The class statement indicates the program’s name, which in this
case is Connect. The name of the file containing the program must match this name
and include a .java extension, so the filename for the program is Connect.java. Compile
the program using javac:

% javac Connect.java

If you prefer a different Java compiler, substitute its name for javac.

The Java compiler generates compiled byte code to produce a class file named Con
nect.class. Use the java program to run the class file (specified without the .class exten‐
sion). The program should print two lines indicating that it connected and disconnected
successfully:

40 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

% java Connect
Connected
Disconnected

You might need to set your CLASSPATH environment variable before the example pro‐
gram will compile and run. The value of CLASSPATH should include at least your current
directory (.) and the path to the Connector/J JDBC driver. For background on running
Java programs or setting CLASSPATH, read “Executing Programs from the Command
Line” on the companion website (see the Preface).

The import java.sql.* statement references the classes and interfaces that provide
access to the data types used to manage different aspects of your interaction with the
database server. These are required for all JDBC programs.

Connecting to the server is a two-step process. First, register the database driver with
JDBC by calling Class.forName(). The Class.forName() method requires a driver
name; for Connector/J, use com.mysql.jdbc.Driver. Then call DriverManager.get
Connection() to initiate the connection and obtain a Connection object that maintains
information about the state of the connection. Java programs in this book conventionally
use conn to signify connection objects.

DriverManager.getConnection() takes three arguments: a URL that describes where
to connect and the database to use, the MySQL username, and the password. The URL
string has this format:

jdbc:driver://host_name/db_name

This format follows the Java convention that the URL for connecting to a network
resource begins with a protocol designator. For JDBC programs, the protocol is jdbc,
and you’ll also need a subprotocol designator that specifies the driver name (mysql, for
MySQL programs). Many parts of the connection URL are optional, but the leading
protocol and subprotocol designators are not. If you omit host_name, the default host
value is localhost. To select no default database, omit the database name. However,
you should not omit any of the slashes in any case. For example, to connect to the local
host without selecting a default database, the URL is:

jdbc:mysql:///

In JDBC, you don’t test method calls for return values that indicate an error. Instead,
provide handlers to be called when exceptions are thrown. Recipe 2.2 discusses error
handling further.

2.1. Connecting, Selecting a Database, and Disconnecting | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Beware of Class.forName()!
The example program Connect.java registers the JDBC driver like this:

Class.forName ("com.mysql.jdbc.Driver").newInstance ();

You’re supposed to be able to register drivers without invoking newInstance(), like so:

Class.forName ("com.mysql.jdbc.Driver");

However, that call doesn’t work for some Java implementations, so be sure to use new
Instance(), or you may find yourself enacting the Java motto, “write once, debug ev‐
erywhere.”

Some JDBC drivers (Connector/J among them) permit you to specify the username and
password as parameters at the end of the URL. In this case, omit the second and third
arguments of the getConnection() call. Using that URL style, write the code that es‐
tablishes the connection in the example program like this:

// connect using username and password included in URL
Connection conn = null;
String url = "jdbc:mysql://localhost/cookbook?user=cbuser&password=cbpass";

try
{
 Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 conn = DriverManager.getConnection (url);
 System.out.println ("Connected");
}

The character that separates the user and password parameters should be &, not ;.

Additional connection parameters. Connector/J does not support Unix domain socket file
connections, so even connections for which the hostname is localhost are made via TCP/
IP. To specify an explicit port number, add :port_num to the hostname in the connection
URL:

String url = "jdbc:mysql://127.0.0.1:3307/cookbook";

2.2. Checking for Errors
Problem
Something went wrong with your program, and you don’t know what.

42 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Everyone has problems getting programs to work correctly. But if you don’t anticipate
problems by checking for errors, the job becomes much more difficult. Add some error-
checking code so your programs can help you figure out what went wrong.

Discussion
After working through Recipe 2.1, you know how to connect to the MySQL server. It’s
also a good idea to know how to check for errors and how to retrieve specific error
information from the API, so we cover that next. You’re probably anxious to do more
interesting things (such as executing statements and getting back the results), but error
checking is fundamentally important. Programs sometimes fail, especially during de‐
velopment, and if you can’t determine why failures occur, you’re flying blind.

The need to check for errors is not so obvious or widely appreciated as one might hope.
Many messages posted on MySQL-related mailing lists are requests for help with pro‐
grams that fail for reasons unknown to the people who wrote them. Surprisingly often,
people have put in no error checking, thus giving themselves no way to know that there
was a problem or to find out what it was! Plan for failure by checking for errors so that
you can take appropriate action.

When an error occurs, MySQL provides three values:

• A MySQL-specific error number
• A MySQL-specific descriptive text error message
• A five-character SQLSTATE error code defined according to the ANSI and ODBC

standards

The recipes in this section show how to access this information. The example programs
are deliberately designed to fail, so that the error-handling code executes. That’s why
they attempt to connect using a username and password of baduser and badpass.

A general debugging aid not specific to any API is to use the avail‐
able logs. Check the MySQL server’s query log to see what state‐
ments the server is receiving. (This requires that log to be enabled;
see Recipe 22.3.) The query log might show that your program is not
constructing the SQL statement string you expect. Similarly, if you
run a script under a web server and it fails, check the web server’s
error log.

2.2. Checking for Errors | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Perl

The DBI module provides two attributes that control what happens when DBI method
invocations fail:

• PrintError, if enabled, causes DBI to print an error message using warn().
• RaiseError, if enabled, causes DBI to print an error message using die(). This

terminates your script.

By default, PrintError is enabled and RaiseError is disabled, so a script continues
executing after printing a message if an error occurs. Either or both attributes can be
specified in the connect() call. Setting an attribute to 1 or 0 enables or disables it,
respectively. To specify either or both attributes, pass them in a hash reference as the
fourth argument to the connect() call.

The following code sets only the AutoCommit attribute and uses the default settings for
the error-handling attributes. If the connect() call fails, a warning message results, but
the script continues to execute:

my $conn_attrs = {AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs);

Because you really can’t do much if the connection attempt fails, it’s often prudent to
exit instead after DBI prints a message:

my $conn_attrs = {AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs)
 or exit;

To print your own error messages, leave RaiseError disabled and disable PrintError
as well. Then test the results of DBI method calls yourself. When a method fails, the
$DBI::err, $DBI::errstr, and $DBI::state variables contain the MySQL error num‐
ber, a descriptive error string, and the SQLSTATE value, respectively:

my $conn_attrs = {PrintError => 0, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs)
 or die "Connection error: "
 . "$DBI::errstr ($DBI::err/$DBI::state)\n";

If no error occurs, $DBI::err is 0 or undef, $DBI::errstr is the empty string or un
def, and $DBI::state is empty or 00000.

When you check for errors, access these variables immediately after invoking the DBI
method that sets them. If you invoke another method before using them, DBI resets
their values.

If you print your own messages, the default settings (PrintError enabled, RaiseEr
ror disabled) are not so useful. DBI prints a message automatically, then your script

44 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

prints its own message. This is redundant, as well as confusing to the person using the
script.

If you enable RaiseError, you can call DBI methods without checking for return values
that indicate errors. If a method fails, DBI prints an error and terminates your script. If
the method returns, you can assume it succeeded. This is the easiest approach for script
writers: let DBI do all the error checking! However, if both PrintError and RaiseEr
ror are enabled, DBI may call warn() and die() in succession, resulting in error mes‐
sages being printed twice. To avoid this problem, disable PrintError whenever you
enable RaiseError:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, "baduser", "badpass", $conn_attrs);

This book generally uses that approach. If you don’t want the all-or-nothing behavior
of enabling RaiseError for automatic error checking versus having to do all your own
checking, adopt a mixed approach. Individual handles have PrintError and RaiseEr
ror attributes that can be enabled or disabled selectively. For example, you can enable
RaiseError globally by turning it on when you call connect(), and then disable it
selectively on a per-handle basis.

Suppose that a script reads the username and password from the command-line argu‐
ments, and then loops while the user enters statements to be executed. In this case, you’d
probably want DBI to die and print the error message automatically if the connection
fails (you cannot proceed to the statement-execution loop in that case). After connect‐
ing, however, you wouldn’t want the script to exit just because the user enters a syntac‐
tically invalid statement. Instead, print an error message and loop to get the next state‐
ment. The following code shows how to do this. The do() method used in the example
executes a statement and returns undef to indicate an error:

my $user_name = shift (@ARGV);
my $password = shift (@ARGV);
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, $user_name, $password, $conn_attrs);
$dbh->{RaiseError} = 0; # disable automatic termination on error
print "Enter statements to execute, one per line; terminate with Control-D\n";
while (<>) # read and execute queries
{
 $dbh->do ($_) or warn "Statement failed: $DBI::errstr ($DBI::err)\n";
}

If RaiseError is enabled, you can execute code within an eval block to trap errors
without terminating your program. If an error occurs, eval returns a message in the $@
variable:

eval
{
 # statements that might fail go here...
};

2.2. Checking for Errors | 45

www.it-ebooks.info

http://www.it-ebooks.info/

if ($@)
{
 print "An error occurred: $@\n";
}

This eval technique is commonly used to perform transactions (see Recipe 17.4).

Using RaiseError in combination with eval differs from using RaiseError alone:

• Errors terminate only the eval block, not the entire script.
• Any error terminates the eval block, whereas RaiseError applies only to DBI-

related errors.

When you use eval with RaiseError enabled, disable PrintError. Otherwise, in some
versions of DBI, an error may simply cause warn() to be called without terminating the
eval block as you expect.

In addition to using the error-handling attributes PrintError and RaiseError, lots of
information about your script’s execution is available using DBI’s tracing mechanism.
Invoke the trace() method with an argument indicating the trace level. Levels 1 to 9
enable tracing with increasingly more verbose output, and level 0 disables tracing:

DBI->trace (1); # enable tracing, minimal output
DBI->trace (3); # elevate trace level
DBI->trace (0); # disable tracing

Individual database and statement handles also have trace() methods, so you can lo‐
calize tracing to a single handle if you want.

Trace output normally goes to your terminal (or, in the case of a web script, to the web
server’s error log). To write trace output to a specific file, provide a second argument
that indicates the filename:

DBI->trace (1, "/tmp/trace.out");

If the trace file already exists, its contents are not cleared first; trace output is appended
to the end. Beware of turning on a file trace while developing a script, but forgetting to
disable the trace when you put the script into production. You’ll eventually find to your
chagrin that the trace file has become quite large. Or worse, a filesystem will fill up, and
you’ll have no idea why!

Ruby

Ruby signals errors by raising exceptions and Ruby programs handle errors by catching
exceptions in a rescue clause of a begin block. Ruby DBI methods raise exceptions
when they fail and provide error information by means of a DBI::DatabaseError object.
To get the MySQL error number, error message, and SQLSTATE value, access the err,
errstr, and state methods of this object. The following example shows how to trap
exceptions and access error information in a DBI script:

46 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

begin
 dsn = "DBI:Mysql:host=localhost;database=cookbook"
 dbh = DBI.connect(dsn, "baduser", "badpass")
 puts "Connected"
rescue DBI::DatabaseError => e
 puts "Cannot connect to server"
 puts "Error code: #{e.err}"
 puts "Error message: #{e.errstr}"
 puts "Error SQLSTATE: #{e.state}"
 exit(1)
end

PHP

The new PDO() constructor raises an exception if it fails, but other PDO methods by
default indicate success or failure by their return value. To cause all PDO methods to
raise exceptions for errors, use the database handle resulting from a successful connec‐
tion attempt to set the error-handling mode. This enables uniform handling of all PDO
errors without checking the result of every call. The following example shows how to
set the error mode if the connection attempt succeeds and how to handle exceptions if
it fails:

try
{
 $dsn = "mysql:host=localhost;dbname=cookbook";
 $dbh = new PDO ($dsn, "baduser", "badpass");
 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 print ("Connected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
 print ("Error code: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");
}

When PDO raises an exception, the resulting PDOException object provides error in‐
formation. The getCode() method returns the SQLSTATE value. The getMessage()
method returns a string containing the SQLSTATE value, MySQL error number, and
error message.

Database and statement handles also provide information when an error occurs. For
either type of handle, errorCode() returns the SQLSTATE value and errorInfo()
returns a three-element array containing the SQLSTATE value and a driver-specific
error code and message. For MySQL, the latter two values are the error number and
message string. The following example demonstrates how to get information from the
exception object and the database handle:

try
{

2.2. Checking for Errors | 47

www.it-ebooks.info

http://www.it-ebooks.info/

 $dbh->query ("SELECT"); # malformed query
}
catch (PDOException $e)
{
 print ("Cannot execute query\n");
 print ("Error information using exception object:\n");
 print ("SQLSTATE value: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");

 print ("Error information using database handle:\n");
 print ("Error code: " . $dbh->errorCode () . "\n");
 $errorInfo = $dbh->errorInfo ();
 print ("SQLSTATE value: " . $errorInfo[0] . "\n");
 print ("Error number: " . $errorInfo[1] . "\n");
 print ("Error message: " . $errorInfo[2] . "\n");
}

Python

Python signals errors by raising exceptions, and Python programs handle errors by
catching exceptions in the except clause of a try statement. To obtain MySQL-specific
error information, name an exception class, and provide a variable to receive the in‐
formation. Here’s an example:

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "baduser",
 "password": "badpass"
}

try:
 conn = mysql.connector.connect(**conn_params)
 print("Connected")
except mysql.connector.Error as e:
 print("Cannot connect to server")
 print("Error code: %s" % e.errno)
 print("Error message: %s" % e.msg)
 print("Error SQLSTATE: %s" % e.sqlstate)

If an exception occurs, the errno, msg, and sqlstate members of the exception object
contain the error number, error message, and SQLSTATE values, respectively. Note that
access to the Error class is through the driver module name.

Java

Java programs handle errors by catching exceptions. To do the minimum amount of
work, print a stack trace to inform the user where the problem lies:

try
{
 /* ... some database operation ... */

48 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

}
catch (Exception e)
{
 e.printStackTrace ();
}

The stack trace shows the location of the problem but not necessarily what the problem
was. Also, it may not be meaningful except to you, the program’s developer. To be more
specific, print the error message and code associated with an exception:

• All Exception objects support the getMessage() method. JDBC methods may
throw exceptions using SQLException objects; these are like Exception objects but
also support getErrorCode() and getSQLState() methods. getErrorCode() and
getMessage() return the MySQL-specific error number and message string, and
getSQLState() returns a string containing the SQLSTATE value.

• Some methods generate SQLWarning objects to provide information about nonfatal
warnings. SQLWarning is a subclass of SQLException, but warnings are accumulated
in a list rather than thrown immediately. They don’t interrupt your program, and
you can print them at your leisure.

The following example program, Error.java, demonstrates how to access error messages
by printing all the error information available to it. It attempts to connect to the MySQL
server and prints exception information if the attempt fails. Then it executes a statement
and prints exception and warning information if the statement fails:

// Error.java: demonstrate MySQL error handling

import java.sql.*;

public class Error
{
 public static void main (String[] args)
 {
 Connection conn = null;
 String url = "jdbc:mysql://localhost/cookbook";
 String userName = "baduser";
 String password = "badpass";

 try
 {
 Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 conn = DriverManager.getConnection (url, userName, password);
 System.out.println ("Connected");
 tryQuery (conn); // issue a query
 }
 catch (Exception e)
 {
 System.err.println ("Cannot connect to server");
 System.err.println (e);

2.2. Checking for Errors | 49

www.it-ebooks.info

http://www.it-ebooks.info/

 if (e instanceof SQLException) // JDBC-specific exception?
 {
 // e must be cast from Exception to SQLException to
 // access the SQLException-specific methods
 printException ((SQLException) e);
 }
 }
 finally
 {
 if (conn != null)
 {
 try
 {
 conn.close ();
 System.out.println ("Disconnected");
 }
 catch (SQLException e)
 {
 printException (e);
 }
 }
 }
 }

 public static void tryQuery (Connection conn)
 {
 try
 {
 // issue a simple query
 Statement s = conn.createStatement ();
 s.execute ("USE cookbook");
 s.close ();

 // print any accumulated warnings
 SQLWarning w = conn.getWarnings ();
 while (w != null)
 {
 System.err.println ("SQLWarning: " + w.getMessage ());
 System.err.println ("SQLState: " + w.getSQLState ());
 System.err.println ("Vendor code: " + w.getErrorCode ());
 w = w.getNextWarning ();
 }
 }
 catch (SQLException e)
 {
 printException (e);
 }
 }

 public static void printException (SQLException e)
 {
 // print general message, plus any database-specific message

50 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 System.err.println ("SQLException: " + e.getMessage ());
 System.err.println ("SQLState: " + e.getSQLState ());
 System.err.println ("Vendor code: " + e.getErrorCode ());
 }
}

2.3. Writing Library Files
Problem
You notice that you’re repeating code to perform common operations in multiple
programs.

Solution
Write routines to perform those operations, put them in a library file, and arrange for
your programs to access the library. This enables you to write the code only once. You
might need to set an environment variable so that your scripts can find the library.

Discussion
This section describes how to put code for common operations in library files. Encap‐
sulation (or modularization) isn’t really a “recipe” so much as a programming technique.
Its principal benefit is that you need not repeat code in each program you write. Instead,
simply call a routine that’s in the library. For example, by putting the code for connecting
to the cookbook database into a library routine, you need not write out all the parameters
associated with making that connection. Simply invoke the routine from your program,
and you’re connected.

Connection establishment isn’t the only operation you can encapsulate, of course. Later
sections in this book develop other utility functions to be placed in library files. All such
files, including those shown in this section, are located under the lib directory of the
recipes distribution. As you write your own programs, be on the lookout for operations
that you perform often and that are good candidates for inclusion in a library. Use the
techniques in this section to write your own library files.

Library files have other benefits besides making it easier to write programs, such as
promoting portability. If you write connection parameters directly into each program
that connects to the MySQL server, you must change all those programs if you move
them to another machine that uses different parameters. If instead you write your pro‐
grams to connect to the database by calling a library routine, it’s necessary only to modify
the affected library routine, not all the programs that use it.

Code encapsulation can also improve security. If you make a private library file readable
only to yourself, only scripts run by you can execute routines in the file. Or suppose

2.3. Writing Library Files | 51

www.it-ebooks.info

http://www.it-ebooks.info/

that you have some scripts located in your web server’s document tree. A properly
configured server executes the scripts and sends their output to remote clients. But if
the server becomes misconfigured somehow, the result can be that it sends your scripts
to clients as plain text, thus displaying your MySQL username and password. (And you’ll
probably realize it too late. Oops.) If you place the code for establishing a connection
to the MySQL server in a library file located outside the document tree, those parameters
won’t be exposed to clients.

Be aware that if you install a library file to be readable by your web
server, you don’t have much security if other developers use the same
server. Any of those developers can write a web script to read and
display your library file because, by default, the script runs with the
permissions of the web server and thus will have access to the library.

The recipes that follow demonstrate how to write, for each API, a library file that con‐
tains a routine for connecting to the cookbook database on the MySQL server. The
calling program can use the error-checking techniques discussed in Recipe 2.2 to de‐
termine whether a connection attempt fails. The connection routine for each language
returns a database handle or connection object when it succeeds or raises an exception
if the connection cannot be established.

Libraries are of no utility in themselves, so the following discussion illustrates each one’s
use by a short “test harness” program. To use any of these harness programs as the basis
for creating new programs, make a copy of the file and add your own code between the
connect and disconnect calls.

Library-file writing involves not only the question of what to put in the file but also
subsidiary issues such as where to install the file so it is accessible by your programs,
and (on multiuser systems such as Unix) how to set its access privileges so its contents
aren’t exposed to people who shouldn’t see it.

Choosing a library-file installation location

If you install a library file in a directory that a language processor searches by default,
programs written in that language need do nothing special to access the library. How‐
ever, if you install a library file in a directory that the language processor does not search
by default, you must tell your scripts how to find it. There are two common ways to do
this:

• Most languages provide a statement that can be used within a script to add direc‐
tories to the language processor search path. This requires that you modify each
script that needs the library.

• You can set an environment or configuration variable that changes the language
processor search path. With this approach, each user who executes scripts that

52 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

require the library must set the appropriate variable. Alternatively, if the language
processor has a configuration file, you might be able to set a parameter in the file
that affects scripts globally for all users.

We’ll use the second approach. For our API languages, the following table shows the
relevant variables. In each case, the variable value is a directory or list of directories:

Language Variable name Variable type

Perl PERL5LIB Environment variable

Ruby RUBYLIB Environment variable

PHP include_path Configuration variable

Python PYTHONPATH Environment variable

Java CLASSPATH Environment variable

For general information on setting environment variables, read “Executing Programs
from the Command Line” on the companion website (see the Preface). You can use
those instructions to set environment variables to the values in the following discussion.

Suppose that you want to install library files in a directory that language processors do
not search by default. For purposes of illustration, let’s use /usr/local/lib/mcb on Unix
and C:\lib\mcb on Windows. (To put the files somewhere else, adjust the pathnames in
the variable settings accordingly. For example, you might want to use a different direc‐
tory, or you might want to put libraries for each language in separate directories.)

Under Unix, if you put Perl library files in the /usr/local/lib/mcb directory, set the
PERL5LIB environment variable appropriately. For a shell in the Bourne shell family (sh,
bash, ksh), set the variable like this in the appropriate startup file:

export PERL5LIB=/usr/local/lib/mcb

For the original Bourne shell, sh, you may need to split this into two
commands:

PERL5LIB=/usr/local/lib/mcb
export PERL5LIB

For a shell in the C shell family (csh, tcsh), set PERL5LIB like this in your .login file:

setenv PERL5LIB /usr/local/lib/mcb

Under Windows, if you put Perl library files in C:\lib\mcb, set PERL5LIB as follows:

PERL5LIB=C:\lib\mcb

In each case, the variable value tells Perl to look in the specified directory for library
files, in addition to any other directories it searches by default. If you set PERL5LIB to

2.3. Writing Library Files | 53

www.it-ebooks.info

http://www.it-ebooks.info/

name multiple directories, the separator character between directory pathnames is
colon (:) on Unix or semicolon (;) on Windows.

Specify the other environment variables (RUBYLIB, PYTHONPATH, and CLASSPATH) using
the same syntax.

Setting these environment variables as just discussed should suffice
for scripts that you run from the command line. For scripts intend‐
ed to be executed by a web server, you likely must configure the server
as well so that it can find the library files. See Recipe 18.2.

For PHP, the search path is defined by the value of the include_path variable in the
php.ini PHP initialization file. On Unix, the file’s pathname is likely /usr/lib/php.ini or /
usr/local/lib/php.ini. Under Windows, the file is likely found in the Windows directory
or under the main PHP installation directory. To determine the location, run this
commmand:

% php --ini

Define the value of include_path in php.ini with a line like this:

include_path = "value"

Specify value using the same syntax as for environment variables that name directories.
That is, it’s a list of directory names, with the names separated by colons on Unix or
semicolons on Windows. On Unix, if you want PHP to look for include files in the
current directory and in /usr/local/lib/mcb, set include_path like this:

include_path = ".:/usr/local/lib/mcb"

On Windows, to search the current directory and C:\lib\mcb, set include_path like
this:

include_path = ".;C:\lib\mcb"

If PHP is running as an Apache module, restart Apache to make php.ini changes take
effect.

Setting library-file access privileges

If you use a multiple-user system such as Unix, you must make decisions about library-
file ownership and access mode:

• If a library file is private and contains code to be used only by you, place the file
under your own account and make it accessible only to you. Assuming that a library
file named mylib is already owned by you, you can make it private like this:

% chmod 600 mylib

54 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

• If the library file is to be used only by your web server, install it in a server library
directory and make it owned by and accessible only to the server user ID. You may
need to be root to do this. For example, if the web server runs as wwwusr, the
following commands make the file private to that user:

chown wwwusr mylib
chmod 600 mylib

• If the library file is public, you can place it in a location that your programming
language searches automatically when it looks for libraries. (Most language pro‐
cessors search for libraries in some default set of directories, although this set can
be influenced by setting environment variables as described previously.) You may
need to be root to install files in one of these directories. Then you can make the
file world readable:

chmod 444 mylib

Now let’s construct a library for each API. Each section here demonstrates how to write
the library file itself and discusses how to use the library from within programs.

Perl

In Perl, library files are called modules and typically have an extension of .pm (“Perl
module”). It’s conventional for the basename of a module file to be the same as the
identifier on the package line in the file. The following file, Cookbook.pm, implements
a module named Cookbook:

package Cookbook;
Cookbook.pm: library file with utility method for connecting to MySQL
using the Perl DBI module

use strict;
use warnings;
use DBI;

my $db_name = "cookbook";
my $host_name = "localhost";
my $user_name = "cbuser";
my $password = "cbpass";
my $port_num = undef;
my $socket_file = undef;

Establish a connection to the cookbook database, returning a database
handle. Raise an exception if the connection cannot be established.

sub connect
{
my $dsn = "DBI:mysql:host=$host_name";
my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};

2.3. Writing Library Files | 55

www.it-ebooks.info

http://www.it-ebooks.info/

 $dsn .= ";database=$db_name" if defined ($db_name);
 $dsn .= ";mysql_socket=$socket_file" if defined ($socket_file);
 $dsn .= ";port=$port_num" if defined ($port_num);

 return DBI->connect ($dsn, $user_name, $password, $conn_attrs);
}

1; # return true

The module encapsulates the code for establishing a connection to the MySQL server
into a connect() method, and the package identifier establishes a Cookbook namespace
for the module. To invoke the connect() method, use the module name:

$dbh = Cookbook::connect ();

The final line of the module file is a statement that trivially evaluates to true. (If the
module doesn’t return a true value, Perl assumes that something is wrong with it and
exits.)

Perl locates library files by searching the list of directories named in its @INC array. To
check the default value of this variable on your system, invoke Perl as follows at the
command line:

% perl -V

The last part of the output from the command shows the directories listed in @INC. If
you install a library file in one of those directories, your scripts will find it automatically.
If you install the module somewhere else, tell your scripts where to find it by setting the
PERL5LIB environment variable, as discussed in the introductory part of this recipe.

After installing the Cookbook.pm module, try it from a test harness script, harness.pl:
#!/usr/bin/perl
harness.pl: test harness for Cookbook.pm library

use strict;
use warnings;
use Cookbook;

my $dbh;
eval
{
 $dbh = Cookbook::connect ();
 print "Connected\n";
};
die "$@" if $@;
$dbh->disconnect ();
print "Disconnected\n";

harness.pl has no use DBI statement. It’s unnecessary because the Cookbook module itself
imports DBI; any script that uses Cookbook also gains access to DBI.

56 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

If you don’t catch connection errors explicitly with eval, you can write the script body
more simply:

my $dbh = Cookbook::connect ();
print "Connected\n";
$dbh->disconnect ();
print "Disconnected\n";

In this case, Perl catches any connection exception and terminates the script after print‐
ing the error message generated by the connect() method.

Ruby

The following Ruby library file, Cookbook.rb, defines a Cookbook class that implements
a connect class method:

Cookbook.rb: library file with utility method for connecting to MySQL
using the Ruby DBI module

require "dbi"

Establish a connection to the cookbook database, returning a database
handle. Raise an exception if the connection cannot be established.

class Cookbook
 @@host_name = "localhost"
 @@db_name = "cookbook"
 @@user_name = "cbuser"
 @@password = "cbpass"

 # Class method for connecting to server to access the
 # cookbook database; returns a database handle object.

 def Cookbook.connect
 return DBI.connect("DBI:Mysql:host=#{@@host_name};database=#{@@db_name}",
 @@user_name, @@password)
 end
end

The connect method is defined in the library as Cookbook.connect because Ruby class
methods are defined as class_name.method_name.

Ruby locates library files by searching the list of directories named in its $LOAD_PATH
variable (also known as $:), which is an array. To check the default value of this variable
on your system, use interactive Ruby to execute this statement:

% irb
>> puts $LOAD_PATH

If you install a library file in one of those directories, your scripts will find it automat‐
ically. If you install the file somewhere else, tell your scripts where to find it by setting
the RUBYLIB environment variable, as discussed in the introductory part of this recipe.

2.3. Writing Library Files | 57

www.it-ebooks.info

http://www.it-ebooks.info/

After installing the Cookbook.rb library file, try it from a test harness script, harness.rb:

#!/usr/bin/ruby -w
harness.rb: test harness for Cookbook.rb library

require "Cookbook"

begin
 dbh = Cookbook.connect
 print "Connected\n"
rescue DBI::DatabaseError => e
 puts "Cannot connect to server"
 puts "Error code: #{e.err}"
 puts "Error message: #{e.errstr}"
 exit(1)
end
dbh.disconnect
print "Disconnected\n"

harness.rb has no require statement for the DBI module. It’s unnecessary because the
Cookbook module itself imports DBI; any script that imports Cookbook also gains access
to DBI.

If you want a script to die if an error occurs without checking for an exception yourself,
write the script body like this:

dbh = Cookbook.connect
print "Connected\n"
dbh.disconnect
print "Disconnected\n"

PHP

PHP library files are written like regular PHP scripts. A Cookbook.php file that imple‐
ments a Cookbook class with a connect() method looks like this:

<?php
Cookbook.php: library file with utility method for connecting to MySQL
using the PDO module

class Cookbook
{
 public static $host_name = "localhost";
 public static $db_name = "cookbook";
 public static $user_name = "cbuser";
 public static $password = "cbpass";

 # Establish a connection to the cookbook database, returning a database
 # handle. Raise an exception if the connection cannot be established.
 # In addition, cause exceptions to be raised for errors.

 public static function connect ()
 {

58 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 $dsn = "mysql:host=" . self::$host_name . ";dbname=" . self::$db_name;
 $dbh = new PDO ($dsn, self::$user_name, self::$password);
 $dbh->setAttribute (PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 return ($dbh);
 }

} # end Cookbook
?>

The connect() routine within the class is declared using the static keyword to make
it a class method rather than an instance method. This designates it as directly callable
without instantiating an object through which to invoke it.

The new PDO() constructor raises an exception if the connection attempt fails. Following
a successful attempt, connect() sets the error-handling mode so that other PDO calls
raise exceptions for failure as well. This way, individual calls need not be tested for an
error return value.

Although most PHP examples throughout this book don’t show the <?php and ?> tags,
I’ve shown them as part of Cookbook.php here to emphasize that library files must en‐
close all PHP code within those tags. The PHP interpreter makes no assumptions about
the contents of a library file when it begins parsing it because you might include a file
that contains nothing but HTML. Therefore, you must use <?php and ?> to specify
explicitly which parts of the library file should be considered as PHP code rather than
as HTML, just as you do in the main script.

PHP looks for libraries by searching the directories named in the include_path variable
in the PHP initialization file, as described in the introductory part of this recipe.

PHP scripts often are placed in the document tree of your web serv‐
er, and clients can request them directly. For PHP library files, I
recommend that you place them somewhere outside the document
tree, especially if (like Cookbook.php) they contain a username and
password.

After installing Cookbook.php in one of the include_path directories, try it from a test
harness script, harness.php:

<?php
harness.php: test harness for Cookbook.php library

require_once "Cookbook.php";

try
{
 $dbh = Cookbook::connect ();
 print ("Connected\n");
}

2.3. Writing Library Files | 59

www.it-ebooks.info

http://www.it-ebooks.info/

catch (PDOException $e)
{
 print ("Cannot connect to server\n");
 print ("Error code: " . $e->getCode () . "\n");
 print ("Error message: " . $e->getMessage () . "\n");
 exit (1);
}
$dbh = NULL;
print ("Disconnected\n");
?>

The require_once statement accesses the Cookbook.php file that is required to use the
Cookbook class. require_once is one of several PHP file-inclusion statements:

• require and include instruct PHP to read the named file. They are similar, but
require terminates the script if the file cannot be found; include produces only a
warning.

• require_once and include_once are like require and include except that if the
file has already been read, its contents are not processed again. This is useful for
avoiding multiple-declaration problems that can easily occur when library files in‐
clude other library files.

Python

Python libraries are written as modules and referenced from scripts using import state‐
ments. To create a method for connecting to MySQL, write a module file, cookbook.py
(Python module names should be lowercase):

cookbook.py: library file with utility method for connecting to MySQL
using the Connector/Python module

import mysql.connector

conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
}

Establish a connection to the cookbook database, returning a connection
object. Raise an exception if the connection cannot be established.

def connect():
 return mysql.connector.connect(**conn_params)

The filename basename determines the module name, so the module is called cook
book. Module methods are accessed through the module name; thus, import the cook
book module and invoke its connect() method like this:

60 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

import cookbook

conn = cookbook.connect();

The Python interpreter searches for modules in directories named in the sys.path
variable. To check the default value of sys.path on your system, run Python interac‐
tively and enter a few commands:

% python
>>> import sys
>>> sys.path

If you install cookbook.py in one of the directories named by sys.path, your scripts will
find it with no special handling. If you install cookbook.py somewhere else, you must
set the PYTHONPATH environment variable, as discussed in the introductory part of this
recipe.

After installing the cookbook.py library file, try it from a test harness script, harness.py:

#!/usr/bin/python
harness.py: test harness for cookbook.py library

import mysql.connector
import cookbook

try:
 conn = cookbook.connect()
 print("Connected")
except mysql.connector.Error as e:
 print("Cannot connect to server")
 print("Error code: %s" % e.errno)
 print("Error message: %s" % e.msg)
else:
 conn.close()
 print("Disconnected")

The cookbook.py file imports the mysql.connector module, but a script that imports
cookbook does not thereby gain access to mysql.connector. If the script needs Con‐
nector/Python-specific information (such as mysql.connector.Error), the script itself
must import mysql.connector.

If you want a script to die if an error occurs without checking for an exception yourself,
write the script body like this:

conn = cookbook.connect()
print("Connected")
conn.close()
print("Disconnected")

Java

Java library files are similar to Java programs in most ways:

2.3. Writing Library Files | 61

www.it-ebooks.info

http://www.it-ebooks.info/

• The class line in the source file indicates a class name.
• The file should have the same name as the class (with a .java extension).
• Compile the .java file to produce a .class file.

Java library files also differ from Java programs in some ways:

• Unlike regular program files, Java library files have no main() function.
• A library file should begin with a package identifier that specifies the position of

the class within the Java namespace.

A common convention for Java package identifiers is to use the domain of the code
author as a prefix; this helps make identifiers unique and avoids conflict with classes
written by other authors. Domain names proceed right to left from more general to
more specific within the domain namespace, whereas the Java class namespace proceeds
left to right from general to specific. Thus, to use a domain as the prefix for a package
name within the Java class namespace, it’s necessary to reverse it. For example, my
domain is kitebird.com, so if I write a library file and place it under mcb within my
domain’s namespace, the library begins with a package statement like this:

package com.kitebird.mcb;

Java packages developed for this book are placed within the com.kitebird.mcb name‐
space to ensure their uniqueness in the package namespace.

The following library file, Cookbook.java, defines a Cookbook class that implements a
connect() method for connecting to the cookbook database. connect() returns a Con
nection object if it succeeds and throws an exception otherwise. To help the caller deal
with failures, the Cookbook class also defines getErrorMessage() and printErrorMes
sage() utility methods that return the error message as a string and print it to Sys
tem.err, respectively:

// Cookbook.java: library file with utility methods for connecting to MySQL
// using MySQL Connector/J and for handling exceptions

package com.kitebird.mcb;

import java.sql.*;

public class Cookbook
{
 // Establish a connection to the cookbook database, returning
 // a connection object. Throw an exception if the connection
 // cannot be established.

 public static Connection connect () throws Exception
 {
 String url = "jdbc:mysql://localhost/cookbook";

62 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 String user = "cbuser";
 String password = "cbpass";

 Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 return (DriverManager.getConnection (url, user, password));
 }

 // Return an error message as a string

 public static String getErrorMessage (Exception e)
 {
 StringBuffer s = new StringBuffer ();
 if (e instanceof SQLException) // JDBC-specific exception?
 {
 // print general message, plus any database-specific message
 s.append ("Error message: " + e.getMessage () + "\n");
 s.append ("Error code: " + ((SQLException) e).getErrorCode () + "\n");
 }
 else
 {
 s.append (e + "\n");
 }
 return (s.toString ());
 }

 // Get the error message and print it to System.err

 public static void printErrorMessage (Exception e)
 {
 System.err.println (Cookbook.getErrorMessage (e));
 }
}

The routines within the class are declared using the static keyword, which makes them
class methods rather than instance methods. That is done here because the class is used
directly rather than creating an object from it and invoking the methods through the
object.

To use the Cookbook.java file, compile it to produce Cookbook.class, then install the
class file in a directory that corresponds to the package identifier. This means that
Cookbook.class should be installed in a directory named com/kitebird/mcb (Unix) or
com\kitebird\mcb (Windows) that is located under some directory named in your
CLASSPATH setting. For example, if CLASSPATH includes /usr/local/lib/mcb under Unix,
you can install Cookbook.class in the /usr/local/lib/mcb/com/kitebird/mcb directory.
(For more information about the CLASSPATH variable, see the Java discussion in
Recipe 2.1.)

To use the Cookbook class from within a Java program, import it and invoke the Cook
book.connect() method. The following test harness program, Harness.java, shows how
to do this:

2.3. Writing Library Files | 63

www.it-ebooks.info

http://www.it-ebooks.info/

// Harness.java: test harness for Cookbook library class

import java.sql.*;
import com.kitebird.mcb.Cookbook;

public class Harness
{
 public static void main (String[] args)
 {
 Connection conn = null;
 try
 {
 conn = Cookbook.connect ();
 System.out.println ("Connected");
 }
 catch (Exception e)
 {
 Cookbook.printErrorMessage (e);
 System.exit (1);
 }
 finally
 {
 if (conn != null)
 {
 try
 {
 conn.close ();
 System.out.println ("Disconnected");
 }
 catch (Exception e)
 {
 String err = Cookbook.getErrorMessage (e);
 System.out.println (err);
 }
 }
 }
 }
}

Harness.java also shows how to use the error message utility methods from the Cook
book class when a MySQL-related exception occurs:

• printErrorMessage() takes the exception object and uses it to print an error mes‐
sage to System.err.

• getErrorMessage() returns the error message as a string. You can display the
message yourself, write it to a logfile, or whatever.

64 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

2.4. Executing Statements and Retrieving Results
Problem
You want a program to send an SQL statement to the MySQL server and retrieve its
result.

Solution
Some statements return only a status code; others return a result set (a set of rows).
Some APIs provide different methods for executing each type of statement. If so, use
the appropriate method for the statement to be executed.

Discussion
You can execute two general categories of SQL statements. Some retrieve information
from the database; others change that information. Statements in the two categories are
handled differently. In addition, some APIs provide multiple routines for executing
statements, complicating matters further. Before we get to examples demonstrating how
to execute statements from within each API, I’ll describe the database table the examples
use, and then further discuss the two statement categories and outline a general strategy
for processing statements in each category.

In Chapter 1, we created a table named limbs to try some sample statements. In this
chapter, we’ll use a different table named profile. It’s based on the idea of a “buddy
list,” that is, the set of people we like to keep in touch with while we’re online. The table
definition looks like this:

CREATE TABLE profile
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 birth DATE,
 color ENUM('blue','red','green','brown','black','white'),
 foods SET('lutefisk','burrito','curry','eggroll','fadge','pizza'),
 cats INT,
 PRIMARY KEY (id)
);

The profile table indicates the things that are important to us about each buddy: name,
age, favorite color, favorite foods, and number of cats—obviously one of those goofy
tables used only for examples in a book! (Actually, it’s not that goofy. The table uses
several different data types for its columns, and these come in handy to illustrate how
to solve problems that pertain to specific data types.)

The table also includes an id column containing unique values so that we can distinguish
one row from another, even if two buddies have the same name. id and name are declared

2.4. Executing Statements and Retrieving Results | 65

www.it-ebooks.info

http://www.it-ebooks.info/

as NOT NULL because they’re each required to have a value. The other columns are im‐
plicitly permitted to be NULL (and that is also their default value) because we might not
know the value to assign them for any given individual. That is, NULL signifies “un‐
known.”

Notice that although we want to keep track of age, there is no age column in the table.
Instead, there is a birth column of DATE type. Ages change, so if we store age values,
we’d have to keep updating them. Storing birth dates is better: they don’t change and
can be used to calculate age any time (see Recipe 6.13). color is an ENUM column; color
values can be any one of the listed values. foods is a SET, which permits the value to be
any combination of the individual set members. That way we can record multiple fa‐
vorite foods for any buddy.

To create the table, use the profile.sql script in the tables directory of the recipes dis‐
tribution. Change location into that directory, then run this command:

% mysql cookbook < profile.sql

The script also loads sample data into the table. You can experiment with the table, then
restore it if you change its contents by running the script again. (See the final section of
this chapter on the importance of restoring the profile table after modifying it.)

The contents of the profile table as loaded by the profile.sql script look like this:

mysql> SELECT * FROM profile;
+----+---------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+-----------------------+------+
1	Sybil	1970-04-13	black	lutefisk,fadge,pizza	0
2	Nancy	1969-09-30	white	burrito,curry,eggroll	3
3	Ralph	1973-11-02	red	eggroll,pizza	4
4	Lothair	1963-07-04	blue	burrito,curry	5
5	Henry	1965-02-14	red	curry,fadge	1
6	Aaron	1968-09-17	green	lutefisk,fadge	1
7	Joanna	1952-08-20	green	lutefisk,fadge	0
8	Stephen	1960-05-01	white	burrito,pizza	0
+----+---------+------------+-------+-----------------------+------+

Although most of the columns in the profile table permit NULL values, none of the
rows in the sample dataset actually contain NULL yet. (I want to defer the complications
of NULL value processing to Recipes 2.5 and 2.7.)

SQL statement categories

SQL statements can be grouped into two broad categories, depending on whether they
return a result set (a set of rows):

• Statements that return no result set, such as INSERT, DELETE, or UPDATE. As a general
rule, statements of this type generally change the database in some way. There are

66 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

some exceptions, such as USE db_name, which changes the default (current) database
for your session without making any changes to the database itself. The example
data-modifying statement used in this section is an UPDATE:

UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'

We’ll cover how to execute this statement and determine the number of rows that
it affects.

• Statements that return a result set, such as SELECT, SHOW, EXPLAIN, or DESCRIBE. I
refer to such statements generically as SELECT statements, but you should under‐
stand that category to include any statement that returns rows. The example row-
retrieval statement used in this section is a SELECT:

SELECT id, name, cats FROM profile

We’ll cover how to execute this statement, fetch the rows in the result set, and
determine the number of rows and columns in the result set. (To get information
such as the column names or data types, access the result set metadata. That’s
Recipe 10.2.)

The first step in processing an SQL statement is to send it to the MySQL server for
execution. Some APIs (those for Perl, Ruby, and Java, for example) recognize a distinc‐
tion between the two categories of statements and provide separate calls for executing
them. Other APIs (such as the one for Python) have a single call used for all statements.
However, one thing all APIs have in common is that no special character indicates the
end of the statement. No terminator is necessary because the end of the statement string
terminates it. This differs from executing statements in the mysql program, where you
terminate statements using a semicolon (;) or \g. (It also differs from how this book
usually includes semicolons in examples to make it clear where statements end.)

When you send a statement to the server, be prepared to handle errors if it did not
execute successfully. Do not neglect this! If a statement fails and you proceed on the basis
that it succeeded, your program won’t work. For the most part, this section does not
show error-checking code, but that is for brevity. The sample scripts in the recipes
distribution from which the examples are taken do include error handling, based on
the techniques illustrated in Recipe 2.2.

If a statement does execute without error, your next step depends on the statement type.
If it’s one that returns no result set, there’s nothing else to do, unless you want to check
how many rows were affected. If the statement does return a result set, fetch its rows,
then close the result set. In a context where you don’t know whether a statement returns
a result set, Recipe 10.3 discusses how to tell.

Perl

The Perl DBI module provides two basic approaches to SQL statement execution, de‐
pending on whether you expect to get back a result set. For a statement such as IN

2.4. Executing Statements and Retrieving Results | 67

www.it-ebooks.info

http://www.it-ebooks.info/

SERT or UPDATE that returns no result set, use the database handle do() method. It
executes the statement and returns the number of rows affected by it, or undef if an
error occurs. If Sybil gets a new cat, the following statement increments her cats count
by one:

my $count = $dbh->do ("UPDATE profile SET cats = cats+1
 WHERE name = 'Sybil'");
if ($count) # print row count if no error occurred
{
 $count += 0;
 print "Number of rows updated: $count\n";
}

If the statement executes successfully but affects no rows, do() returns a special value,
"0E0" (the value zero in scientific notation, expressed as a string). "0E0" can be used
for testing the execution status of a statement because it is true in Boolean contexts
(unlike undef). For successful statements, it can also be used when counting how many
rows were affected because it is treated as the number zero in numeric contexts. Of
course, if you print that value as is, you’ll print "0E0", which might look odd to people
who use your program. The preceding example makes sure that doesn’t happen by
adding zero to the value to coerce it to numeric form so that it displays as 0. Alternatively,
use printf with a %d format specifier to cause an implicit numeric conversion:

if ($count) # print row count if no error occurred
{
 printf "Number of rows updated: %d\n", $count;
}

If RaiseError is enabled, your script terminates automatically for DBI-related errors,
so you need not check $count to find out whether do() failed and consequently can
simplify the code:

my $count = $dbh->do ("UPDATE profile SET cats = cats+1
 WHERE name = 'Sybil'");
printf "Number of rows updated: %d\n", $count;

To process a statement such as SELECT that does return a result set, use a different
approach that involves these steps:

1. Specify the statement to be executed by calling prepare() using the database han‐
dle. prepare() returns a statement handle to use with all subsequent operations on
the statement. (If an error occurs, the script terminates if RaiseError is enabled;
otherwise, prepare() returns undef.)

2. Call execute() to execute the statement and generate the result set.
3. Loop to fetch the rows returned by the statement. DBI provides several methods

for this; we cover them shortly.

68 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

4. If you don’t fetch the entire result set, release resources associated with it by calling
finish().

The following example illustrates these steps, using fetchrow_array() as the row-
fetching method and assuming that RaiseError is enabled so that errors terminate the
script:

my $sth = $dbh->prepare ("SELECT id, name, cats FROM profile");
$sth->execute ();
my $count = 0;
while (my @val = $sth->fetchrow_array ())
{
 print "id: $val[0], name: $val[1], cats: $val[2]\n";
 ++$count;
}
$sth->finish ();
print "Number of rows returned: $count\n";

The row array size indicates the number of columns in the result set.

The row-fetching loop just shown is followed by a call to finish(), which closes the
result set and tells the server to free any resources associated with it. If you fetch every
row in the set, DBI notices when you reach the end and releases the resources for you.
Thus, the example could omit the finish() call without ill effect.

As the example illustrates, to determine how many rows a result set contains, count
them while fetching them. Do not use the DBI rows() method for this purpose. The
DBI documentation discourages this practice because rows() is not necessarily reliable
for SELECT statements—due not to a deficiency in DBI, but to differences in behavior
among database engines.

DBI has several methods that fetch a row at a time. The one used in the preceding
example, fetchrow_array(), returns an array containing the next row, or an empty list
when there are no more rows. Array elements are present in the order named in the
SELECT statement. Access them as $val[0], $val[1], and so forth.

The fetchrow_array() method is most useful for statements that explicitly name the
columns to select. (With SELECT *, there are no guarantees about the positions of col‐
umns within the array.)

fetchrow_arrayref() is like fetchrow_array(), except that it returns a reference to
the array, or undef when there are no more rows. As with fetchrow_array(), array
elements are present in the order named in the statement. Access them as $ref->[0],
$ref->[1], and so forth:

while (my $ref = $sth->fetchrow_arrayref ())
{
 print "id: $ref->[0], name: $ref->[1], cats: $ref->[2]\n";
}

2.4. Executing Statements and Retrieving Results | 69

www.it-ebooks.info

http://www.it-ebooks.info/

fetchrow_hashref() returns a reference to a hash structure, or undef when there are
no more rows:

while (my $ref = $sth->fetchrow_hashref ())
{
 print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n";
}

To access the elements of the hash, use the names of the columns selected by the state‐
ment ($ref->{id}, $ref->{name}, and so forth). fetchrow_hashref() is particularly
useful for SELECT * statements because you can access elements of rows without knowing
anything about the order in which columns are returned. You need know only their
names. On the other hand, it’s more expensive to set up a hash than an array, so fet
chrow_hashref() is slower than fetchrow_array() or fetchrow_arrayref(). It’s also
possible to “lose” row elements if they have the same name because column names must
be unique. Same-name columns are not uncommon for joins between tables. For sol‐
utions to this problem, see Recipe 14.10.

In addition to the statement execution methods just described, DBI provides several
high-level retrieval methods that execute a statement and return the result set in a single
operation. All are database-handle methods that create and dispose of the statement
handle internally before returning the result set. The methods differ in the form in which
they return the result. Some return the entire result set, others return a single row or
column of the set, as summarized in the following table:

Method Return value

selectrow_array() First row of result set as an array

selectrow_arrayref() First row of result set as a reference to an array

selectrow_hashref() First row of result set as a reference to a hash

selectcol_arrayref() First column of result set as a reference to an array

selectall_arrayref() Entire result set as a reference to an array of array references

selectall_hashref() Entire result set as a reference to a hash of hash references

Most of these methods return a reference. The exception is selectrow_array(), which
selects the first row of the result set and returns an array or a scalar, depending on how
you call it. In array context, selectrow_array() returns the entire row as an array (or
the empty list if no row was selected). This is useful for statements from which you
expect to obtain only a single row. The return value can be used to determine the result
set size. The column count is the number of elements in the array, and the row count is
1 or 0:

my @val = $dbh->selectrow_array ("SELECT name, birth, foods FROM profile
 WHERE id = 3");
my $ncols = @val;
my $nrows = $ncols ? 1 : 0;

70 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

You can also invoke selectrow_array() in scalar context, in which case it returns only
the first column from the row (especially convenient for statements that return a single
value):

my $buddy_count = $dbh->selectrow_array ("SELECT COUNT(*) FROM profile");

If a statement returns no result, selectrow_array() returns an empty array or undef,
depending on whether you call it in array or scalar context.

selectrow_arrayref() and selectrow_hashref() select the first row of the result set
and return a reference to it, or undef if no row was selected. To access the column values,
treat the reference the same way you treat the return value from fetchrow_arrayr
ef() or fetchrow_hashref(). The reference also provides the row and column counts:

my $ref = $dbh->selectrow_arrayref ($stmt);
my $ncols = defined ($ref) ? @{$ref} : 0;
my $nrows = $ncols ? 1 : 0;

my $ref = $dbh->selectrow_hashref ($stmt);
my $ncols = defined ($ref) ? keys (%{$ref}) : 0;
my $nrows = $ncols ? 1 : 0;

selectcol_arrayref() returns a reference to a single-column array representing the
first column of the result set. Assuming a non-undef return value, access elements of
the array as $ref->[i] for the value from row i. The number of rows is the number of
elements in the array, and the column count is 1 or 0:

my $ref = $dbh->selectcol_arrayref ($stmt);
my $nrows = defined ($ref) ? @{$ref} : 0;
my $ncols = $nrows ? 1 : 0;

selectall_arrayref() returns a reference to an array containing an element for each
row of the result. Each element is a reference to an array. To access row i of the result
set, use $ref->[i] to get a reference to the row. Then treat the row reference the same
way as a return value from fetchrow_arrayref() to access individual column values
in the row. The result set row and column counts are available as follows:

my $ref = $dbh->selectall_arrayref ($stmt);
my $nrows = defined ($ref) ? @{$ref} : 0;
my $ncols = $nrows ? @{$ref->[0]} : 0;

selectall_hashref() returns a reference to a hash, each element of which is a hash
reference to a row of the result. To call it, specify an argument that indicates which
column to use for hash keys. For example, if you retrieve rows from the profile table,
the primary key is the id column:

my $ref = $dbh->selectall_hashref ("SELECT * FROM profile", "id");

Access rows using the keys of the hash. For a row that has a key column value of 12, the
hash reference for the row is $ref->{12}. That row value is keyed on column names,

2.4. Executing Statements and Retrieving Results | 71

www.it-ebooks.info

http://www.it-ebooks.info/

which you can use to access individual column elements (for example, $ref->{12}-
>{name}). The result set row and column counts are available as follows:

my @keys = defined ($ref) ? keys (%{$ref}) : ();
my $nrows = scalar (@keys);
my $ncols = $nrows ? keys (%{$ref->{$keys[0]}}) : 0;

The selectall_XXX() methods are useful when you need to process a result set more
than once because Perl DBI provides no way to “rewind” a result set. By assigning the
entire result set to a variable, you can iterate through its elements multiple times.

Take care when using the high-level methods if you have RaiseError disabled. In that
case, a method’s return value may not enable you to distinguish an error from an empty
result set. For example, if you call selectrow_array() in scalar context to retrieve a
single value, an undef return value is ambiguous because it may indicate any of three
things: an error, an empty result set, or a result set consisting of a single NULL value. To
test for an error, check the value of $DBI::errstr, $DBI::err, or $DBI::state.

Ruby

As with Perl DBI, Ruby DBI provides two approaches to SQL statement execution. With
either approach, if a statement-execution method fails with an error, it raises an excep‐
tion.

For statements such as INSERT or UPDATE that return no result set, invoke the do database-
handle method. Its return value indicates the number of rows affected:

count = dbh.do("UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'")
puts "Number of rows updated: #{count}"

For statements such as SELECT that return a result set, invoke the execute database-
handle method. execute returns a statement handle for fetching result set rows. The
statement handle has several methods of its own that enable row fetching in different
ways. After you are done with the statement handle, invoke its finish method. (Call
finish for every statement handle that you create, unlike Perl DBI where finish need
be invoked only if you fetch a partial result set.) To determine the number of rows in
the result set, count them as you fetch them.

The following example executes a SELECT statement and uses the statement handle’s
fetch method in a while loop:

count = 0
sth = dbh.execute("SELECT id, name, cats FROM profile")
while row = sth.fetch do
 printf "id: %s, name: %s, cats: %s\n", row[0], row[1], row[2]
 count += 1
end
sth.finish
puts "Number of rows returned: #{count}"

72 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

row.size tells you the number of columns in the result set.

fetch can also be used as an iterator that returns each row in turn:
sth.fetch do |row|
 printf "id: %s, name: %s, cats: %s\n", row[0], row[1], row[2]
end
sth.finish

In iterator context (such as just shown), the each method is a synonym for fetch.

The fetch method returns DBI::Row objects. Column values within the row are acces‐
sible by position, beginning with 0, as just shown, or by name:

sth.fetch do |row|
 printf "id: %s, name: %s, cats: %s\n",
 row["id"], row["name"], row["cats"]
end
sth.finish

To fetch all rows at once, use fetch_all, which returns an array of DBI::Row objects:
sth = dbh.execute("SELECT id, name, cats FROM profile")
rows = sth.fetch_all
sth.finish
rows.each do |row|
 printf "id: %s, name: %s, cats: %s\n",
 row["id"], row["name"], row["cats"]
end

To fetch each row as a hash keyed on column names, use the fetch_hash method. It
can be called in a loop or used as an iterator. The following example shows the iterator
approach:

sth.fetch_hash do |row|
 printf "id: %s, name: %s, cats: %s\n",
 row["id"], row["name"], row["cats"]
end
sth.finish

The preceding examples invoke execute to get a statement handle, then invoke fin
ish when that handle is no longer needed. If instead you invoke execute with a code
block, it passes the statement handle to the block and invokes finish on that handle
implicitly:

dbh.execute("SELECT id, name, cats FROM profile") do |sth|
 sth.fetch do |row|
 printf "id: %s, name: %s, cats: %s\n", row[0], row[1], row[2]
 end
end

Ruby DBI has some high-level database-handle methods for executing statements that
produce result sets:

2.4. Executing Statements and Retrieving Results | 73

www.it-ebooks.info

http://www.it-ebooks.info/

• select_one executes a query and returns the first row as an array (or nil if the
result is empty):

row = dbh.select_one("SELECT id, name, cats FROM profile WHERE id = 3")

• select_all executes a query and returns an array of DBI::Row objects, one per row
of the result set. The array is empty if the result is empty:

rows = dbh.select_all("SELECT id, name, cats FROM profile")

The select_all method is useful when you need to process a result set more than
once because Ruby DBI provides no way to “rewind” a result set. By fetching the
entire result set as an array of row objects, you can iterate through its elements
multiple times. If you need to run through the rows only once, you can apply an
iterator directly to select_all:

dbh.select_all("SELECT id, name, cats FROM profile").each do |row|
 printf "id: %s, name: %s, cats: %s\n",
 row["id"], row["name"], row["cats"]
end

PHP

PDO has two connection-object methods to execute SQL statements: exec() for state‐
ments that do not return a result set and query() for those that do. If you have PDO
exceptions enabled, both methods raise an exception if statement execution fails. (An‐
other approach couples the prepare() and execute() methods; see Recipe 2.5.)

To execute statements such as INSERT or UPDATE that don’t return rows, use exec(). It
returns a count to indicate how many rows were changed:

$count = $dbh->exec ("UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'");
printf ("Number of rows updated: %d\n", $count);

For statements such as SELECT that return a result set, the query() method returns a
statement handle. Generally, you use this object to call a row-fetching method in a loop,
and count the rows if you need to know how many there are:

$sth = $dbh->query ("SELECT id, name, cats FROM profile");
$count = 0;
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1], $row[2]);
 $count++;
}
printf ("Number of rows returned: %d\n", $count);

To determine the number of columns in the result set, call the statement handle colum
nCount() method.

74 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

The example demonstrates the statement handle fetch() method, which returns the
next row of the result set or FALSE when there are no more. fetch() takes an optional
argument that indicates what type of value it should return. As shown, with an argument
of PDO::FETCH_NUM, fetch() returns an array with elements accessed using numeric
subscripts, beginning with 0. The array size indicates the number of result set columns.

With an argument of PDO::FETCH_ASSOC, fetch() returns an associative array con‐
taining values accessed by column name ($row["id"], $row["name"], $row["cats"]).

With an argument of PDO::FETCH_OBJ, fetch() returns an object having members ac‐
cessed using the column names ($row->id, $row->name, $row->cats).

fetch() uses the default fetch mode if you invoke it with no argument. Unless you have
changed the mode, it’s PDO::FETCH_BOTH, which is like a combination of
PDO::FETCH_NUM and PDO::FETCH_ASSOC. To set the default fetch mode for all statements
executed within a connection, use the setAttribute database-handle method:

$dbh->setAttribute (PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_ASSOC);

To set the mode for a given statement, call its setFetchMode() method after executing
the statement and before fetching the results:

$sth->setFetchMode (PDO::FETCH_OBJ);

It’s also possible to use a statement handle as an iterator. The handle uses the current
default fetch mode:

$sth->setFetchMode (PDO::FETCH_NUM);
foreach ($sth as $row)
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1], $row[2]);

The fetchAll() method fetches and returns the entire result set as an array of rows. It
permits an optional fetch-mode argument:

$rows = $sth->fetchAll (PDO::FETCH_NUM);
foreach ($rows as $row)
 printf ("id: %s, name: %s, cats: %s\n", $row[0], $row[1], $row[2]);

In this case, the row count is the number of elements in $rows.

Python

The Python DB API uses the same calls for SQL statements that do not return a result
set and those that do. To process a statement in Python, use your database connection
object to get a cursor object. Then use the cursor’s execute() method to send the state‐
ment to the server. If the statement fails with an error, execute() raises an exception.
Otherwise, if there is no result set, statement execution is complete, and the cursor’s
rowcount attribute indicates how many rows were changed:

cursor = conn.cursor()
cursor.execute("UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'")

2.4. Executing Statements and Retrieving Results | 75

www.it-ebooks.info

http://www.it-ebooks.info/

print("Number of rows updated: %d" % cursor.rowcount)
cursor.close()
conn.commit()

The Python DB API specification indicates that database connec‐
tions should begin with auto-commit mode disabled, so Connector/
Python disables auto-commit when it connects to the MySQL serv‐
er. If you use transactional tables, modifications to them are rolled
back when you close the connection unless you commit the changes
first, which is why the preceding example invokes the commit()
method. Changes to nontransactional tables such as MyISAM tables
are committed automatically, so this issue does not arise. For more
information on auto-commit mode, see Chapter 17, particularly
Recipe 17.7).

If the statement returns a result set, fetch its rows, then close the cursor. The fetch
one() method returns the next row as a sequence, or None when there are no more rows:

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
while True:
 row = cursor.fetchone()
 if row is None:
 break
 print("id: %s, name: %s, cats: %s" % (row[0], row[1], row[2]))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()

As you can see from the preceding example, the rowcount attribute is useful for SE
LECT statements, too; it indicates the number of rows in the result set.

len(row) tells you the number of columns in the result set.

Alternatively, use the cursor itself as an iterator that returns each row in turn:
cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
for (id, name, cats) in cursor:
 print("id: %s, name: %s, cats: %s" % (id, name, cats))
print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()

The fetchall() method returns the entire result set as a sequence of row sequences.
Iterate through the sequence to access the rows:

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile")
rows = cursor.fetchall()
for row in rows:
 print("id: %s, name: %s, cats: %s" % (row[0], row[1], row[2]))

76 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

print("Number of rows returned: %d" % cursor.rowcount)
cursor.close()

DB API provides no way to rewind a result set, so fetchall() can be convenient when
you must iterate through the rows of the result set more than once or access individual
values directly. For example, if rows holds the result set, you can access the value of the
third column in the second row as rows[1][2] (indexes begin at 0, not 1).

Java

The JDBC interface provides specific object types for the various phases of SQL state‐
ment processing. Statements are executed in JDBC using Java objects of one type. The
results, if any, are returned as objects of another type.

To execute a statement, first get a Statement object by calling the createStatement()
method of your Connection object:

Statement s = conn.createStatement ();

Then use the Statement object to send the statement to the server. JDBC provides several
methods for doing this. Choose the one that’s appropriate for the type of statement:
executeUpdate() for statements that don’t return a result set, executeQuery() for
statements that do, and execute() when you don’t know. Each method raises an ex‐
ception if the statement fails.

The executeUpdate() method sends a statement that generates no result set to the
server and returns a count indicating the number of affected rows. When you’re done
with the statement object, close it:

Statement s = conn.createStatement ();
int count = s.executeUpdate (
 "UPDATE profile SET cats = cats+1 WHERE name = 'Sybil'");
s.close (); // close statement
System.out.println ("Number of rows updated: " + count);

For statements that return a result set, use executeQuery(). Then get a result set object,
and use it to retrieve the row values. When you’re done, close the result set and statement
objects:

Statement s = conn.createStatement ();
s.executeQuery ("SELECT id, name, cats FROM profile");
ResultSet rs = s.getResultSet ();
int count = 0;
while (rs.next ()) // loop through rows of result set
{
 int id = rs.getInt (1); // extract columns 1, 2, and 3
 String name = rs.getString (2);
 int cats = rs.getInt (3);
 System.out.println ("id: " + id
 + ", name: " + name
 + ", cats: " + cats);

2.4. Executing Statements and Retrieving Results | 77

www.it-ebooks.info

http://www.it-ebooks.info/

 ++count;
}
rs.close (); // close result set
s.close (); // close statement
System.out.println ("Number of rows returned: " + count);

The ResultSet object returned by the getResultSet() method of your Statement
object has its own methods, such as next() to fetch rows and various getXXX() methods
that access columns of the current row. Initially, the result set is positioned just before
the first row of the set. Call next() to fetch each row in succession until it returns false.
To determine the number of rows in a result set, count them yourself, as shown in the
preceding example.

To access column values, use methods such as getInt(), getString(), getFloat(),
and getDate(). To obtain the column value as a generic object, use getObject(). The
argument to a getXXX() call can indicate either column position (beginning at 1, not 0)
or column name. The previous example shows how to retrieve the id, name, and cats
columns by position. To access columns by name instead, write the row-fetching loop
as follows:

while (rs.next ()) // loop through rows of result set
{
 int id = rs.getInt ("id");
 String name = rs.getString ("name");
 int cats = rs.getInt ("cats");
 System.out.println ("id: " + id
 + ", name: " + name
 + ", cats: " + cats);
 ++count;
}

To retrieve a given column value, use any getXXX() call that makes sense for the data
type. For example, getString() retrieves any column value as a string:

String id = rs.getString ("id");
String name = rs.getString ("name");
String cats = rs.getString ("cats");
System.out.println ("id: " + id
 + ", name: " + name
 + ", cats: " + cats);

Or use getObject() to retrieve values as generic objects and convert the values as nec‐
essary. The following example uses toString() to convert object values to printable
form:

Object id = rs.getObject ("id");
Object name = rs.getObject ("name");
Object cats = rs.getObject ("cats");
System.out.println ("id: " + id.toString ()
 + ", name: " + name.toString ()
 + ", cats: " + cats.toString ());

78 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

To determine the number of columns in the result set, access its metadata:
ResultSet rs = s.getResultSet ();
ResultSetMetaData md = rs.getMetaData (); // get result set metadata
int ncols = md.getColumnCount (); // get column count from metadata

The third JDBC statement-execution method, execute(), works for either type of
statement. It’s particularly useful when you receive a statement string from an external
source and don’t know whether it generates a result set. The return value from exe
cute() indicates the statement type so that you can process it appropriately: if exe
cute() returns true, there is a result set, otherwise not. Typically, you’d use it something
like this, where stmtStr represents an arbitrary SQL statement:

Statement s = conn.createStatement ();
if (s.execute (stmtStr))
{
 // there is a result set
 ResultSet rs = s.getResultSet ();

 // ... process result set here ...

 rs.close (); // close result set
}
else
{
 // there is no result set, just print the row count
 System.out.println ("Number of rows affected: " + s.getUpdateCount ());
}
s.close (); // close statement

2.5. Handling Special Characters and NULL Values in
Statements
Problem
You need to construct SQL statements that refer to data values containing special char‐
acters such as quotes or backslashes, or special values such as NULL. Or you are con‐
structing statements using data obtained from external sources and want to prevent
SQL injection attacks.

Solution
Use your API’s placeholder mechanism or quoting function to make data safe for in‐
sertion.

2.5. Handling Special Characters and NULL Values in Statements | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Up to this point in the chapter, our statements have used “safe” data values that require
no special treatment. For example, we can easily construct the following SQL statements
from within a program by writing the data values literally in the statement strings:

SELECT * FROM profile WHERE age > 40 AND color = 'green'

INSERT INTO profile (name,color) VALUES('Gary','blue')

However, some data values are not so easily handled and cause problems if you are not
careful. Statements might use values that contain special characters such as quotes,
backslashes, binary data, or values that are NULL. The following discussion describes the
difficulties these values cause and the proper techniques for handling them.

Suppose that you want to execute this INSERT statement:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('Alison','1973-01-12','blue','eggroll',4);

There’s nothing unusual about that. But if you change the name column value to some‐
thing like De'Mont that contains a single quote, the statement becomes syntactically
invalid:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De'Mont','1973-01-12','blue','eggroll',4);

The problem is the single quote inside a single-quoted string. To make the statement
legal by escaping the quote, precede it with either a single quote or a backslash:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12','blue','eggroll',4);

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12','blue','eggroll',4);

Alternatively, quote the name value itself within double quotes rather than within single
quotes (assuming that the ANSI_QUOTES SQL mode is not enabled):

INSERT INTO profile (name,birth,color,foods,cats)
VALUES("De'Mont",'1973-01-12','blue','eggroll',4);

If you are writing a statement literally in your program, you can escape or quote the
name value by hand because you know what the value is. But if the name is stored in a
variable, you don’t necessarily know what the variable’s value is. Worse yet, single quote
isn’t the only character you must be prepared to deal with; double quotes and backslashes
cause problems, too. And if the database stores binary data such as images or sound
clips, a value might contain anything—not only quotes or backslashes, but other char‐
acters such as nulls (zero-valued bytes). The need to handle special characters properly
is particularly acute in a web environment where statements are constructed using form
input (for example, if you search for rows that match search terms entered by the remote

80 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

user). You must be able to handle any kind of input in a general way because you can’t
predict in advance what kind of information a user will supply. It is not uncommon for
malicious users to enter garbage values containing problematic characters in a deliberate
attempt to compromise the security of your server. That is a standard technique for
exploiting insecure scripts.

The SQL NULL value is not a special character, but it too requires special treatment. In
SQL, NULL indicates “no value.” This can have several meanings depending on context,
such as “unknown,” “missing,” “out of range,” and so forth. Our statements thus far
have not used NULL values, to avoid dealing with the complications that they introduce,
but now it’s time to address these issues. For example, if you don’t know De’Mont’s
favorite color, you can set the color column to NULL—but not by writing the statement
like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12','NULL','eggroll',4);

Instead, the NULL value must have no enclosing quotes:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De''Mont','1973-01-12',NULL,'eggroll',4);

Were you writing the statement literally in your program, you’d simply write the word
“NULL” without enclosing quotes. But if the color value comes from a variable, the
proper action is not so obvious. You must know whether the variable’s value represents
NULL to determine whether to enclose it within quotes when you construct the statement.

You have two means at your disposal for dealing with special characters such as quotes
and backslashes, and with special values such as NULL:

• Use placeholders in the statement string to refer to data values symbolically, then
bind the data values to the placeholders when you execute the statement. This is
the preferred method because the API itself does all or most of the work for you of
providing quotes around values as necessary, quoting or escaping special characters
within the data value, and possibly interpreting a special value to map onto NULL
without enclosing quotes.

• Use a quoting function (if your API provides one) for converting data values to a
safe form that is suitable for use in statement strings.

This section shows how to use these techniques to handle special characters and NULL
values for each API. One of the examples demonstrated here shows how to insert a
profile table row that contains De'Mont for the name value and NULL for the color value.
However, the principles shown here have general utility and handle any special char‐
acters, including those found in binary data. (See Chapter 19 for examples showing how
to work with images, which are one kind of binary data.) Also, the principles are not
limited to INSERT statements. They work for other kinds of statements as well, such as

2.5. Handling Special Characters and NULL Values in Statements | 81

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT. One of the other examples shown here demonstrates how to execute a SE
LECT statement using placeholders.

Processing of special characters and NULL values comes up in other contexts covered
elsewhere:

• The placeholder and quoting techniques described here are only for data values and
not for identifiers such as database or table names. For discussion of identifier
quoting, refer to Recipe 2.6.

• Comparisons of NULL values require different operators than non-NULL values.
Recipe 3.6 discusses how to construct SQL statements that perform NULL compar‐
isons from within programs.

• This section covers the issue of getting special characters into your database. A
related issue is the inverse operation of transforming special characters in values
returned from your database for display in various contexts. For example, if you
generate HTML pages that include values taken from your database, you must per‐
form output encoding to convert < and > characters in those values to the HTML
entities < and > to make sure they display properly. Recipe 18.4 discusses
that topic.

Using placeholders

Placeholders enable you to avoid writing data values literally in SQL statements. Using
this approach, you write statements using placeholders—special markers that indicate
where the values go. Two common parameter markers are ? and %s. Depending on the
marker, rewrite the INSERT statement to use placeholders like this:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES(?,?,?,?,?)

INSERT INTO profile (name,birth,color,foods,cats)
VALUES(%s,%s,%s,%s,%s)

Then pass the statement string to the database server and supply the data values sepa‐
rately. The API binds the values to the placeholders to replace them, resulting in a
statement that contains the data values.

One benefit of placeholders is that parameter-binding operations automatically handle
escaping of characters such as quotes and backslashes. This is especially useful for in‐
serting binary data such as images into your database or using data values with unknown
content such as input submitted by a remote user through a form in a web page. Also,
there is usually some special value that you bind to a placeholder to indicate that you
want an SQL NULL value in the resulting statement.

82 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

A second benefit of placeholders is that you can “prepare” a statement in advance, then
reuse it by binding different values to it each time it’s executed. Prepared statements
thus encourage statement reuse. Statements become more generic because they contain
placeholders rather than specific data values. If you perform an operation over and over,
you may be able to reuse a prepared statement and simply bind different data values to
it each time you execute it. Some database systems (MySQL not among them) have the
capability of performing some preparsing or even execution planning prior to executing
a prepared statement. For a statement that is executed multiple times later, this reduces
overhead because anything that can be done prior to execution need be done only once,
not once per execution. For example, if a program executes a particular type of SE
LECT statement several times while it runs, such a database system can construct a plan
for the statement and then reuse it each time, rather than rebuild the plan over and over.
MySQL doesn’t build query plans in advance, so you get no performance boost from
using prepared statements. However, if you port a program to a database that does reuse
query plans and you’ve written your program to use prepared statements, you can get
this advantage of prepared statements automatically. You need not convert from non‐
prepared statements to enjoy that benefit.

A third (admittedly subjective) benefit is that code that uses placeholder-based state‐
ments can be easier to read. As you work through this section, compare the statements
used here with those from Recipe 2.4 that did not use placeholders to see which you
prefer.

Using a quoting function

Some APIs provide a quoting function that takes a data value as its argument and returns
a properly quoted and escaped value suitable for safe insertion into an SQL statement.
This is less common than using placeholders, but it can be useful for constructing state‐
ments that you do not intend to execute immediately. However, you must have a con‐
nection open to the database server while you use such a quoting function because the
API cannot select the proper quoting rules until the database driver is known. (The rules
differ among database systems.)

As we’ll indicate later, some APIs quote as strings all non-NULL val‐
ues, even numbers, when binding them to parameter markers. This
can be an issue in contexts that require numbers, as described fur‐
ther in Recipe 3.11.

Generating a List of Placeholders
You cannot bind an array of data values to a single placeholder. Each value must be
bound to a separate placeholder. To use placeholders for a list of data values that may

2.5. Handling Special Characters and NULL Values in Statements | 83

www.it-ebooks.info

http://www.it-ebooks.info/

vary in number, construct a list of placeholder characters. In Perl, the following state‐
ment creates a string consisting of n placeholder characters separated by commas:

$str = join (",", ("?") x n);

The x repetition operator, when applied to a list, produces n copies of the list, so the
join() call joins these lists to produce a single string containing n comma-separated
instances of the ? character. This is handy for binding an array of data values to a list of
placeholders in a statement string because the size of the array is the number of place‐
holders needed:

$str = join (",", ("?") x @values);

In Ruby, use the * operator to similar effect:

str = (["?"] * values.size).join(",")

A less cryptic method is to use a loop approach, here illustrated in Python:

str = ""
if len(values) > 0:
 str = "?"
for i in range(1, len(values)):
 str += ",?"

Perl

To use placeholders with Perl DBI, put a ? in your SQL statement string at each data
value location. Then bind the values to the statement by passing them to do() or exe
cute(), or by calling a DBI method specifically intended for placeholder substitution.
Use undef to bind a NULL value to a placeholder.

With do(), add the profile row for De’Mont by passing the statement string and the
data values in the same call:

my $count = $dbh->do ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)",
 undef,
 "De'Mont", "1973-01-12", undef, "eggroll", 4);

The arguments following the statement string are undef, then one data value for each
placeholder. The undef argument is a historical artifact, but must be present.

Alternatively, pass the statement string to prepare() to get a statement handle, then use
that handle to pass the data values to execute():

my $sth = $dbh->prepare ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)");
my $count = $sth->execute ("De'Mont", "1973-01-12", undef, "eggroll", 4);

In either case, DBI generates this statement:

84 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll','4')

The Perl DBI placeholder mechanism provides quotes around data values when they
are bound to the statement string, so don’t put quotes around the ? characters in the
string.

Note that the placeholder mechanism adds quotes around numeric values. DBI relies
on the MySQL server to perform type conversion as necessary to convert strings to
numbers. If you bind undef to a placeholder, DBI puts a NULL into the statement and
correctly refrains from adding enclosing quotes.

To execute the same statement over and over again, use prepare() once, then call
execute() with appropriate data values each time you run it.

You can use these methods for other types of statements as well. For example, the fol‐
lowing SELECT statement uses a placeholder to look for rows that have a cats value
larger than 2:

my $sth = $dbh->prepare ("SELECT * FROM profile WHERE cats > ?");
$sth->execute (2);
while (my $ref = $sth->fetchrow_hashref ())
{
 print "id: $ref->{id}, name: $ref->{name}, cats: $ref->{cats}\n";
}

High-level retrieval methods such as selectrow_array() and selectall_arrayr
ef() can be used with placeholders, too. Like the do() method, the arguments are the
statement string, undef, and the data values to bind to the placeholders. Here’s an ex‐
ample:

my $ref = $dbh->selectall_arrayref (
 "SELECT name, birth, foods FROM profile WHERE id > ? AND color = ?",
 undef, 3, "green"
);

The Perl DBI quote() database- handle method is an alternative to using placeholders.
Here’s how to use quote() to create a statement string that inserts a new row in the
profile table. Write the %s format specifiers without enclosing quotes because quote()
provides them automatically as necessary. Non-undef values are inserted with quotes,
and undef values are inserted as NULL without quotes:

my $stmt = sprintf ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)",
 $dbh->quote ("De'Mont"),
 $dbh->quote ("1973-01-12"),
 $dbh->quote (undef),
 $dbh->quote ("eggroll"),
 $dbh->quote (4));
my $count = $dbh->do ($stmt);

2.5. Handling Special Characters and NULL Values in Statements | 85

www.it-ebooks.info

http://www.it-ebooks.info/

The statement string generated by this code is the same as when you use placeholders.

Ruby

Ruby DBI uses ? as the placeholder character in SQL statements and nil as the value
for binding an SQL NULL value to a placeholder.

To use placeholders with do, pass the statement string followed by the data values to
bind to the placeholders:

count = dbh.do("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)",
 "De'Mont", "1973-01-12", nil, "eggroll", 4)

Alternatively, pass the statement string to prepare to get a statement handle, then use
that handle to invoke execute with the data values:

sth = dbh.prepare("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)")
count = sth.execute("De'Mont", "1973-01-12", nil, "eggroll", 4)

Regardless of how you construct the statement, DBI includes properly escaped quotes
and a properly unquoted NULL value:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll',4)

The Ruby DBI placeholder mechanism provides quotes around data values as necessary
when they are bound to the statement string, so don’t put quotes around the ? characters
in the string.

The approach that uses prepare plus execute is useful for a statement to be executed
multiple times with different data values. For a statement to be executed just once, you
can skip the prepare step. Pass the statement string and the data values to the database
handle execute method:

sth = dbh.execute("SELECT * FROM profile WHERE cats > ?", 2)
sth.fetch do |row|
 printf "id: %s, name: %s, cats: %s\n", row["id"], row["name"], row["cats"]
end
sth.finish

The Ruby DBI quote() database-handle method is an alternative to placeholders. The
following example uses quote() to produce the INSERT statement for De’Mont. Write
the %s format specifiers without enclosing quotes because quote() provides them au‐
tomatically as necessary. Non-nil values are inserted with quotes, and nil values are
inserted as NULL without quotes:

stmt = sprintf "INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)",
 dbh.quote("De'Mont"),
 dbh.quote("1973-01-12"),

86 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 dbh.quote(nil),
 dbh.quote("eggroll"),
 dbh.quote(4)
count = dbh.do(stmt)

The statement string generated by this code is the same as when you use placeholders.

PHP

To use placeholders with the PDO extension, pass a statement string to prepare() to
get a statement object. The string can contain ? characters as placeholder markers. Use
this object to invoke execute(), passing to it the array of data values to bind to the
placeholders. Use the PHP NULL value to bind an SQL NULL value to a placeholder. The
code to add the profile table row for De’Mont looks like this:

$sth = $dbh->prepare ("INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(?,?,?,?,?)");
$sth->execute (array ("De'Mont","1973-01-12",NULL,"eggroll",4));

The resulting statement includes a properly escaped quote and a properly unquoted
NULL value:

INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll','4')

The PDO placeholder mechanism provides quotes around data values when they are
bound to the statement string, so don’t put quotes around the ? characters in the string.
(Note that even the numeric value 4 is quoted; PDO relies on MySQL to perform type
conversion as necessary when the statement executes.)

Python

The Connector/Python module implements placeholders using %s format specifiers in
the SQL statement string. (To place a literal % character into the statement, use %% in the
statement string.) To use placeholders, invoke the execute() method with two argu‐
ments: a statement string containing format specifiers and a sequence containing the
values to bind to the statement string. Use None to bind a NULL value to a placeholder.
The code to add the profile table row for De’Mont looks like this:

cursor = conn.cursor()
cursor.execute('''
 INSERT INTO profile (name,birth,color,foods,cats)
 VALUES(%s,%s,%s,%s,%s)
 ''', ("De'Mont", "1973-01-12", None, "eggroll", 4))
cursor.close()
conn.commit()

The statement sent to the server by the preceding execute() call looks like this:
INSERT INTO profile (name,birth,color,foods,cats)
VALUES('De\'Mont','1973-01-12',NULL,'eggroll',4)

2.5. Handling Special Characters and NULL Values in Statements | 87

www.it-ebooks.info

http://www.it-ebooks.info/

The Connector/Python placeholder mechanism provides quotes around data values as
necessary when they are bound to the statement string, so don’t put quotes around the
%s format specifiers in the string.

If you have only a single value val to bind to a placeholder, write it as a sequence using
the syntax (val,):

cursor = conn.cursor()
cursor.execute("SELECT id, name, cats FROM profile WHERE cats = %s", (2,))
for (id, name, cats) in cursor:
 print("id: %s, name: %s, cats: %s" % (id, name, cats))
cursor.close()

Alternatively, write the value as a list using the syntax [val].

Java

JDBC provides support for placeholders if you use prepared statements. Recall that the
process for executing nonprepared statements in JDBC is to create a Statement object,
and then pass the statement string to the executeUpdate(), executeQuery(), or exe
cute() function. To use a prepared statement instead, create a PreparedStatement
object by passing a statement string containing ? placeholder characters to your con‐
nection object’s prepareStatement() method. Then bind the data values to the state‐
ment using setXXX() methods. Finally, execute the statement by calling executeUp
date(), executeQuery(), or execute() with an empty argument list.

Here is an example that uses executeUpdate() to execute an INSERT statement that adds
the profile table row for De’Mont:

PreparedStatement s;
s = conn.prepareStatement (
 "INSERT INTO profile (name,birth,color,foods,cats)"
 + " VALUES(?,?,?,?,?)");
s.setString (1, "De'Mont"); // bind values to placeholders
s.setString (2, "1973-01-12");
s.setNull (3, java.sql.Types.CHAR);
s.setString (4, "eggroll");
s.setInt (5, 4);
s.close (); // close statement

The setXXX() methods that bind data values to statements take two arguments: a place‐
holder position (beginning with 1, not 0) and the value to bind to the placeholder.
Choose each value-binding call to match the data type of the column to which the value
is bound: setString() to bind a string to the name column, setInt() to bind an integer
to the cats column, and so forth. (Actually, I cheated a bit by using setString() to
treat the date value for birth as a string.)

One difference between JDBC and the other APIs is that you don’t bind a NULL to a
placeholder by specifying some special value (such as undef in Perl or nil in Ruby).

88 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Instead, invoke setNull() with a second argument that indicates the type of the column:
java.sql.Types.CHAR for a string, java.sql.Types.INTEGER for an integer, and so
forth.

The setXXX() calls add quotes around data values if necessary, so don’t put quotes
around the ? placeholder characters in the statement string.

To handle a statement that returns a result set, the process is similar, but execute the
prepared statement with executeQuery() rather than executeUpdate():

PreparedStatement s;
s = conn.prepareStatement ("SELECT * FROM profile WHERE cats > ?");
s.setInt (1, 2); // bind 2 to first placeholder
s.executeQuery ();
// ... process result set here ...
s.close (); // close statement

2.6. Handling Special Characters in Identifiers
Problem
You need to construct SQL statements that refer to identifiers containing special char‐
acters.

Solution
Quote each identifier so it can be inserted safely into statement strings.

Discussion
Recipe 2.5 discusses how to handle special characters in data values by using place‐
holders or quoting methods. Special characters also can be present in identifiers such
as database, table, and column names. For example, the table name some table contains
a space, which is not permitted by default:

mysql> CREATE TABLE some table (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax near 'table (i INT)'

Special characters are handled differently in identifiers than in data values. To make an
identifier safe for insertion into an SQL statement, quote it by enclosing it within back‐
ticks:

mysql> CREATE TABLE `some table` (i INT);
Query OK, 0 rows affected (0.04 sec)

In MySQL, backticks are always permitted for identifier quoting. The double-quote
character is permitted as well, if the ANSI_QUOTES SQL mode is enabled. Thus, with
ANSI_QUOTES enabled, both of these statements are equivalent:

2.6. Handling Special Characters in Identifiers | 89

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE `some table` (i INT);
CREATE TABLE "some table" (i INT);

If it’s necessary to know which identifier quoting characters are permitted, execute a
SELECT @@sql_mode statement to retrieve the SQL mode and check whether its value
includes ANSI_QUOTES.

If a quoting character appears within the identifier itself, double it when quoting the
identifier. For example, quote abc`def as `abc``def`.

Be aware that although string data values in MySQL normally can be quoted using either
single-quote or double-quote characters ('abc', "abc"), that is not true when AN
SI_QUOTES is enabled. In that case, MySQL interprets 'abc' as a string and "abc" as an
identifier, so you must use only single quotes for strings.

Within a program, you can use an identifier-quoting routine if your API provides one,
or write one yourself if not. Perl DBI has a quote_identifier() method that returns a
properly quoted identifier. For an API that has no such method, you can quote an
identifier by enclosing it within backticks and doubling any backticks that occur within
the identifier. Here’s a PHP routine that does so:

function quote_identifier ($ident)
{
 return ('`' . str_replace('`', '``', $ident) . '`');
}

Portability note: If you write your own identifier-quoting routines, remember that other
DBMSs may require different quoting conventions.

In contexts where identifiers are used as data values, handle them as such. If you select
information from the INFORMATION_SCHEMA metadata database, it’s common to indicate
which rows to return by specifying database object names in the WHERE clause. For
example, this statement retrieves the column names for the profile table in the cook
book database:

SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'profile';

The database and table names are used here as data values, not as identifiers. Were you
to construct this statement within a program, parameterize them using placeholders,
not identifier quoting. For example, in Ruby, do this:

names = dbh.select_all("SELECT COLUMN_NAME
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?",
 db_name, tbl_name)

90 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

2.7. Identifying NULL Values in Result Sets
Problem
A query result includes NULL values, but you’re not sure how to identify them.

Solution
Your API probably has some special value that represents NULL by convention. You just
have to know what it is and how to test for it.

Discussion
Recipe 2.5 describes how to refer to NULL values when you send statements to the da‐
tabase server. In this section, we’ll deal instead with the question of how to recognize
and process NULL values returned from the database server. In general, this is a matter
of knowing what special value the API maps NULL values to, or what method to call. The
following table shows these values:

Language NULL-detection value or method

Perl DBI undef value

Ruby DBI nil value

PHP PDO NULL value

Python DB API None value

Java JDBC wasNull() method

The following sections show a very simple application of NULL value detection. The
examples retrieve a result set and print all values in it, mapping NULL values onto the
printable string "NULL".

To make sure that the profile table has a row that contains some NULL values, use mysql
to execute the following INSERT statement, then execute the SELECT statement to verify
that the resulting row has the expected values:

mysql> INSERT INTO profile (name) VALUES('Amabel');
mysql> SELECT * FROM profile WHERE name = 'Amabel';
+----+--------+-------+-------+-------+------+
| id | name | birth | color | foods | cats |
+----+--------+-------+-------+-------+------+
| 9 | Amabel | NULL | NULL | NULL | NULL |
+----+--------+-------+-------+-------+------+

The id column might contain a different number, but the other columns should appear
as shown, with values of NULL.

2.7. Identifying NULL Values in Result Sets | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Perl

Perl DBI represents NULL values using undef. To detect such values, use the de
fined() function; it’s particularly important to do so if you enable warnings with the
Perl -w option or by including a use warnings line in your script. Otherwise, accessing
undef values causes Perl to issue Use of uninitialized value warnings.

To prevent these warnings, test column values that might be undef with defined()
before using them. The following code selects a few columns from the profile table
and prints "NULL" for any undefined values in each row. This makes NULL values explicit
in the output without activating any warning messages:

my $sth = $dbh->prepare ("SELECT name, birth, foods FROM profile");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 printf "name: %s, birth: %s, foods: %s\n",
 defined ($ref->{name}) ? $ref->{name} : "NULL",
 defined ($ref->{birth}) ? $ref->{birth} : "NULL",
 defined ($ref->{foods}) ? $ref->{foods} : "NULL";
}

Unfortunately, testing multiple column values is ponderous and becomes worse the
more columns there are. To avoid this, test and set undefined values using a loop or map
prior to printing them. The following example uses map:

my $sth = $dbh->prepare ("SELECT name, birth, foods FROM profile");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 map { $ref->{$_} = "NULL" unless defined ($ref->{$_}); } keys (%{$ref});
 printf "name: %s, birth: %s, foods: %s\n",
 $ref->{name}, $ref->{birth}, $ref->{foods};
}

With this technique, the amount of code to perform the tests is constant, not propor‐
tional to the number of columns to be tested. Also, there is no reference to specific
column names, so it can more easily be used in other programs or as the basis for a
utility routine.

If you fetch rows into an array rather than into a hash, use map like this to convert undef
values:

my $sth = $dbh->prepare ("SELECT name, birth, foods FROM profile");
$sth->execute ();
while (my @val = $sth->fetchrow_array ())
{
 @val = map { defined ($_) ? $_ : "NULL" } @val;
 printf "name: %s, birth: %s, foods: %s\n",
 $val[0], $val[1], $val[2];
}

92 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby

Ruby DBI represents NULL values using nil, which can be identified by applying the
nil? method to a value. The following example uses nil? to determine whether to print
result set values as is or as the string "NULL" for NULL values:

dbh.execute("SELECT name, birth, foods FROM profile") do |sth|
 sth.fetch do |row|
 for i in 0...row.length
 row[i] = "NULL" if row[i].nil? # is the column value NULL?
 end
 printf "id: %s, name: %s, cats: %s\n", row[0], row[1], row[2]
 end
end

A shorter alternative to the for loop is the collect! method, which takes each array
element in turn and replaces it with the value returned by the code block:

row.collect! { |val| val.nil? ? "NULL" : val }

PHP

PHP represents SQL NULL values in result sets as the PHP NULL value. To determine
whether a value from a result set represents a NULL value, compare it to the PHP NULL
value using the === “triple equal” operator:

if ($val === NULL)
{
 # $val is a NULL value
}

In PHP, the triple equal operator means “exactly equal to.” The usual == “equal to”
comparison operator is not suitable here: with ==, PHP considers the NULL value, the
empty string, and 0 all equal.

The following code uses the === operator to identify NULL values in a result set and print
them as the string "NULL":

$sth = $dbh->query ("SELECT name, birth, foods FROM profile");
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 foreach (array_keys ($row) as $key)
 {
 if ($row[$key] === NULL)
 $row[$key] = "NULL";
 }
 print ("name: $row[0], birth: $row[1], foods: $row[2]\n");
}

An alternative to === for NULL value tests is is_null().

2.7. Identifying NULL Values in Result Sets | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Python

Python DB API programs represent NULL in result sets using None. The following ex‐
ample shows how to detect NULL values:

cursor = conn.cursor()
cursor.execute("SELECT name, birth, foods FROM profile")
for row in cursor:
 row = list(row) # convert nonmutable tuple to mutable list
 for i, value in enumerate(row):
 if value is None: # is the column value NULL?
 row[i] = "NULL"
 print("name: %s, birth: %s, foods: %s" % (row[0], row[1], row[2]))
cursor.close()

The inner loop checks for NULL column values by looking for None and converts them
to the string "NULL". The example converts row to a mutable object prior to the loop
because fetchall() returns rows as sequence values, which are nonmutable (read only).

Java

For JDBC programs, if it’s possible for a column in a result set to contain NULL values,
it’s best to check for them explicitly. The way to do this is to fetch the value and then
invoke wasNull(), which returns true if the column is NULL and false otherwise. For
example:

Object obj = rs.getObject (index);
if (rs.wasNull ())
{ /* the value's a NULL */ }

The preceding example uses getObject(), but the principle holds for other getXXX()
calls as well.

Here’s an example that prints each row of a result set as a comma-separated list of values,
with "NULL" printed for each NULL value:

Statement s = conn.createStatement ();
s.executeQuery ("SELECT name, birth, foods FROM profile");
ResultSet rs = s.getResultSet ();
ResultSetMetaData md = rs.getMetaData ();
int ncols = md.getColumnCount ();
while (rs.next ()) // loop through rows of result set
{
 for (int i = 0; i < ncols; i++) // loop through columns
 {
 String val = rs.getString (i+1);
 if (i > 0)
 System.out.print (", ");
 if (rs.wasNull ())
 System.out.print ("NULL");
 else
 System.out.print (val);

94 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 System.out.println ();
}
rs.close (); // close result set
s.close (); // close statement

2.8. Techniques for Obtaining Connection Parameters
Problem
You need to obtain connection parameters for a script so that it can connect to a MySQL
server.

Solution
There are several ways to do this. Take your pick from the alternatives described here.

Discussion
Any program that connects to MySQL specifies connection parameters such as the
username, password, and hostname. The recipes shown so far have put connection
parameters directly into the code that attempts to establish the connection, but that is
not the only way for your programs to obtain the parameters. This discussion briefly
surveys some of the available techniques:
Hardwire the parameters into the program

The parameters can be given either in the main source file or in a library file used
by the program. This technique is convenient because users need not enter the
values themselves, but it’s also inflexible. To change parameters, you must modify
your program.

Ask for the parameters interactively
In a command-line environment, you can ask the user a series of questions. In a
web or GUI environment, you might do this by presenting a form or dialog. Either
way, this becomes tedious for people who use the application frequently, due to the
need to enter the parameters each time.

Get the parameters from the command line
You can use this method either for commands run interactively or from within a
script. Like the method of obtaining parameters interactively, you must supply pa‐
rameters for each command invocation. (A factor that mitigates this burden is that
many shells enable you to easily recall commands from your history list for re-
execution.)

2.8. Techniques for Obtaining Connection Parameters | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Get the parameters from the execution environment
The most common way to do this is to set the appropriate environment variables
in one of your shell’s startup files (such as .profile for sh, bash, ksh; or .login for csh
or tcsh). Programs that you run during your login session then can get parameter
values by examining their environment.

Get the parameters from a separate file
With this method, store information such as the username and password in a file
that programs can read before connecting to the MySQL server. Reading parameters
from a file that’s separate from your program gives you the benefit of not having to
enter them each time you use the program, without hardwiring the values into it.
Also, storing the values in a file enables you to centralize parameters for use by
multiple programs, and for security purposes you can set the file access mode to
keep other users from reading the file.

The MySQL client library itself supports an option file mechanism, although not
all APIs provide access to it. For those that don’t, workarounds may exist. (As an
example, Java supports the use of properties files and supplies utility routines for
reading them.)

Use a combination of methods
It’s often useful to combine methods, to give users the flexibility of providing pa‐
rameters different ways. For example, MySQL clients such as mysql and mysqlad‐
min look for option files in several locations and read any that are present. They
then check the command-line arguments for further parameters. This enables users
to specify connection parameters in an option file or on the command line.

These methods of obtaining connection parameters do involve security issues:

• Any method that stores connection parameters in a file may compromise your
system’s security unless the file is protected against access by unauthorized users.
This is true whether parameters are stored in a source file, an option file, or a script
that invokes a command and specifies the parameters on the command line. (Web
scripts that can be read only by the web server don’t qualify as secure if other users
have administrative access to the server.)

• Parameters specified on the command line or in environment variables are not
particularly secure. While a program is executing, its command-line arguments and
environment may be visible to other users who run process status commands such
as ps -e. In particular, storing the password in an environment variable perhaps is
best limited to those situations in which you’re the only user on the machine or you
trust all other users.

The rest of this section discusses how to process command-line arguments to get con‐
nection parameters and how to read parameters from option files.

96 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

Getting parameters from the command line

The convention used by standard clients such as mysql and mysqladmin for command-
line arguments is to permit parameters to be specified using either a short option or a
long option. For example, the username cbuser can be specified either as -u cbuser (or
-ucbuser) or --user=cbuser. In addition, for either of the password options (-p or --
password), the password value may be omitted after the option name to cause the pro‐
gram to prompt for the password interactively.

The standard flags for these command options are -h or --host, -u or --user, and -p
or --password. You could write your own code to iterate through the argument list, but
it’s much easier to use existing option-processing modules written for that purpose.
Under the api directory of the recipes distribution, you’ll find example programs that
show how to process command arguments to obtain the hostname, username, and
password for Perl, Ruby, Python, and Java. An accompanying PDF file explains how
each one works.

Insofar as possible, the programs mimic option-handling behavior of
the standard MySQL clients. An exception is that option-processing
libraries may not permit making the password value optional, and
they provide no way of prompting the user for a password interac‐
tively if a password option is specified without a password value.
Consequently, the programs are written so that if you use -p or --
password, you must provide the password value following the option.

Getting parameters from option files

If your API supports it, you can specify connection parameters in a MySQL option file
and let the API read the parameters from the file for you. For APIs that do not support
option files directly, you may be able to arrange to read other types of files in which
parameters are stored or to write your own functions that read option files.

Recipe 1.4 describes the format of MySQL option files. I assume that you’ve read the
discussion there and concentrate here on how to use option files from within programs.
You can find files containing the code discussed here under the api directory of the
recipes distribution.

Under Unix, user-specific options are specified by convention in ~/.my.cnf (that is, in
the .my.cnf file in your home directory). However, the MySQL option-file mechanism
can look in several different files if they exist, although no option file is required to exist.
(For the list of standard locations in which MySQL programs look for them, see
Recipe 1.4.) If multiple option files exist and a given parameter is specified in several of
them, the last value found takes precedence.

Programs you write do not use MySQL option files unless you tell them to:

2.8. Techniques for Obtaining Connection Parameters | 97

www.it-ebooks.info

http://www.it-ebooks.info/

• Perl DBI and Ruby DBI provide direct API support for reading option files; simply
indicate that you want to use them at the time that you connect to the server. It’s
possible to specify that only a particular file should be read, or that the standard
search order should be used to look for multiple option files.

• PHP PDO, Connector/Python, and Java do not support option files. (The PDO
MySQL driver does, but not if you use mysqlnd as the underlying library.) As a
workaround for PHP, we’ll write a simple option-file parsing function. For Java,
we’ll adopt a different approach that uses properties files.

Although the conventional name under Unix for the user-specific option file
is .my.cnf in the current user’s home directory, there’s no rule that your own programs
must use this particular file. You can name an option file anything you like and put it
wherever you want. For example, you might set up a file named mcb.cnf and install it
in the /usr/local/lib/mcb directory for use by scripts that access the cookbook database.
Under some circumstances, you might even want to create multiple option files. Then,
from within any given script, select the file that’s appropriate for the access privileges
the script needs. For example, you might have one option file, mcb.cnf, that lists pa‐
rameters for a full-access MySQL account, and another file, mcb-readonly.cnf, that lists
connection parameters for an account that needs only read-only access to MySQL. An‐
other possibility is to list multiple groups within the same option file and have your
scripts select options from the appropriate group.

Perl. Perl DBI scripts can use option files. To take advantage of this, place the appropriate
option specifiers in the third component of the data source name (DSN) string:

• To specify an option group, use mysql_read_default_group=groupname. This tells
MySQL to search the standard option files for options in the named group and in
the [client] group. Write the groupname value without the surrounding square
brackets. (If a group in an option file begins with a [my_prog] line, specify the
groupname value as my_prog.) To search the standard files but look only in the
[client] group, groupname should be client.

• To name a specific option file, use mysql_read_default_file=filename in the
DSN. When you do this, MySQL looks only in that file and only for options in the
[client] group.

• If you specify both an option file and an option group, MySQL reads only the named
file, but looks for options both in the named group and in the [client] group.

The following example tells MySQL to use the standard option-file search order to look
for options in both the [cookbook] and [client] groups:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
basic DSN

98 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

my $dsn = "DBI:mysql:database=cookbook";
look in standard option files; use [cookbook] and [client] groups
$dsn .= ";mysql_read_default_group=cookbook";
my $dbh = DBI->connect ($dsn, undef, undef, $conn_attrs);

The next example explicitly names the option file located in $ENV{HOME}, the home
directory of the user running the script. Thus, MySQL looks only in that file and uses
options from the [client] group:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
basic DSN
my $dsn = "DBI:mysql:database=cookbook";
look in user-specific option file owned by the current user
$dsn .= ";mysql_read_default_file=$ENV{HOME}/.my.cnf";
my $dbh = DBI->connect ($dsn, undef, undef, $conn_attrs);

If you pass an empty value (undef or the empty string) for the username or password
arguments of the connect() call, connect() uses whatever values are found in the op‐
tion file or files. A nonempty username or password in the connect() call overrides any
option-file value. Similarly, a host named in the DSN overrides any option-file value.
Use this behavior to enable DBI scripts to obtain connection parameters both from
option files as well as from the command line as follows:

1. Create $host_name, $user_name, and $password variables, each with a value of
undef. Then parse the command-line arguments to set the variables to non-undef
values if the corresponding options are present on the command line. (The
cmdline.pl Perl script under the api directory of the recipes distribution demon‐
strates how to do this.)

2. After parsing the command arguments, construct the DSN string, and call con
nect(). Use mysql_read_default_group and mysql_read_default_file in the
DSN to specify how you want option files to be used, and, if $host_name is not
undef, add host=$host_name to the DSN. In addition, pass $user_name and $pass
word as the username and password arguments to connect(). These will be un
def by default; if they were set from the command-line arguments, they will have
non-undef values that override any option-file values.

If a script follows this procedure, parameters given by the user on the command line
are passed to connect() and take precedence over the contents of option files.

Ruby. Ruby DBI scripts can access option files by using a mechanism analogous to that
used for Perl DBI, and the following examples correspond exactly to those shown in the
preceding Perl discussion.

This example uses the standard option-file search order to look for options in both the
[cookbook] and [client] groups:

2.8. Techniques for Obtaining Connection Parameters | 99

www.it-ebooks.info

http://www.it-ebooks.info/

basic DSN
dsn = "DBI:Mysql:database=cookbook"
look in standard option files; use [cookbook] and [client] groups
dsn << ";mysql_read_default_group=cookbook"
dbh = DBI.connect(dsn, nil, nil)

The following example uses the .my.cnf file in the current user’s home directory to obtain
parameters from the [client] group:

basic DSN
dsn = "DBI:Mysql:database=cookbook"
look in user-specific option file owned by the current user
dsn << ";mysql_read_default_file=#{ENV['HOME']}/.my.cnf"
dbh = DBI.connect(dsn, nil, nil)

PHP. As mentioned earlier, the PDO MySQL driver does not necessarily support using
MySQL option files (it does not if you use mysqlnd as the underlying library). To work
around that limitation, use a function that reads an option file, such as the
read_mysql_option_file() function shown in the following listing. It takes as argu‐
ments the name of an option file and an option group name or an array containing
group names. (Group names should be written without square brackets.) It then reads
any options present in the file for the named group or groups. If no option group ar‐
gument is given, the function looks by default in the [client] group. The return value
is an array of option name/value pairs, or FALSE if an error occurs. It is not an error for
the file not to exist. (Note that quoted option values and trailing #-style comments
following option values are legal in MySQL option files, but this function does not
handle those constructs.)

function read_mysql_option_file ($filename, $group_list = "client")
{
 if (is_string ($group_list)) # convert string to array
 $group_list = array ($group_list);
 if (!is_array ($group_list)) # hmm ... garbage argument?
 return (FALSE);
 $opt = array (); # option name/value array
 if (!@($fp = fopen ($filename, "r"))) # if file does not exist,
 return ($opt); # return an empty list
 $in_named_group = 0; # set nonzero while processing a named group
 while ($s = fgets ($fp, 1024))
 {
 $s = trim ($s);
 if (preg_match ("/^[#;]/", $s)) # skip comments
 continue;
 if (preg_match ("/^\[([^]]+)]/", $s, $arg)) # option group line?
 {
 # check whether we are in one of the desired groups
 $in_named_group = 0;
 foreach ($group_list as $group_name)
 {
 if ($arg[1] == $group_name)

100 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 {
 $in_named_group = 1; # we are in a desired group
 break;
 }
 }
 continue;
 }
 if (!$in_named_group) # we are not in a desired
 continue; # group, skip the line
 if (preg_match ("/^([^ \t=]+)[\t]*=[\t]*(.*)/", $s, $arg))
 $opt[$arg[1]] = $arg[2]; # name=value
 else if (preg_match ("/^([^ \t]+)/", $s, $arg))
 $opt[$arg[1]] = ""; # name only
 # else line is malformed
 }
 return ($opt);
}

Here are two examples showing how to use read_mysql_option_file(). The first reads
a user’s option file to get the [client] group parameters and uses them to connect to
the server. The second reads the system-wide option file, /etc/my.cnf, and prints the
server startup parameters that are found there (that is, the parameters in the [mysqld]
and [server] groups):

$opt = read_mysql_option_file ("/home/paul/.my.cnf");
$dsn = "mysql:dbname=cookbook";
if (isset ($opt["host"]))
 $dsn .= ";host=" . $opt["host"];
$user = $opt["user"];
$password = $opt["password"];
try
{
 $dbh = new PDO ($dsn, $user, $password);
 print ("Connected\n");
 $dbh = NULL;
 print ("Disconnected\n");
}
catch (PDOException $e)
{
 print ("Cannot connect to server\n");
}

$opt = read_mysql_option_file ("/etc/my.cnf", array ("mysqld", "server"));
foreach ($opt as $name => $value)
 print ("$name => $value\n");

PHP does have a parse_ini_file() function that is intended for parsing .ini files. These
have a syntax that is similar to MySQL option files, so you might find this function of
use. However, there are some differences to watch out for. Suppose that you have a file
written like this:

2.8. Techniques for Obtaining Connection Parameters | 101

www.it-ebooks.info

http://www.it-ebooks.info/

[client]
user=paul

[client]
host=127.0.0.1

[mysql]
no-auto-rehash

Standard MySQL option parsing considers both the user and host values part of the
[client] group, whereas parse_ini_file() returns only the contents of the final
[client] stanza; the user option is lost. Also, parse_ini_file() ignores options that
are given without a value, so the no-auto-rehash option is lost.

Java. The JDBC MySQL Connector/J driver doesn’t support option files. However, the
Java class library supports reading properties files that contain lines in name=value
format. This is similar but not identical to MySQL option-file format (for example,
properties files do not permit [groupname] lines). Here is a simple properties file:

this file lists parameters for connecting to the MySQL server
user=cbuser
password=cbpass
host=localhost

The following program, ReadPropsFile.java, shows one way to read a properties file
named Cookbook.properties to obtain connection parameters. The file must be in some
directory named in your CLASSPATH variable, or you must specify it using a full path‐
name (the example shown here assumes that the file is in a CLASSPATH directory):

import java.sql.*;
import java.util.*; // need this for properties file support

public class ReadPropsFile
{
 public static void main (String[] args)
 {
 Connection conn = null;
 String url = null;
 String propsFile = "Cookbook.properties";
 Properties props = new Properties ();

 try
 {
 props.load (ReadPropsFile.class.getResourceAsStream (propsFile));
 }
 catch (Exception e)
 {
 System.err.println ("Cannot read properties file");
 System.exit (1);
 }
 try

102 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

 {
 // construct connection URL, encoding username
 // and password as parameters at the end
 url = "jdbc:mysql://"
 + props.getProperty ("host")
 + "/cookbook"
 + "?user=" + props.getProperty ("user")
 + "&password=" + props.getProperty ("password");
 Class.forName ("com.mysql.jdbc.Driver").newInstance ();
 conn = DriverManager.getConnection (url);
 System.out.println ("Connected");
 }
 catch (Exception e)
 {
 System.err.println ("Cannot connect to server");
 }
 finally
 {
 try
 {
 if (conn != null)
 {
 conn.close ();
 System.out.println ("Disconnected");
 }
 }
 catch (SQLException e) { /* ignore close errors */ }
 }
 }
}

To have getProperty() return a particular default value when the named property is
not found, pass that value as a second argument. For example, to use 127.0.0.1 as the
default host value, call getProperty() like this:

String hostName = props.getProperty ("host", "127.0.0.1");

The Cookbook.java library file developed elsewhere in the chapter (see Recipe 2.3) in‐
cludes an extra library call in the version of the file that you’ll find in the lib directory
of the recipes distribution: a propsConnect() routine that is based on the concepts
discussed here. To use it, set up the contents of the properties file, Cookbook.proper
ties, and copy the file to the same location where you installed Cookbook.class. You can
then establish a connection within a program by importing the Cookbook class and
calling Cookbook.propsConnect() rather than by calling Cookbook.connect().

2.9. Conclusion and Words of Advice
This chapter discussed the basic operations provided by each of our APIs for handling
various aspects of interaction with the MySQL server. These operations enable you to
write programs that execute any kind of statement and retrieve the results. Up to this

2.9. Conclusion and Words of Advice | 103

www.it-ebooks.info

http://www.it-ebooks.info/

point, we’ve used simple statements because the focus is on the APIs rather than on SQL.
The next chapter focuses on SQL instead, to show how to ask the database server more
complex questions.

Before you proceed, it’s a good idea to reset the profile table used in this chapter to a
known state. Change location into the tables directory of the recipes distribution, and
run these commands:

% mysql cookbook < profile.sql
% mysql cookbook < profile2.sql

Several statements in later chapters use the profile table; by reinitializing it, you’ll get
the same results displayed in those chapters when you run the statements shown there.

104 | Chapter 2: Writing MySQL-Based Programs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Selecting Data from Tables

3.0. Introduction
This chapter focuses on using the SELECT statement to retrieve information from your
database. You will find the chapter helpful if your SQL background is limited or to find
out about the MySQL-specific extensions to SELECT syntax.

There are many ways to write SELECT statements; we’ll look at only a few. Consult the
MySQL Reference Manual or a general MySQL text for more information about SE
LECT syntax and the functions and operators available to extract and manipulate data.

Many examples in this chapter use a table named mail that contains rows that track
mail message traffic between users on a set of hosts:

CREATE TABLE mail
(
 t DATETIME, # when message was sent
 srcuser VARCHAR(8), # sender (source user and host)
 srchost VARCHAR(20),
 dstuser VARCHAR(8), # recipient (destination user and host)
 dsthost VARCHAR(20),
 size BIGINT, # message size in bytes
 INDEX (t)
);

The mail table contents look like this:
mysql> SELECT * FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271

105

www.it-ebooks.info

http://www.it-ebooks.info/

2014-05-14 09:31:37	gene	venus	barb	mars	2291
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-14 14:42:21	barb	venus	barb	venus	98151
2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2014-05-15 07:17:48	gene	mars	gene	saturn	3824
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-15 17:35:31	gene	saturn	gene	mars	3856
2014-05-16 09:00:28	gene	venus	barb	mars	613
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-19 22:21:51	gene	saturn	gene	venus	23992
+---------------------+---------+---------+---------+---------+---------+

To create and load the mail table, change location into the tables directory of the rec
ipes distribution and run this command:

% mysql cookbook < mail.sql

This chapter also uses other tables from time to time. Some were used in previous
chapters, whereas others are new. To create any of them, do so the same way as for the
mail table, using the appropriate script in the tables directory. In addition, many of the
other scripts and programs used in this chapter are located in the select directory. The
files in that directory enable you to try the examples more easily.

Many of the statements shown here can be executed from within the mysql program,
which is discussed in Chapter 1. A few examples involve issuing statements from within
the context of a programming language. See Chapter 2 for information on programming
techniques.

3.1. Specifying Which Columns and Rows to Select
Problem
You want to display specific columns and rows from a table.

Solution
To indicate which columns to display, name them in the output column list. To indicate
which rows to display, use a WHERE clause that specifies conditions that rows must satisfy.

Discussion
The simplest way to display columns from a table is to use SELECT * FROM tbl_name. The
* specifier is a shortcut that means “all columns”:

106 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT * FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
…

Using * is easy, but you cannot select only certain columns or control column display
order. Naming columns explicitly enables you to select only the ones of interest, in any
order. This query omits the recipient columns and displays the sender before the date
and size:

mysql> SELECT srcuser, srchost, t, size FROM mail;
+---------+---------+---------------------+---------+
| srcuser | srchost | t | size |
+---------+---------+---------------------+---------+
barb	saturn	2014-05-11 10:15:08	58274
tricia	mars	2014-05-12 12:48:13	194925
phil	mars	2014-05-12 15:02:49	1048
barb	saturn	2014-05-12 18:59:18	271
…

Unless you qualify or restrict a SELECT query in some way, it retrieves every row in your
table. To be more precise, provide a WHERE clause that specifies one or more conditions
that rows must satisfy.

Conditions can test for equality, inequality, or relative ordering. For some types of data,
such as strings, you can use pattern matches. The following statements select columns
from rows in the mail table containing srchost values that are exactly equal to the string
'venus' or that begin with the letter 's':

mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost = 'venus';
+---------------------+---------+---------+
| t | srcuser | srchost |
+---------------------+---------+---------+
2014-05-14 09:31:37	gene	venus
2014-05-14 14:42:21	barb	venus
2014-05-15 08:50:57	phil	venus
2014-05-16 09:00:28	gene	venus
2014-05-16 23:04:19	phil	venus
+---------------------+---------+---------+		
mysql> SELECT t, srcuser, srchost FROM mail WHERE srchost LIKE 's%';		
+---------------------+---------+---------+		
t	srcuser	srchost
+---------------------+---------+---------+		
2014-05-11 10:15:08	barb	saturn
2014-05-12 18:59:18	barb	saturn
2014-05-14 17:03:01	tricia	saturn
2014-05-15 17:35:31	gene	saturn

3.1. Specifying Which Columns and Rows to Select | 107

www.it-ebooks.info

http://www.it-ebooks.info/

| 2014-05-19 22:21:51 | gene | saturn |
+---------------------+---------+---------+

The LIKE operator in the previous query performs a pattern match, where % acts as a
wildcard that matches any string. Recipe 5.8 discusses pattern matching further.

A WHERE clause can test multiple conditions and different conditions can test different
columns. The following statement finds messages sent by barb to tricia:

mysql> SELECT * FROM mail WHERE srcuser = 'barb' AND dstuser = 'tricia';
+---------------------+---------+---------+---------+---------+-------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+-------+
| 2014-05-11 10:15:08 | barb | saturn | tricia | mars | 58274 |
| 2014-05-12 18:59:18 | barb | saturn | tricia | venus | 271 |
+---------------------+---------+---------+---------+---------+-------+

Output columns can be calculated by evaluating expressions. This query combines the
srcuser and srchost columns using CONCAT() to produce composite values in email
address format:

mysql> SELECT t, CONCAT(srcuser,'@',srchost), size FROM mail;
+---------------------+-----------------------------+---------+
| t | CONCAT(srcuser,'@',srchost) | size |
+---------------------+-----------------------------+---------+
2014-05-11 10:15:08	barb@saturn	58274
2014-05-12 12:48:13	tricia@mars	194925
2014-05-12 15:02:49	phil@mars	1048
2014-05-12 18:59:18	barb@saturn	271
…

You’ll notice that the email address column label is the expression that calculates it. To
provide a better label, use a column alias (see Recipe 3.2).

3.2. Naming Query Result Columns
Problem
The column names in a query result are unsuitable, ugly, or difficult to work with.

Solution
Use aliases to choose your own column names.

Discussion
When you retrieve a result set, MySQL gives every output column a name. (That’s how
the mysql program gets the names you see displayed in the initial row of column headers
in result set output.) By default, MySQL assigns the column names specified in the

108 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE or ALTER TABLE statement to output columns, but if these defaults are not
suitable, you can use column aliases to specify your own names.

This section explains aliases and shows how to use them to assign column names in
statements. If you’re writing a program that must determine the names, see Recipe 10.2
for information about accessing column metadata.

If an output column comes directly from a table, MySQL uses the table column name
for the output column name. The following statement selects four table columns, the
names of which become the corresponding output column names:

mysql> SELECT t, srcuser, srchost, size FROM mail;
+---------------------+---------+---------+---------+
| t | srcuser | srchost | size |
+---------------------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	58274
2014-05-12 12:48:13	tricia	mars	194925
2014-05-12 15:02:49	phil	mars	1048
2014-05-12 18:59:18	barb	saturn	271
…

If you generate a column by evaluating an expression, the expression itself is the column
name. This can produce long and unwieldy names in result sets, as illustrated by the
following statement that uses one expression to reformat the dates in the t column, and
another to combine srcuser and srchost into email address format:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y'), CONCAT(srcuser,'@',srchost), size
 -> FROM mail;
+----------------------------+-----------------------------+---------+
| DATE_FORMAT(t,'%M %e, %Y') | CONCAT(srcuser,'@',srchost) | size |
+----------------------------+-----------------------------+---------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…

To choose your own output column name, use an AS name clause to specify a column
alias (the keyword AS is optional). The following statement retrieves the same result as
the previous one, but renames the first column to date_sent and the second to sender:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> size FROM mail;
+--------------+---------------+---------+
| date_sent | sender | size |
+--------------+---------------+---------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048

3.2. Naming Query Result Columns | 109

www.it-ebooks.info

http://www.it-ebooks.info/

| May 12, 2014 | barb@saturn | 271 |
…

The aliases make the column names more concise, easier to read, and more meaningful.
Aliases are subject to a few restrictions. For example, they must be quoted if they are
SQL keywords, entirely numeric, or contain spaces or other special characters (an alias
can consist of several words if you want to use a descriptive phrase). The following
statement retrieves the same data values as the preceding one but uses phrases to name
the output columns:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS 'Date of message',
 -> CONCAT(srcuser,'@',srchost) AS 'Message sender',
 -> size AS 'Number of bytes' FROM mail;
+-----------------+----------------+-----------------+
| Date of message | Message sender | Number of bytes |
+-----------------+----------------+-----------------+
May 11, 2014	barb@saturn	58274
May 12, 2014	tricia@mars	194925
May 12, 2014	phil@mars	1048
May 12, 2014	barb@saturn	271
…

If MySQL complains about a single-word alias, the word probably is reserved. Quoting
the alias should make it legal:

mysql> SELECT 1 AS INTEGER;
You have an error in your SQL syntax near 'INTEGER'
mysql> SELECT 1 AS 'INTEGER';
+---------+
| INTEGER |
+---------+
| 1 |
+---------+

Column aliases also are useful for programming purposes. If you write a program that
fetches rows into an array and accesses them by numeric column indexes, the presence
or absence of column aliases makes no difference because aliases don’t change the po‐
sitions of columns within the result set. However, aliases make a big difference if you
access output columns by name because aliases change those names. Exploit this fact
to give your program easier names to work with. For example, if your query displays
reformatted message time values from the mail table using the expression DATE_FOR
MAT(t,'%M %e, %Y'), that expression is also the name you must use when referring to
the output column. In a Perl hashref, for example, you’d access it as $ref-
>{"DATE_FORMAT(t,'%M %e, %Y')"}. That’s inconvenient. Use AS date_sent to give the
column an alias and you can refer to it more easily as $ref->{date_sent}. Here’s an
example that shows how a Perl DBI script might process such values. It retrieves rows
into a hash and refers to column values by name:

110 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

$sth = $dbh->prepare ("SELECT srcuser,
 DATE_FORMAT(t,'%M %e, %Y') AS date_sent
 FROM mail");
$sth->execute ();
while (my $ref = $sth->fetchrow_hashref ())
{
 printf "user: %s, date sent: %s\n", $ref->{srcuser}, $ref->{date_sent};
}

In Java, you’d do something like this, where the argument to getString() names the
column to access:

Statement s = conn.createStatement ();
s.executeQuery ("SELECT srcuser,"
 + " DATE_FORMAT(t,'%M %e, %Y') AS date_sent"
 + " FROM mail");
ResultSet rs = s.getResultSet ();
while (rs.next ()) // loop through rows of result set
{
 String name = rs.getString ("srcuser");
 String dateSent = rs.getString ("date_sent");
 System.out.println ("user: " + name + ", date sent: " + dateSent);
}
rs.close ();
s.close ();

Recipe 2.4 shows for each of our programming languages how to fetch rows into data
structures that permit access to column values by name. The select directory of the
recipes distribution has examples that show how to do this for the mail table.

You cannot refer to column aliases in a WHERE clause. Thus, the following statement is
illegal:

mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
 -> FROM mail WHERE kilobytes > 500;
ERROR 1054 (42S22): Unknown column 'kilobytes' in 'where clause'

The error occurs because an alias names an output column, whereas a WHERE clause
operates on input columns to determine which rows to select for output. To make the
statement legal, replace the alias in the WHERE clause with the same column or expression
that the alias represents:

mysql> SELECT t, srcuser, dstuser, size/1024 AS kilobytes
 -> FROM mail WHERE size/1024 > 500;
+---------------------+---------+---------+-----------+
| t | srcuser | dstuser | kilobytes |
+---------------------+---------+---------+-----------+
| 2014-05-14 17:03:01 | tricia | phil | 2338.3613 |
| 2014-05-15 10:25:52 | gene | tricia | 975.1289 |
+---------------------+---------+---------+-----------+

3.2. Naming Query Result Columns | 111

www.it-ebooks.info

http://www.it-ebooks.info/

3.3. Sorting Query Results
Problem
Your query results aren’t sorted the way you want.

Solution
MySQL can’t read your mind. Use an ORDER BY clause to tell it how to sort result rows.

Discussion
When you select rows, the MySQL server is free to return them in any order unless you
instruct it otherwise by saying how to sort the result. There are lots of ways to use sorting
techniques, as Chapter 7 explores in detail. Briefly, to sort a result set, add an ORDER BY
clause that names the column or columns to use for sorting. This statement names
multiple columns in the ORDER BY clause to sort rows by host and by user within each
host:

mysql> SELECT * FROM mail WHERE dstuser = 'tricia'
 -> ORDER BY srchost, srcuser;
+---------------------+---------+---------+---------+---------+--------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+--------+
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
+---------------------+---------+---------+---------+---------+--------+

To sort a column in reverse (descending) order, add the keyword DESC after its name in
the ORDER BY clause:

mysql> SELECT * FROM mail WHERE size > 50000 ORDER BY size DESC;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-14 14:42:21	barb	venus	barb	venus	98151
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
+---------------------+---------+---------+---------+---------+---------+

112 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

3.4. Removing Duplicate Rows
Problem
Output from a query contains duplicate rows. You want to eliminate them.

Solution
Use DISTINCT.

Discussion
Some queries produce results containing duplicate rows. For example, to see who sent
mail, query the mail table like this:

mysql> SELECT srcuser FROM mail;
+---------+
| srcuser |
+---------+
| barb |
| tricia |
| phil |
| barb |
| gene |
| phil |
| barb |
| tricia |
| gene |
| phil |
| gene |
| gene |
| gene |
| phil |
| phil |
| gene |
+---------+

That result is heavily redundant. To remove the duplicate rows and produce a set of
unique values, add DISTINCT to the query:

mysql> SELECT DISTINCT srcuser FROM mail;
+---------+
| srcuser |
+---------+
| barb |
| tricia |
| phil |
| gene |
+---------+

To count the number of unique values in a column, use COUNT(DISTINCT):

3.4. Removing Duplicate Rows | 113

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT COUNT(DISTINCT srcuser) FROM mail;
+-------------------------+
| COUNT(DISTINCT srcuser) |
+-------------------------+
| 4 |
+-------------------------+

DISTINCT works with multiple-column output, too. The following query shows which
dates are represented in the mail table:

mysql> SELECT DISTINCT YEAR(t), MONTH(t), DAYOFMONTH(t) FROM mail;
+---------+----------+---------------+
| YEAR(t) | MONTH(t) | DAYOFMONTH(t) |
+---------+----------+---------------+
2014	5	11
2014	5	12
2014	5	14
2014	5	15
2014	5	16
2014	5	19
+---------+----------+---------------+

See Also
Chapter 8 revisits DISTINCT and COUNT(DISTINCT). Chapter 16 discusses duplicate re‐
moval in more detail.

3.5. Working with NULL Values
Problem
You’re trying to to compare column values to NULL, but it isn’t working.

Solution
Use the proper comparison operators: IS NULL, IS NOT NULL, or <=>.

Discussion
Conditions that involve NULL are special because NULL means “unknown value.” Con‐
sequently, comparisons such as value = NULL or value <> NULL always produce a result
of NULL (not true or false) because it’s impossible to tell whether they are true or false.
Even NULL = NULL produces NULL because you can’t determine whether one unknown
value is the same as another.

To look for values that are or are not NULL, use the IS NULL or IS NOT NULL operator.
Suppose that a table named expt contains experimental results for subjects who are to
be given four tests each and that represents tests not yet administered using NULL:

114 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

You can see that = and <> fail to identify NULL values:
mysql> SELECT * FROM expt WHERE score = NULL;
Empty set (0.00 sec)
mysql> SELECT * FROM expt WHERE score <> NULL;
Empty set (0.00 sec)

Write the statements like this instead:
mysql> SELECT * FROM expt WHERE score IS NULL;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	C	NULL
Jane	D	NULL
Marvin	D	NULL
+---------+------+-------+		
mysql> SELECT * FROM expt WHERE score IS NOT NULL;		
+---------+------+-------+		
subject	test	score
+---------+------+-------+		
Jane	A	47
Jane	B	50
Marvin	A	52
Marvin	B	45
Marvin	C	53
+---------+------+-------+

The MySQL-specific <=> comparison operator, unlike the = operator, is true even for
two NULL values:

mysql> SELECT NULL = NULL, NULL <=> NULL;
+-------------+---------------+
| NULL = NULL | NULL <=> NULL |
+-------------+---------------+
| NULL | 1 |
+-------------+---------------+

Sometimes it’s useful to map NULL values onto some other value that has more meaning
in the context of your application. For example, use IF() to map NULL onto the string
Unknown:

3.5. Working with NULL Values | 115

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT subject, test, IF(score IS NULL,'Unknown', score) AS 'score'
 -> FROM expt;
+---------+------+---------+
| subject | test | score |
+---------+------+---------+
Jane	A	47
Jane	B	50
Jane	C	Unknown
Jane	D	Unknown
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	Unknown
+---------+------+---------+

This IF()-based mapping technique works for any kind of value, but it’s especially useful
with NULL values because NULL tends to be given a variety of meanings: unknown, miss‐
ing, not yet determined, out of range, and so forth. Choose the label that makes the most
sense in a given context.

The preceding query can be written more concisely using IFNULL(), which tests its first
argument and returns it if it’s not NULL, or returns its second argument otherwise:

SELECT subject, test, IFNULL(score,'Unknown') AS 'score'
FROM expt;

In other words, these two tests are equivalent:
IF(expr1 IS NOT NULL,expr1,expr2)
IFNULL(expr1,expr2)

From a readability standpoint, IF() often is easier to understand than IFNULL(). From
a computational perspective, IFNULL() is more efficient because expr1 need not be
evaluated twice, as happens with IF().

See Also
NULL values also behave specially with respect to sorting and summary operations. See
Recipes 7.11 and 8.6.

3.6. Writing Comparisons Involving NULL in Programs
Problem
You’re writing a program that looks for rows containing a specific value, but it fails when
the value is NULL.

116 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Choose the proper comparison operator according to whether the comparison value is
or is not NULL.

Discussion
Recipe 3.5 discusses the need to use different comparison operators for NULL values than
for non-NULL values in SQL statements. This issue leads to a subtle danger when con‐
structing statement strings within programs. If a value stored in a variable might rep‐
resent a NULL value, you must account for that when you use the value in comparisons.
For example, in Perl, undef represents a NULL value, so to construct a statement that
finds rows in the expt table matching some arbitrary value in a $score variable, you
cannot do this:

$sth = $dbh->prepare ("SELECT * FROM expt WHERE score = ?");
$sth->execute ($score);

The statement fails when $score is undef because the resulting statement becomes:
SELECT * FROM expt WHERE score = NULL

A comparison of score = NULL is never true, so that statement returns no rows. To take
into account the possibility that $score could be undef, construct the statement using
the appropriate comparison operator like this:

$operator = defined ($score) ? "=" : "IS";
$sth = $dbh->prepare ("SELECT * FROM expt WHERE score $operator ?");
$sth->execute ($score);

This results in statements as follows for $score values of undef (NULL) or 43 (not NULL):
SELECT * FROM expt WHERE score IS NULL
SELECT * FROM expt WHERE score = 43

For inequality tests, set $operator like this instead:
$operator = defined ($score) ? "<>" : "IS NOT";

3.7. Using Views to Simplify Table Access
Problem
You want to refer to values calculated from expressions without writing the expressions
each time you retrieve them.

Solution
Use a view defined such that its columns perform the desired calculations.

3.7. Using Views to Simplify Table Access | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Suppose that you retrieve several values from the mail table, using expressions to cal‐
culate most of them:

mysql> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> CONCAT(dstuser,'@',dsthost) AS recipient,
 -> size FROM mail;
+--------------+---------------+---------------+---------+
| date_sent | sender | recipient | size |
+--------------+---------------+---------------+---------+
May 11, 2014	barb@saturn	tricia@mars	58274
May 12, 2014	tricia@mars	gene@venus	194925
May 12, 2014	phil@mars	phil@saturn	1048
May 12, 2014	barb@saturn	tricia@venus	271
…

If you must issue such a statement often, it’s inconvenient to keep writing the expres‐
sions. To make the statement results easier to access, use a view, which is a virtual table
that contains no data. Instead, it’s defined as the SELECT statement that retrieves the data
of interest. The following view, mail_view, is equivalent to the SELECT statement just
shown:

mysql> CREATE VIEW mail_view AS
 -> SELECT
 -> DATE_FORMAT(t,'%M %e, %Y') AS date_sent,
 -> CONCAT(srcuser,'@',srchost) AS sender,
 -> CONCAT(dstuser,'@',dsthost) AS recipient,
 -> size FROM mail;

To access the view contents, refer to it like any other table. You can select some or all of
its columns, add a WHERE clause to restrict which rows to retrieve, use ORDER BY to sort
the rows, and so forth. For example:

mysql> SELECT date_sent, sender, size FROM mail_view
 -> WHERE size > 100000 ORDER BY size;
+--------------+---------------+---------+
| date_sent | sender | size |
+--------------+---------------+---------+
May 12, 2014	tricia@mars	194925
May 15, 2014	gene@mars	998532
May 14, 2014	tricia@saturn	2394482
+--------------+---------------+---------+

Stored programs provide another way to encapsulate calculations (see Recipe 9.2).

118 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

3.8. Selecting Data from Multiple Tables
Problem
The answer to a question requires data from more than one table.

Solution
Use a join or a subquery.

Discussion
The queries shown so far select data from a single table, but sometimes you must retrieve
information from multiple tables. Two types of statements that accomplish this are joins
and subqueries. A join matches rows in one table with rows in another and enables you
to retrieve output rows that contain columns from either or both tables. A subquery is
one query nested within another, to perform a comparison between values selected by
the inner query against values selected by the outer query.

This recipe shows a couple brief examples to illustrate the basic ideas. Other examples
appear elsewhere: subqueries are used in various examples throughout the book (for
example, Recipes 3.10 and 8.3). Chapter 14 discusses joins in detail, including some that
select from more than two tables.

The following examples use the profile table introduced in Chapter 2. Recall that it
lists the people on your buddy list:

mysql> SELECT * FROM profile;
+----+---------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+-----------------------+------+
1	Sybil	1970-04-13	black	lutefisk,fadge,pizza	0
2	Nancy	1969-09-30	white	burrito,curry,eggroll	3
3	Ralph	1973-11-02	red	eggroll,pizza	4
4	Lothair	1963-07-04	blue	burrito,curry	5
5	Henry	1965-02-14	red	curry,fadge	1
6	Aaron	1968-09-17	green	lutefisk,fadge	1
7	Joanna	1952-08-20	green	lutefisk,fadge	0
8	Stephen	1960-05-01	white	burrito,pizza	0
+----+---------+------------+-------+-----------------------+------+

Let’s extend use of the profile table to include another table named profile_con
tact. This second table indicates how to contact people listed in the profile table via
various social media services and is defined like this:

CREATE TABLE profile_contact
(
 profile_id INT UNSIGNED NOT NULL, # ID from profile table
 service VARCHAR(20) NOT NULL, # social media service name

3.8. Selecting Data from Multiple Tables | 119

www.it-ebooks.info

http://www.it-ebooks.info/

 contact_name VARCHAR(25) NOT NULL, # name to use for contacting person
 INDEX (profile_id)
);

The table associates each row with the proper profile row via the profile_id column.
The service and contact_name columns name the media service and the name to use
for contacting the given person via that service. For the examples, assume that the table
contains these rows:

mysql> SELECT * FROM profile_contact ORDER BY profile_id, service;
+------------+----------+--------------+
| profile_id | service | contact_name |
+------------+----------+--------------+
1	Facebook	user1-fbid
1	Twitter	user1-twtrid
2	Facebook	user2-msnid
2	LinkedIn	user2-lnkdid
2	Twitter	user2-fbrid
4	LinkedIn	user4-lnkdid
+------------+----------+--------------+

A question that requires information from both tables is, “For each person in the
profile table, show me which services I can use to get in touch, and the contact name
for each service.” To answer this question, use a join. Select from both tables and match
rows by comparing the id column from the profile table with the profile_id column
from the profile_contact table:

mysql> SELECT id, name, service, contact_name
 -> FROM profile INNER JOIN profile_contact ON id = profile_id;
+----+---------+----------+--------------+
| id | name | service | contact_name |
+----+---------+----------+--------------+
1	Sybil	Twitter	user1-twtrid
1	Sybil	Facebook	user1-fbid
2	Nancy	Twitter	user2-fbrid
2	Nancy	Facebook	user2-msnid
2	Nancy	LinkedIn	user2-lnkdid
4	Lothair	LinkedIn	user4-lnkdid
+----+---------+----------+--------------+

The FROM clause indicates the tables from which to select data, and the ON clause tells
MySQL which columns to use to find matches between the tables. In the result, rows
include the id and name columns from the profile table, and the service and con
tact_name columns from the profile_contact table.

Here’s another question that requires both tables to answer: “List all the profile_con
tact records for Nancy.” To pull the proper rows from the profile_contact table, you
need Nancy’s ID, which is stored in the profile table. To write the query without looking
up Nancy’s ID yourself, use a subquery that, given her name, looks it up for you:

120 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT * FROM profile_contact
 -> WHERE profile_id = (SELECT id FROM profile WHERE name = 'Nancy');
+------------+----------+--------------+
| profile_id | service | contact_name |
+------------+----------+--------------+
2	Twitter	user2-fbrid
2	Facebook	user2-msnid
2	LinkedIn	user2-lnkdid
+------------+----------+--------------+

Here the subquery appears as a nested SELECT statement enclosed within parentheses.

3.9. Selecting Rows from the Beginning, End, or Middle of
Query Results
Problem
You want only certain rows from a result set, such as the first one, the last five, or rows
21 through 40.

Solution
Use a LIMIT clause, perhaps in conjunction with an ORDER BY clause.

Discussion
MySQL supports a LIMIT clause that tells the server to return only part of a result set.
LIMIT is a MySQL-specific extension to SQL that is extremely valuable when your result
set contains more rows than you want to see at a time. It enables you to retrieve an
arbitrary section of a result set. Typical LIMIT uses include the following kinds of prob‐
lems:

• Answering questions about first or last, largest or smallest, newest or oldest, least
or most expensive, and so forth.

• Splitting a result set into sections so that you can process it one piece at a time. This
technique is common in web applications for displaying a large search result across
several pages. Showing the result in sections enables display of smaller, easier-to-
understand pages.

The following examples use the profile table shown in Recipe 3.8. To see the first n
rows of a SELECT result, add LIMIT n to the end of the statement:

mysql> SELECT * FROM profile LIMIT 1;
+----+-------+------------+-------+----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+----------------------+------+

3.9. Selecting Rows from the Beginning, End, or Middle of Query Results | 121

www.it-ebooks.info

http://www.it-ebooks.info/

| 1 | Sybil | 1970-04-13 | black | lutefisk,fadge,pizza | 0 |
+----+-------+------------+-------+----------------------+------+
mysql> SELECT * FROM profile LIMIT 3;
+----+-------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+-----------------------+------+
1	Sybil	1970-04-13	black	lutefisk,fadge,pizza	0
2	Nancy	1969-09-30	white	burrito,curry,eggroll	3
3	Ralph	1973-11-02	red	eggroll,pizza	4
+----+-------+------------+-------+-----------------------+------+

LIMIT n means “return at most n rows.” If you specify LIMIT 10, and the result set has
only four rows, the server returns four rows.

The rows in the preceding query results are returned in no particular order, so they may
not be very meaningful. A more common technique uses ORDER BY to sort the result set
and LIMIT to find smallest and largest values. For example, to find the row with the
minimum (earliest) birth date, sort by the birth column, then add LIMIT 1 to retrieve
the first row:

mysql> SELECT * FROM profile ORDER BY birth LIMIT 1;
+----+--------+------------+-------+----------------+------+
| id | name | birth | color | foods | cats |
+----+--------+------------+-------+----------------+------+
| 7 | Joanna | 1952-08-20 | green | lutefisk,fadge | 0 |
+----+--------+------------+-------+----------------+------+

This works because MySQL processes the ORDER BY clause to sort the rows, then applies
LIMIT.

To obtain rows from the end of a result set, sort them in the opposite order. The statement
that finds the row with the most recent birth date is similar to the previous one, except
that the sort order is descending:

mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 1;
+----+-------+------------+-------+---------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+---------------+------+
| 3 | Ralph | 1973-11-02 | red | eggroll,pizza | 4 |
+----+-------+------------+-------+---------------+------+

To find the earliest or latest birthday within the calendar year, sort by the month and
day of the birth values:

mysql> SELECT name, DATE_FORMAT(birth,'%m-%d') AS birthday
 -> FROM profile ORDER BY birthday LIMIT 1;
+-------+----------+
| name | birthday |
+-------+----------+
| Henry | 02-14 |
+-------+----------+

122 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

You can obtain the same information by running these statements without LIMIT and
ignoring everything but the first row. The advantage of LIMIT is that the server returns
only the first row, and the extra rows don’t cross the network at all. This is much more
efficient than retrieving an entire result set, only to discard all but one row.

To pull rows from the middle of a result set, use the two-argument form of LIMIT, which
enables you to pick an arbitrary section of rows. The arguments indicate how many
rows to skip and how many to return. This means that you can use LIMIT to do such
things as skip two rows and return the next one, thus answering questions such as “What
is the third-smallest or third-largest value?” These are questions that MIN() or MAX() are
not suited for, but are easy with LIMIT:

mysql> SELECT * FROM profile ORDER BY birth LIMIT 2,1;
+----+---------+------------+-------+---------------+------+
| id | name | birth | color | foods | cats |
+----+---------+------------+-------+---------------+------+
| 4 | Lothair | 1963-07-04 | blue | burrito,curry | 5 |
+----+---------+------------+-------+---------------+------+
mysql> SELECT * FROM profile ORDER BY birth DESC LIMIT 2,1;
+----+-------+------------+-------+-----------------------+------+
| id | name | birth | color | foods | cats |
+----+-------+------------+-------+-----------------------+------+
| 2 | Nancy | 1969-09-30 | white | burrito,curry,eggroll | 3 |
+----+-------+------------+-------+-----------------------+------+

The two-argument form of LIMIT also makes it possible to partition a result set into
smaller sections. For example, to retrieve 20 rows at a time from a result, issue a SE
LECT statement repeatedly, but vary its LIMIT clause like so:

SELECT ... FROM ... ORDER BY ... LIMIT 0, 20;
SELECT ... FROM ... ORDER BY ... LIMIT 20, 20;
SELECT ... FROM ... ORDER BY ... LIMIT 40, 20;
…

Web developers often use LIMIT this way to split a large search result into smaller, more
manageable pieces so that it can be presented over several pages. Recipe 20.10 discusses
this technique further.

To determine the number of rows in a result set so that you can determine the number
of sections, issue a COUNT() statement first. For example, to display profile table rows
in name order, three at a time, you can find out how many there are with the following
statement:

mysql> SELECT COUNT(*) FROM profile;
+----------+
| COUNT(*) |
+----------+
| 8 |
+----------+

3.9. Selecting Rows from the Beginning, End, or Middle of Query Results | 123

www.it-ebooks.info

http://www.it-ebooks.info/

That tells you that there are three sets of rows (the last with fewer than three rows),
which you can retrieve as follows:

SELECT * FROM profile ORDER BY name LIMIT 0, 3;
SELECT * FROM profile ORDER BY name LIMIT 3, 3;
SELECT * FROM profile ORDER BY name LIMIT 6, 3;

You can also fetch the first part of a result set and determine at the same time how big
the result would have been without the LIMIT clause. To fetch the first three rows from
the profile table, and then obtain the size of the full result, run these statements:

SELECT SQL_CALC_FOUND_ROWS * FROM profile ORDER BY name LIMIT 4;
SELECT FOUND_ROWS();

The keyword SQL_CALC_FOUND_ROWS in the first statement tells MySQL to calculate the
size of the entire result set even though the statement requests that only part of it be
returned. The row count is available by calling FOUND_ROWS(). If that function returns
a value greater than three, there are other rows yet to be retrieved.

See Also
LIMIT is useful in combination with RAND() to make random selections from a set of
items. See Recipe 15.8.

You can use LIMIT to restrict the effect of a DELETE or UPDATE statement to a subset of
the rows that would otherwise be deleted or updated, respectively. For more information
about using LIMIT for duplicate row removal, see Recipe 16.4.

3.10. What to Do When LIMIT Requires the “Wrong”
Sort Order
Problem
LIMIT usually works best in conjunction with an ORDER BY clause that sorts rows. But
sometimes that sort order differs from what you want for the final result.

Solution
Use LIMIT in a subquery to retrieve the desired rows, then use the outer query to sort
them.

Discussion
If you want the last four rows of a result set, you can obtain them easily by sorting the
set in reverse order and using LIMIT 4. The following statement returns the names and
birth dates for the four people in the profile table who were born most recently:

124 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4;
+-------+------------+
| name | birth |
+-------+------------+
Ralph	1973-11-02
Sybil	1970-04-13
Nancy	1969-09-30
Aaron	1968-09-17
+-------+------------+

But that requires sorting the birth values in descending order to place them at the head
of the result set. What if you want the output rows to appear in ascending order instead?
Use the SELECT as a subquery of an outer statement that re-sorts the rows in the desired
final order:

mysql> SELECT * FROM
 -> (SELECT name, birth FROM profile ORDER BY birth DESC LIMIT 4) AS t
 -> ORDER BY birth;
+-------+------------+
| name | birth |
+-------+------------+
Aaron	1968-09-17
Nancy	1969-09-30
Sybil	1970-04-13
Ralph	1973-11-02
+-------+------------+

AS t is used here because any table referred to in the FROM clause must have a name, even
a “derived” table produced from a subquery.

3.11. Calculating LIMIT Values from Expressions
Problem
You want to use expressions to specify the arguments for LIMIT.

Solution
Sadly, you cannot. LIMIT arguments must be literal integers—unless you issue the state‐
ment in a context that permits the statement string to be constructed dynamically. In
that case, you can evaluate the expressions yourself and insert the resulting values into
the statement string.

Discussion
Arguments to LIMIT must be literal integers, not expressions. Statements such as the
following are illegal:

3.11. Calculating LIMIT Values from Expressions | 125

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT * FROM profile LIMIT 5+5;
SELECT * FROM profile LIMIT @skip_count, @show_count;

The same “no expressions permitted” principle applies if you use an expression to cal‐
culate a LIMIT value in a program that constructs a statement string. You must evaluate
the expression first, and then place the resulting value in the statement. For example, if
you produce a statement string in Perl or PHP as follows, an error will result when you
attempt to execute the statement:

$str = "SELECT * FROM profile LIMIT $x + $y";

To avoid the problem, evaluate the expression first:
$z = $x + $y;
$str = "SELECT * FROM profile LIMIT $z";

Or do this (don’t omit the parentheses or the expression won’t evaluate properly):
$str = "SELECT * FROM profile LIMIT " . ($x + $y);

To construct a two-argument LIMIT clause, evaluate both expressions before placing
them into the statement string.

Another issue related to LIMIT (or other syntax constructions that require literal integer
values) occurs when you use prepared statements from an API that quotes all data values
as strings when binding them to parameter markers. Suppose that you prepare and
execute a statement like this in PDO:

$sth = $dbh->prepare ("SELECT * FROM profile LIMIT ?,?");
$sth->execute (array (2, 4));

To resulting statement is as follows, with quoted LIMIT arguments, so statement exe‐
cution fails:

SELECT * FROM profile LIMIT '2','4'

To avoid this problem, evaluate the LIMIT arguments and place them in the statement
yourself, as just described. Alternatively, if your API has type-hinting capability, use it
to indicate that the LIMIT arguments are integers to prevent them from being quoted.

126 | Chapter 3: Selecting Data from Tables

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Table Management

4.0. Introduction
This chapter covers topics that relate to creating and populating tables:

• Cloning a table
• Copying from one table to another
• Using temporary tables
• Generating unique table names
• Determining what storage engine a table uses or converting it from one storage

engine to another

Many of the examples in this chapter use a table named mail containing rows that track
mail message traffic between users on a set of hosts (see Recipe 3.0). To create and load
this table, change location into the tables directory of the recipes distribution and run
this command:

% mysql cookbook < mail.sql

4.1. Cloning a Table
Problem
You want to create a table that has exactly the same structure as an existing table.

Solution
Use CREATE TABLE … LIKE to clone the table structure. To also copy some or all of the
rows from the original table to the new one, use INSERT INTO … SELECT.

127

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
To create a new table that is just like an existing table, use this statement:

CREATE TABLE new_table LIKE original_table;

The structure of the new table is the same as that of the original table, with a few ex‐
ceptions: CREATE TABLE … LIKE does not copy foreign key definitions, and it doesn’t
copy any DATA DIRECTORY or INDEX DIRECTORY table options that the table might use.

The new table is empty. If you also want the contents to be the same as the original table,
copy the rows using an INSERT INTO … SELECT statement:

INSERT INTO new_table SELECT * FROM original_table;

To copy only part of the table, add an appropriate WHERE clause that identifies which
rows to copy. For example, these statements create a copy of the mail table named
mail2, populated only with the rows for mail sent by barb:

CREATE TABLE mail2 LIKE mail;
INSERT INTO mail2 SELECT * FROM mail WHERE srcuser = 'barb';

For more information about INSERT … SELECT, see Recipe 4.2.

4.2. Saving a Query Result in a Table
Problem
You want to save the result from a SELECT statement to a table rather than display it.

Solution
If the table exists, retrieve rows into it using INSERT INTO … SELECT. If the table does
not exist, create it on the fly using CREATE TABLE … SELECT.

Discussion
The MySQL server normally returns the result of a SELECT statement to the client that
executed the statement. For example, when you execute a statement from within the
mysql program, the server returns the result to mysql, which in turn displays it on the
screen. It’s possible to save the results of a SELECT statement in a table instead, which is
useful in several ways:

• You can easily create a complete or partial copy of a table. If you’re developing an
algorithm that modifies a table, it’s safer to work with a copy of a table so that you
need not worry about the consequences of mistakes. If the original table is large,
creating a partial copy can speed the development process because queries run
against it take less time.

128 | Chapter 4: Table Management

www.it-ebooks.info

http://www.it-ebooks.info/

• For a data-loading operation based on information that might be malformed, load
new rows into a temporary table, perform some preliminary checks, and correct
the rows as necessary. When you’re satisfied that the new rows are okay, copy them
from the temporary table to your main table.

• Some applications maintain a large repository table and a smaller working table
into which rows are inserted on a regular basis, copying the working table rows to
the repository periodically and clearing the working table.

• To perform summary operations on a large table more efficiently, avoid running
expensive summary operations repeatedly on it. Instead, select summary informa‐
tion once into a second table and use that for further analysis.

This section shows how to retrieve a result set into a table. The table names src_tbl
and dst_tbl in the examples refer to the source table from which rows are selected and
the destination table into which they are stored, respectively.

If the destination table already exists, use INSERT … SELECT to copy the result set into
it. For example, if dst_tbl contains an integer column i and a string column s, the
following statement copies rows from src_tbl into dst_tbl, assigning column val to
i and column name to s:

INSERT INTO dst_tbl (i, s) SELECT val, name FROM src_tbl;

The number of columns to be inserted must match the number of selected columns,
with the correspondence between columns based on position rather than name. To copy
all columns, you can shorten the statement to this form:

INSERT INTO dst_tbl SELECT * FROM src_tbl;

To copy only certain rows, add a WHERE clause that selects those rows:
INSERT INTO dst_tbl SELECT * FROM src_tbl
WHERE val > 100 AND name LIKE 'A%';

The SELECT statement can produce values from expressions, too. For example, the fol‐
lowing statement counts the number of times each name occurs in src_tbl and stores
both the counts and the names in dst_tbl:

INSERT INTO dst_tbl (i, s) SELECT COUNT(*), name
FROM src_tbl GROUP BY name;

If the destination table does not exist, create it first with a CREATE TABLE statement, then
copy rows into it with INSERT … SELECT. Alternatively, use CREATE TABLE … SELECT to
create the destination table directly from the result of the SELECT. For example, to create
dst_tbl and copy the entire contents of src_tbl into it, do this:

CREATE TABLE dst_tbl SELECT * FROM src_tbl;

4.2. Saving a Query Result in a Table | 129

www.it-ebooks.info

http://www.it-ebooks.info/

MySQL creates the columns in dst_tbl based on the name, number, and type of the
columns in src_tbl. To copy only certain rows, add an appropriate WHERE clause. To
create an empty table, use a WHERE clause that selects no rows:

CREATE TABLE dst_tbl SELECT * FROM src_tbl WHERE FALSE;

To copy only some of the columns, name the ones you want in the SELECT part of the
statement. For example, if src_tbl contains columns a, b, c, and d, copy just b and d
like this:

CREATE TABLE dst_tbl SELECT b, d FROM src_tbl;

To create columns in an order different from that in which they appear in the source
table, name them in the desired order. If the source table contains columns a, b, and c
that should appear in the destination table in the order c, a, b, do this:

CREATE TABLE dst_tbl SELECT c, a, b FROM src_tbl;

To create columns in the destination table in addition to those selected from the source
table, provide appropriate column definitions in the CREATE TABLE part of the statement.
The following statement creates id as an AUTO_INCREMENT column in dst_tbl and adds
columns a, b, and c from src_tbl:

CREATE TABLE dst_tbl
(
 id INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id)
)
SELECT a, b, c FROM src_tbl;

The resulting table contains four columns in the order id, a, b, c. Defined columns are
assigned their default values. This means that id, being an AUTO_INCREMENT column, is
assigned successive sequence numbers starting from 1 (see Recipe 13.1).

If you derive a column’s values from an expression, its default name is the expression
itself, which can be difficult to work with later. In this case, it’s prudent to give the column
a better name by providing an alias (see Recipe 3.2). Suppose that src_tbl contains
invoice information that lists items in each invoice. The following statement generates
a summary that lists each invoice named in the table and the total cost of its items, using
an alias for the expression:

CREATE TABLE dst_tbl
SELECT inv_no, SUM(unit_cost*quantity) AS total_cost
FROM src_tbl GROUP BY inv_no;

CREATE TABLE … SELECT is extremely convenient, but has some limitations that arise
from the fact that the information available from a result set is not as extensive as what
you can specify in a CREATE TABLE statement. For example, MySQL has no idea whether
a result set column should be indexed or what its default value is. If it’s important to
include this information in the destination table, use the following techniques:

130 | Chapter 4: Table Management

www.it-ebooks.info

http://www.it-ebooks.info/

• To make the destination table an exact copy of the source table, use the cloning
technique described in Recipe 4.1.

• To include indexes in the destination table, specify them explicitly. For example, if
src_tbl has a PRIMARY KEY on the id column, and a multiple-column index on
state and city, specify them for dst_tbl as well:

CREATE TABLE dst_tbl (PRIMARY KEY (id), INDEX(state,city))
SELECT * FROM src_tbl;

• Column attributes such as AUTO_INCREMENT and a column’s default value are not
copied to the destination table. To preserve these attributes, create the table, then
use ALTER TABLE to apply the appropriate modifications to the column definition.
For example, if src_tbl has an id column that is not only a PRIMARY KEY but also
an AUTO_INCREMENT column, copy the table and modify the copy:

CREATE TABLE dst_tbl (PRIMARY KEY (id)) SELECT * FROM src_tbl;
ALTER TABLE dst_tbl MODIFY id INT UNSIGNED NOT NULL AUTO_INCREMENT;

4.3. Creating Temporary Tables
Problem
You need a table only for a short time, after which you want it to disappear automatically.

Solution
Create a table using the TEMPORARY keyword, and let MySQL take care of removing it.

Discussion
Some operations require a table that exists only temporarily and that should disappear
when it’s no longer needed. You can, of course, execute a DROP TABLE statement explicitly
to remove a table when you’re done with it. Another option is to use CREATE TEMPORA
RY TABLE. This statement is like CREATE TABLE but creates a transient table that disappears
when your session with the server ends, if you haven’t already removed it yourself. This
is extremely useful behavior because MySQL drops the table for you automatically; you
need not remember to do it. TEMPORARY can be used with the usual table-creation meth‐
ods:

• Create the table from explicit column definitions:
CREATE TEMPORARY TABLE tbl_name (...column definitions...);

• Create the table from an existing table:
CREATE TEMPORARY TABLE new_table LIKE original_table;

4.3. Creating Temporary Tables | 131

www.it-ebooks.info

http://www.it-ebooks.info/

• Create the table on the fly from a result set:
CREATE TEMPORARY TABLE tbl_name SELECT ... ;

Temporary tables are session-specific, so multiple clients can each create a temporary
table having the same name without interfering with each other. This makes it easier to
write applications that use transient tables because you need not ensure that the tables
have unique names for each client. (For further discussion of table-naming issues, see
Recipe 4.4.)

A temporary table can have the same name as a permanent table. In this case, the tem‐
porary table “hides” the permanent table for the duration of its existence, which can be
useful for making a copy of a table that you can modify without affecting the original
by mistake. The DELETE statement in the following example removes rows from a tem‐
porary mail table, leaving the original permanent table unaffected:

mysql> CREATE TEMPORARY TABLE mail SELECT * FROM mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+
mysql> DELETE FROM mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
mysql> DROP TEMPORARY TABLE mail;
mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+

Although temporary tables created with CREATE TEMPORARY TABLE have the benefits just
discussed, keep the following caveats in mind:

• To reuse a temporary table within a given session, you must still drop it explicitly
before re-creating it. Attempting to create a second temporary table with the same
name results in an error.

• If you modify a temporary table that “hides” a permanent table with the same name,
be sure to test for errors resulting from dropped connections if you use a program‐
ming interface that has reconnect capability enabled. If a client program automat‐
ically reconnects after detecting a dropped connection, modifications affect the
permanent table after the reconnect, not the temporary table.

132 | Chapter 4: Table Management

www.it-ebooks.info

http://www.it-ebooks.info/

• Some APIs support persistent connections or connection pools. These prevent
temporary tables from being dropped as you expect when your script ends because
the connection remains open for reuse by other scripts. Your script has no control
over when the connection closes. This means it can be prudent to execute the fol‐
lowing statement prior to creating a temporary table, just in case it’s still in existence
from a previous execution of the script:

DROP TEMPORARY TABLE IF EXISTS tbl_name

The TEMPORARY keyword is useful here if the temporary table has already been
dropped, to avoid dropping any permanent table that has the same name.

4.4. Generating Unique Table Names
Problem
You need to create a table with a name guaranteed not to exist.

Solution
If you create a TEMPORARY table, it doesn’t matter whether a permanent table with that
name exists. Otherwise, try to generate a value that is unique to your client program
and incorporate it into the table name.

Discussion
MySQL is a multiple-client database server, so if a given script that creates a transient
table might be invoked by several clients simultaneously, take care that multiple invo‐
cations of the script do not fight over the same table name. If the script creates tables
using CREATE TEMPORARY TABLE, there is no problem because different clients can create
temporary tables having the same name without clashing.

If you cannot or do not want to use a TEMPORARY table, make sure that each invocation
of the script creates a uniquely named table and drops the table when it is no longer
needed. To accomplish this, incorporate into the name some value guaranteed to be
unique per invocation. A timestamp won’t work if it’s possible for two instances of a
script to be invoked within the timestamp resolution. A random number may be better,
but random numbers only reduce the possibility of name clashes, not eliminate it. Pro‐
cess ID (PID) values are a better source of unique values. PIDs are reused over time,
but never for two processes at the same time, so a given PID is guaranteed to be unique
among the set of currently executing processes. Use this fact to create unique table names
as follows.

4.4. Generating Unique Table Names | 133

www.it-ebooks.info

http://www.it-ebooks.info/

Perl:
my $tbl_name = "tmp_tbl_$$";

Ruby:
tbl_name = "tmp_tbl_" + Process.pid.to_s

PHP:
$tbl_name = "tmp_tbl_" . posix_getpid ();

Python:
import os
tbl_name = "tmp_tbl_%d" % os.getpid()

The PID approach should not be used in contexts such as scripts run within multi‐
threaded web servers in which all threads share the same process ID.

Connection identifiers are another source of unique values. The MySQL server reuses
these numbers over time, but no two simultaneous connections to the server have the
same ID. To get your connection ID, execute this statement and retrieve the result:

SELECT CONNECTION_ID();

It’s possible to incorporate a connection ID into a table name within SQL by using
prepared statements. The following example illustrates this, referring to the table name
in the CREATE TABLE statement and a precautionary DROP TABLE statement:

SET @tbl_name = CONCAT('tmp_tbl_', CONNECTION_ID());
SET @stmt = CONCAT('DROP TABLE IF EXISTS ', @tbl_name);
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
SET @stmt = CONCAT('CREATE TABLE ', @tbl_name, ' (i INT)');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

Why execute the DROP TABLE? Because if you create a table name using an identifier such
as a PID or connection ID guaranteed to be unique to a given script invocation, there
may still be a chance that the table already exists if an earlier invocation of the script
with the same PID created a table with the same name, but crashed before removing
the table. On the other hand, any such table cannot still be in use because it will have
been created by a process that is no longer running. Under these circumstances, it’s safe
to remove the old table if it does exist before creating the new one.

Some MySQL APIs expose the connection ID directly without requiring any statement
to be executed. For example, in Perl DBI, use the mysql_thread_id attribute of your
database handle:

my $tbl_name = "tmp_tbl_" . $dbh->{mysql_thread_id};

134 | Chapter 4: Table Management

www.it-ebooks.info

http://www.it-ebooks.info/

In Ruby DBI, do this:
tbl_name = "tmp_tbl_" + dbh.func(:thread_id).to_s

4.5. Checking or Changing a Table Storage Engine
Problem
You want to check which storage engine a table uses so that you can determine what
engine capabilities are applicable. Or you need to change a table’s storage engine because
you realize that the capabilities of another engine are more suitable for the way you use
the table.

Solution
To determine a table’s storage engine, you can use any of several statements. To change
the table’s engine, use ALTER TABLE with an ENGINE clause.

Discussion
MySQL supports multiple storage engines, which have differing characteristics. For
example, the InnoDB engine supports transactions, whereas MyISAM does not. If you
need to know whether a table supports transactions, check which storage engine it uses.
If the table’s engine does not support transactions, you can convert the table to use a
transaction-capable engine.

To determine the current engine for a table, check INFORMATION_SCHEMA or use the SHOW
TABLE STATUS or SHOW CREATE TABLE statement. For the mail table, obtain engine in‐
formation as follows:

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'mail';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

mysql> SHOW TABLE STATUS LIKE 'mail'\G
*************************** 1. row ***************************
 Name: mail
 Engine: InnoDB
…

mysql> SHOW CREATE TABLE mail\G
*************************** 1. row ***************************
 Table: mail
Create Table: CREATE TABLE `mail` (

4.5. Checking or Changing a Table Storage Engine | 135

www.it-ebooks.info

http://www.it-ebooks.info/

... column definitions ...
) ENGINE=InnoDB DEFAULT CHARSET=latin1

To change the storage engine for a table, use ALTER TABLE with an ENGINE specifier. For
example, to convert the mail table to use the MyISAM storage engine, use this statement:

ALTER TABLE mail ENGINE = MyISAM;

Be aware that converting a large table to a different storage engine might take a long
time and be expensive in terms of CPU and I/O activity.

To determine which storage engines your MySQL server supports, check the output
from the SHOW ENGINES statement or query the INFORMATION_SCHEMA ENGINES table.

4.6. Copying a Table Using mysqldump
Problem
You want to copy a table or tables, either among the databases managed by a MySQL
server, or from one server to another.

Solution
Use the mysqldump program.

Discussion
The mysqldump program makes a backup file that can be reloaded to re-create the
original table or tables:

% mysqldump cookbook mail > mail.sql

The output file mail.sql consists of a CREATE TABLE statement to create the mail table
and a set of INSERT statements to insert its rows. You can reload the file to re-create the
table should the original be lost:

% mysql cookbook < mail.sql

This method also makes it easy to deal with any triggers the table has. By default,
mysqldump writes the triggers to the dump file, so reloading the file copies the triggers
along with the table with no special handling.

In addition to restoring tables, mysqldump can be used to make copies of them, by
reloading the output into a different database. (If the destination database does not exist,
create it first.) The following examples show some useful table-copying commands.

Copying tables within a single MySQL server

• Copy a single table to a different database:

136 | Chapter 4: Table Management

www.it-ebooks.info

http://www.it-ebooks.info/

% mysqldump cookbook mail > mail.sql
% mysql other_db < mail.sql

To dump multiple tables, name them all following the database name argument.
• Copy all tables in a database to a different database:

% mysqldump cookbook > cookbook.sql
% mysql other_db < cookbook.sql

When you name no tables after the database name, mysqldump dumps them all. To
also include stored routines and events, add the --routines and --events options
to the mysqldump command. (There is also a --triggers option, but it’s unneeded
because, as mentioned previously, mysqldump dumps triggers with their associated
tables by default.)

• Copy a table, using a different name for the copy:

• Dump the table:
% mysqldump cookbook mail > mail.sql

• Reload the table into a different database that does not contain a table with that
name:

% mysql other_db < mail.sql

• Rename the table:
% mysql other_db
mysql> RENAME mail TO mail2;

Or, to move the table into another database at the same time, qualify the new
name with the database name:

% mysql other_db
mysql> RENAME mail TO cookbook.mail2;

To perform a table-copying operation without an intermediary file, use a pipe to connect
the mysqldump and mysql commands:

% mysqldump cookbook mail | mysql other_db
% mysqldump cookbook | mysql other_db

Copying tables between MySQL servers

The preceding commands use mysqldump to copy tables among the databases managed
by a single MySQL server. Output from mysqldump can also be used to copy tables from
one server to another. Suppose that you want to copy the mail table from the cook
book database on the local host to the other_db database on the host other-
host.example.com. One way to do this is to dump the output into a file:

% mysqldump cookbook mail > mail.sql

4.6. Copying a Table Using mysqldump | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Then copy mail.sql to other-host.example.com, and run the following command there
to load the table into that MySQL server’s other_db database:

% mysql other_db < mail.sql

To accomplish this without an intermediary file, use a pipe to send the output of mysql‐
dump directly over the network to the remote MySQL server. If you can connect to both
servers from your local host, use this command:

% mysqldump cookbook mail | mysql -h other-host.example.com other_db

The mysqldump half of the command connects to the local server and writes the dump
output to the pipe. The mysql half of the command connects to the remote MySQL
server on other-host.example.com. It reads the pipe for input and sends each statement
to the other-host.example.com server.

If you cannot connect directly to the remote server using mysql from your local host,
send the dump output into a pipe that uses ssh to invoke mysql remotely on other-
host.example.com:

% mysqldump cookbook mail | ssh other-host.example.com mysql other_db

ssh connects to other-host.example.com and launches mysql there. It then reads the
mysqldump output from the pipe and passes it to the remote mysql process. ssh can be
useful to send a dump over the network to a machine that has the MySQL port blocked
by a firewall but that permits connections on the SSH port.

Regarding which table or tables to copy, similar principles apply as for local copies. To
copy multiple tables over the network, name them all following the database argument
of the mysqldump command. To copy an entire database, don’t specify any table names
after the database name; mysqldump dumps all its tables.

138 | Chapter 4: Table Management

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Working with Strings

5.0. Introduction
Like most types of data, string values can be compared for equality or inequality or
relative ordering. However, strings have additional properties to consider:

• A string can be binary or nonbinary. Binary strings are used for raw data such as
images, music files, or encrypted values. Nonbinary strings are used for character
data such as text and are associated with a character set and collation (sort order).

• A character set determines which characters are legal in a string. You can choose
collations according to whether you need comparisons to be case sensitive or case
insensitive, or to use the rules of a particular language.

• Data types for binary strings are BINARY, VARBINARY, and BLOB. Data types for
nonbinary strings are CHAR, VARCHAR, and TEXT, each of which permits CHARACTER
SET and COLLATE attributes.

• You can convert a binary string to a nonbinary string and vice versa, or convert a
nonbinary string from one character set or collation to another.

• You can use a string in its entirety or extract substrings from it. Strings can be
combined with other strings.

• You can apply pattern-matching operations to strings.
• Full-text searching is available for efficient queries on large collections of text.

This chapter discusses how to use those properties, so that you can store, retrieve, and
manipulate strings according to any requirements your applications have.

Scripts to create the tables used in this chapter are located in the tables directory of the
recipes distribution.

139

www.it-ebooks.info

http://www.it-ebooks.info/

5.1. String Properties
One string property is whether it is binary or nonbinary:

• A binary string is a sequence of bytes. It can contain any type of information, such
as images, MP3 files, or compressed or encrypted data. A binary string is not as‐
sociated with a character set, even if you store a value such as abc that looks like
ordinary text. Binary strings are compared byte by byte using numeric byte values.

• A nonbinary string is a sequence of characters. It stores text that has a particular
character set and collation. The character set defines which characters can be stored
in the string. The collation defines the character ordering, which affects comparison
and sorting operations.

To see which character sets are available for nonbinary strings, use this statement:
mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
…
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
…			
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
…

The default character set in MySQL is latin1. If you must store characters from several
languages in a single column, consider using one of the Unicode character sets (such as
utf8 or ucs2) because they can represent characters from multiple languages.

Some character sets contain only single-byte characters, whereas others permit multi‐
byte characters. Some multibyte character sets contain characters of varying lengths.
For others, all characters have a fixed length. For example, Unicode data can be stored
using the utf8 character set in which characters take from one to three bytes or the ucs2
character set in which all characters take two bytes.

In MySQL, the utf8 and ucb2 Unicode character sets include only
characters in the Basic Multilingual Plane (BMP). To use the full set
of Unicode characters, including supplemental characters that lie
outside the BMP, use utf8mb4, in which characters take from one to
four bytes. Other Unicode character sets that include supplemental
characters are utf16, utf16le, and utf32.

140 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

To determine whether a given string contains multibyte characters, use the LENGTH()
and CHAR_LENGTH() functions, which return the length of a string in bytes and charac‐
ters, respectively. If LENGTH() is greater than CHAR_LENGTH() for a given string, multibyte
characters are present:

• The utf8 Unicode character set has multibyte characters, but a given utf8 string
might contain only single-byte characters, as in the following example:

mysql> SET @s = CONVERT('abc' USING utf8);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);
+------------+-----------------+
| LENGTH(@s) | CHAR_LENGTH(@s) |
+------------+-----------------+
| 3 | 3 |
+------------+-----------------+

• For the ucs2 Unicode character set, all characters are encoded using two bytes, even
if they are single-byte characters in another character set such as latin1. Thus,
every ucs2 string contains multibyte characters:

mysql> SET @s = CONVERT('abc' USING ucs2);
mysql> SELECT LENGTH(@s), CHAR_LENGTH(@s);
+------------+-----------------+
| LENGTH(@s) | CHAR_LENGTH(@s) |
+------------+-----------------+
| 6 | 3 |
+------------+-----------------+

Another property of nonbinary strings is collation, which determines the sort order of
characters in the character set. Use SHOW COLLATION to see all available collations; add a
LIKE clause to see the collations for a particular character set:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5		Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15		Yes	1
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48		Yes	1
latin1_general_cs	latin1	49		Yes	1
latin1_spanish_ci	latin1	94		Yes	1
+-------------------+---------+----+---------+----------+---------+

In contexts where no collation is specified explicitly, strings in a given character set use
the collation with Yes in the Default column. As shown, the default collation for lat
in1 is latin1_swedish_ci. (Default collations are also displayed by SHOW CHARACTER
SET.)

5.1. String Properties | 141

www.it-ebooks.info

http://www.it-ebooks.info/

A collation can be case sensitive (a and A are different), case insensitive (a and A are the
same), or binary (two characters are the same or different based on whether their nu‐
meric values are equal). A collation name ending in _ci, _cs, or _bin is case insensitive,
case sensitive, or binary, respectively.

A binary collation provides a sort order for nonbinary strings that is something like the
order for binary strings, in the sense that comparisons for binary strings and binary
collations both use numeric values. The difference is that binary string comparisons are
always based on single-byte units, whereas a binary collation compares nonbinary
strings using character numeric values; depending on the character set, some of these
might be multibyte values.

The following example illustrates how collation affects sort order. Suppose that a table
contains a latin1 string column and has the following rows:

mysql> CREATE TABLE t (c CHAR(3) CHARACTER SET latin1);
mysql> INSERT INTO t (c) VALUES('AAA'),('bbb'),('aaa'),('BBB');
mysql> SELECT c FROM t;
+------+
| c |
+------+
| AAA |
| bbb |
| aaa |
| BBB |
+------+

By applying the COLLATE operator to the column, you can choose which collation to use
for sorting and thus affect the order of the result:

• A case-insensitive collation sorts a and A together, placing them before b and B.
However, for a given letter, it does not necessarily order one lettercase before an‐
other, as shown by the following result:

mysql> SELECT c FROM t ORDER BY c COLLATE latin1_swedish_ci;
+------+
| c |
+------+
| AAA |
| aaa |
| bbb |
| BBB |
+------+

• A case-sensitive collation puts A and a before B and b, and sorts uppercase before
lowercase:

mysql> SELECT c FROM t ORDER BY c COLLATE latin1_general_cs;
+------+
| c |
+------+

142 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

| AAA |
| aaa |
| BBB |
| bbb |
+------+

• A binary collation sorts characters using their numeric values. Assuming that up‐
percase letters have numeric values less than those of lowercase letters, a binary
collation results in the following ordering:

mysql> SELECT c FROM t ORDER BY c COLLATE latin1_bin;
+------+
| c |
+------+
| AAA |
| BBB |
| aaa |
| bbb |
+------+

Note that because characters in different lettercases have different numeric values,
a binary collation produces a case-sensitive ordering. However, the order differs
from that for the case-sensitive collation.

If you require that comparison and sorting operations use the sorting rules of a particular
language, choose a language-specific collation. For example, if you store strings using
the utf8 character set, the default collation (utf8_general_ci) treats ch and ll as two-
character strings. To use the traditional Spanish ordering that treats ch and ll as single
characters that follow c and l, respectively, specify the utf8_spanish2_ci collation. The
two collations produce different results, as shown here:

mysql> CREATE TABLE t (c CHAR(2) CHARACTER SET utf8);
mysql> INSERT INTO t (c) VALUES('cg'),('ch'),('ci'),('lk'),('ll'),('lm');
mysql> SELECT c FROM t ORDER BY c COLLATE utf8_general_ci;
+------+
| c |
+------+
| cg |
| ch |
| ci |
| lk |
| ll |
| lm |
+------+
mysql> SELECT c FROM t ORDER BY c COLLATE utf8_spanish2_ci;
+------+
| c |
+------+
| cg |
| ci |
| ch |

5.1. String Properties | 143

www.it-ebooks.info

http://www.it-ebooks.info/

| lk |
| lm |
| ll |
+------+

5.2. Choosing a String Data Type
Problem
You want to store string data but aren’t sure which is the most appropriate data type.

Solution
Choose the data type according to the characteristics of the information to be stored
and how you need to use it. Consider questions such as these:

• Are the strings binary or nonbinary?
• Does case sensitivity matter?
• What is the maximum string length?
• Do you want to store fixed- or variable-length values?
• Do you need to retain trailing spaces?
• Is there a fixed set of permitted values?

Discussion
MySQL provides several binary and nonbinary string data types. These types come in
pairs as shown in the following table. The maximum length is in bytes, whether the type
is binary or nonbinary. For nonbinary types, the maximum number of characters is less
for strings that contain multibyte characters:

Binary data type Nonbinary data type Maximum length

BINARY CHAR 255

VARBINARY VARCHAR 65,535

TINYBLOB TINYTEXT 255

BLOB TEXT 65,535

MEDIUMBLOB MEDIUMTEXT 16,777,215

LONGBLOB LONGTEXT 4,294,967,295

For the BINARY and CHAR data types, MySQL stores column values using a fixed width.
For example, values stored in a BINARY(10) or CHAR(10) column always take 10 bytes
or 10 characters, respectively. Shorter values are padded to the required length as nec‐

144 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

essary when stored. For BINARY, the pad value is 0x00 (the zero-valued byte, also known
as ASCII NUL). CHAR values are padded with spaces for storage and trailing spaces are
stripped upon retrieval.

For VARBINARY, VARCHAR, and the BLOB and TEXT types, MySQL stores values using only
as much storage as required, up to the maximum column length. No padding is added
or stripped when values are stored or retrieved.

To preserve trailing pad values that are present in the original strings that are stored,
use a data type for which no stripping occurs. For example, if you store character (non‐
binary) strings that might end with spaces, and want to preserve them, use VARCHAR or
one of the TEXT data types. The following statements illustrate the difference in trailing-
space handling for CHAR and VARCHAR columns:

mysql> CREATE TABLE t (c1 CHAR(10), c2 VARCHAR(10));
mysql> INSERT INTO t (c1,c2) VALUES('abc ','abc ');
mysql> SELECT c1, c2, CHAR_LENGTH(c1), CHAR_LENGTH(c2) FROM t;
+------+------------+-----------------+-----------------+
| c1 | c2 | CHAR_LENGTH(c1) | CHAR_LENGTH(c2) |
+------+------------+-----------------+-----------------+
| abc | abc | 3 | 10 |
+------+------------+-----------------+-----------------+

This shows that if you store a string that contains trailing spaces into a CHAR column,
they’re removed when you retrieve the value.

A table can include a mix of binary and nonbinary string columns, and its nonbinary
columns can use different character sets and collations. When you declare a nonbinary
string column, use the CHARACTER SET and COLLATE attributes if you require a particular
character set and collation. For example, if you need to store utf8 (Unicode) and sjis
(Japanese) strings, you might define a table with two columns like this:

CREATE TABLE mytbl
(
 utf8str VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_danish_ci,
 sjisstr VARCHAR(100) CHARACTER SET sjis COLLATE sjis_japanese_ci
);

The CHARACTER SET and COLLATE clauses are each optional in a column definition:

• If you specify CHARACTER SET and omit COLLATE, the default collation for the char‐
acter set is used.

• If you specify COLLATE and omit CHARACTER SET, the character set implied by the
collation name (the first part of the name) is used. For example, utf8_danish_ci
and sjis_japanese_ci imply utf8 and sjis, respectively. This means that the
CHARACTER SET attributes could have been omitted from the preceding CREATE TABLE
statement.

5.2. Choosing a String Data Type | 145

www.it-ebooks.info

http://www.it-ebooks.info/

• If you omit both CHARACTER SET and COLLATE, the column is assigned the table
default character set and collation. A table definition can include those attributes
following the closing parenthesis at the end of the CREATE TABLE statement. If
present, they apply to columns that have no explicit character set or collation of
their own. If omitted, the table defaults are taken from the database defaults. You
can specify the database defaults when you create the database with the CREATE
DATABASE statement. The server defaults apply to the database if they are omitted.

The server default character set and collation are latin1 and latin1_swedish_ci, so
strings by default use the latin1 character set and are not case sensitive. To change this,
set the character_set_server and collation_server system variables at server start‐
up (see Recipe 22.1).

MySQL also supports ENUM and SET string types, which are used for columns that have
a fixed set of permitted values. The CHARACTER SET and COLLATE attributes apply to these
data types as well.

5.3. Setting the Client Connection Character Set
Problem
You’re executing SQL statements or producing query results that don’t use the default
character set.

Solution
Use SET NAMES or an equivalent method to set your connection to the proper character
set.

Discussion
When you send information back and forth between your application and the server,
you may need to tell MySQL the appropriate character set. For example, the default
character set is latin1, but that may not always be the proper character set to use for
connections to the server. If you have Greek data, displaying it using latin1 will result
in gibberish on your screen. If you use Unicode strings in the utf8 character set, lat
in1 might not be sufficient to represent all the characters that you might need.

To deal with this problem, configure your connection to use the appropriate character
set. You have several ways to do this:

• Issue a SET NAMES statement after you connect:
mysql> SET NAMES 'utf8';

SET NAMES permits the connection collation to be specified as well:

146 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';

• If your client program supports the --default-character-set option, you can use
it to specify the character set at program invocation time. mysql is one such program.
Put the option in an option file so that it takes effect each time you connect to the
server:

[mysql]
default-character-set=utf8

• If you set the environment for your working environment using the LANG or LC_ALL
environment variable on Unix, or the code page setting on Windows, MySQL client
programs automatically detect which character set to use. For example, setting
LC_ALL to en_US.UTF-8 causes programs such as mysql to use utf8.

• Some programming interfaces provide their own method of setting the character
set. For example, MySQL Connector/J for Java clients detects the character set used
on the server side automatically when you connect, but you can specify a different
set explicitly using the characterEncoding property in the connection URL. The
property value should be the Java-style character-set name. To select utf8, you
might use a connection URL like this:

jdbc:mysql://localhost/cookbook?characterEncoding=UTF-8

This is preferable to SET NAMES because Connector/J performs character-set con‐
version on behalf of the application, but is unaware of which character set applies
if you use SET NAMES. Similar principles apply to programs written for other APIs.
For PDO, use a charset option in your data source name (DSN) string (this works
in PHP 5.3.6 or later):

$dsn = "mysql:host=localhost;dbname=cookbook;charset=utf8";

For Connector/Python, specify a charset connection parameter:
conn_params = {
 "database": "cookbook",
 "host": "localhost",
 "user": "cbuser",
 "password": "cbpass",
 "charset": "utf8",
}

Some APIs may also provide a parameter to specify the collation.

Some character sets cannot be used as the connection character set:
ucs2, utf16, utf16le, utf32.

5.3. Setting the Client Connection Character Set | 147

www.it-ebooks.info

http://www.it-ebooks.info/

You should also ensure that the character set used by your display device matches what
you use for MySQL. Otherwise, even with MySQL handling the data properly, it might
display as garbage. Suppose that you use the mysql program in a terminal window and
that you configure MySQL to use utf8 and store utf8-encoded Japanese data. If you set
your terminal window to use euc-jp encoding, that is also Japanese, but its encoding
for Japanese characters differs from utf8, so the data will not display as you expect. (If
you use autodetection, this should not be an issue.)

In web contexts, you can include a character-set encoding in the Content-Type: header
that precedes the web page content. See Recipe 18.1.

5.4. Writing String Literals
Problem
You need to write literal strings in SQL statements.

Solution
Learn the syntax rules that govern string values.

Discussion
You can write strings several ways:

• Enclose the text of the string within single quotes or double quotes:
'my string'
"my string"

When the ANSI_QUOTES SQL mode is enabled, you cannot use double quotes for
quoting strings: the server interprets double quote as the quoting character for
identifiers such as table or column names, and not for strings (see Recipe 2.6). If
you adopt the convention of always writing quoted strings using single quotes,
MySQL interprets them as strings and not as identifiers regardless of the AN
SI_QUOTES setting.

• Use hexadecimal notation. Each pair of hex digits produces one byte of the string.
abcd can be written using any of these formats:

0x61626364
X'61626364'
x'61626364'

MySQL treats strings written using hex notation as binary strings. Not coinciden‐
tally, it’s common for applications to use hex strings when constructing SQL state‐
ments that refer to binary values:

148 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT INTO t SET binary_col = 0xdeadbeef;

• To specify a character set for interpretation of a literal string, use an introducer
consisting of a character-set name preceded by an underscore:

_latin1 'abcd'
_ucs2 'abcd'

An introducer tells the server how to interpret the string that follows it. For _lat
in1 'abcd', the server produces a string consisting of four single-byte characters.
For _ucs2 'abcd', the server produces a string consisting of two two-byte characters
because ucs2 is a double-byte character set.

To ensure that a string is a binary string or that a nonbinary string has a specific character
set or collation, use the instructions for string conversion given in Recipe 5.5.

A quoted string that includes the same quote character produces a syntax error:
mysql> SELECT 'I'm asleep';
ERROR 1064 (42000): You have an error in your SQL syntax near 'asleep''

You have several ways to deal with this:

• Enclose a string containing single quotes within double quotes (assuming that
ANSI_QUOTES is disabled), or enclose a string containing double quotes within single
quotes:

mysql> SELECT "I'm asleep", 'He said, "Boo!"';
+------------+-----------------+
| I'm asleep | He said, "Boo!" |
+------------+-----------------+
| I'm asleep | He said, "Boo!" |
+------------+-----------------+

• To include a quote character within a string quoted by the same kind of quote,
double the quote or precede it with a backslash. When MySQL reads the statement,
it strips the extra quote or the backslash:

mysql> SELECT 'I''m asleep', 'I\'m wide awake';
+------------+----------------+
| I'm asleep | I'm wide awake |
+------------+----------------+
| I'm asleep | I'm wide awake |
+------------+----------------+
mysql> SELECT "He said, ""Boo!""", "And I said, \"Yikes!\"";
+-----------------+----------------------+
| He said, "Boo!" | And I said, "Yikes!" |
+-----------------+----------------------+
| He said, "Boo!" | And I said, "Yikes!" |
+-----------------+----------------------+

A backslash turns off any special meaning of the following character, including
itself. To write a literal backslash within a string, double it:

5.4. Writing String Literals | 149

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT 'Install MySQL in C:\\mysql on Windows';
+--------------------------------------+
| Install MySQL in C:\mysql on Windows |
+--------------------------------------+
| Install MySQL in C:\mysql on Windows |
+--------------------------------------+

Backslash causes a temporary escape from normal string processing rules, so se‐
quences such as \', \", and \\ are called escape sequences. Others recognized by
MySQL are \b (backspace), \n (newline, also called linefeed), \r (carriage return),
\t (tab), and \0 (ASCII NUL).

• Write the string as a hex value:
mysql> SELECT 0x49276D2061736C656570;
+------------------------+
| 0x49276D2061736C656570 |
+------------------------+
| I'm asleep |
+------------------------+

See Also
If you execute SQL statements from within a program, you can refer to strings or binary
values symbolically and let your programming interface take care of quoting: use the
placeholder mechanism provided by the language’s database-access API (see
Recipe 2.5). Alternatively, load binary values such as images from files using the
LOAD_FILE() function (see Recipe 19.6).

5.5. Checking or Changing a String’s Character Set or
Collation
Problem
You want to know the character set or collation of a string, or change a string to some
other character set or collation.

Solution
To check a string’s character set or collation, use the CHARSET() or COLLATION() func‐
tion. To change its character set, use the CONVERT() function. To change its collation,
use the COLLATE operator.

150 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
For a table created as follows, you know that values stored in the column c have a
character set of utf8 and a collation of utf8_danish_ci:

CREATE TABLE t (c CHAR(10) CHARACTER SET utf8 COLLATE utf8_danish_ci);

But sometimes it’s not so clear what character set or collation applies to a string. Server
configuration affects literal strings and some string functions, and other string functions
return values in a specific character set. Symptoms that you have the wrong character
set or collation are that a collation-mismatch error occurs for a comparison operation,
or a lettercase conversion doesn’t work properly.

To determine a string’s character set or collation, use the CHARSET() or COLLATION()
function. For example, did you know that the USER() function returns a Unicode string?

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+------------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+------------------+-----------------+-------------------+
| cbuser@localhost | utf8 | utf8_general_ci |
+------------------+-----------------+-------------------+

String values that take their character set and collation from the current configuration
may change properties if the configuration changes. This is true for literal strings:

mysql> SET NAMES 'latin1';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+-------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+-------------------+
| latin1 | latin1_swedish_ci |
+----------------+-------------------+
mysql> SET NAMES utf8 COLLATE 'utf8_bin';
mysql> SELECT CHARSET('abc'), COLLATION('abc');
+----------------+------------------+
| CHARSET('abc') | COLLATION('abc') |
+----------------+------------------+
| utf8 | utf8_bin |
+----------------+------------------+

For a binary string, the CHARSET() or COLLATION() functions return a value of binary,
which means that the string is compared and sorted based on numeric byte values, not
character collation values.

To convert a string from one character set to another, use the CONVERT() function:

5.5. Checking or Changing a String’s Character Set or Collation | 151

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SET @s1 = _latin1 'my string', @s2 = CONVERT(@s1 USING utf8);
mysql> SELECT CHARSET(@s1), CHARSET(@s2);
+--------------+--------------+
| CHARSET(@s1) | CHARSET(@s2) |
+--------------+--------------+
| latin1 | utf8 |
+--------------+--------------+

To change the collation of a string, use the COLLATE operator:
mysql> SET @s1 = _latin1 'my string', @s2 = @s1 COLLATE latin1_spanish_ci;
mysql> SELECT COLLATION(@s1), COLLATION(@s2);
+-------------------+-------------------+
| COLLATION(@s1) | COLLATION(@s2) |
+-------------------+-------------------+
| latin1_swedish_ci | latin1_spanish_ci |
+-------------------+-------------------+

The new collation must be legal for the character set of the string. For example, you can
use the utf8_general_ci collation with utf8 strings, but not with latin1 strings:

mysql> SELECT _latin1 'abc' COLLATE utf8_bin;
ERROR 1253 (42000): COLLATION 'utf8_bin' is not valid for
CHARACTER SET 'latin1'

To convert both the character set and collation of a string, use CONVERT() to change the
character set, and apply the COLLATE operator to the result:

mysql> SET @s1 = _latin1 'my string';
mysql> SET @s2 = CONVERT(@s1 USING utf8) COLLATE utf8_spanish_ci;
mysql> SELECT CHARSET(@s1), COLLATION(@s1), CHARSET(@s2), COLLATION(@s2);
+--------------+-------------------+--------------+-----------------+
| CHARSET(@s1) | COLLATION(@s1) | CHARSET(@s2) | COLLATION(@s2) |
+--------------+-------------------+--------------+-----------------+
| latin1 | latin1_swedish_ci | utf8 | utf8_spanish_ci |
+--------------+-------------------+--------------+-----------------+

The CONVERT() function can also convert binary strings to nonbinary strings and vice
versa. To produce a binary string, use binary; any other character-set name produces
a nonbinary string:

mysql> SET @s1 = _latin1 'my string';
mysql> SET @s2 = CONVERT(@s1 USING binary);
mysql> SET @s3 = CONVERT(@s2 USING utf8);
mysql> SELECT CHARSET(@s1), CHARSET(@s2), CHARSET(@s3);
+--------------+--------------+--------------+
| CHARSET(@s1) | CHARSET(@s2) | CHARSET(@s3) |
+--------------+--------------+--------------+
| latin1 | binary | utf8 |
+--------------+--------------+--------------+

Alternatively, produce binary strings using the BINARY operator, which is equivalent to
CONVERT(str USING binary):

152 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT CHARSET(BINARY _latin1 'my string');
+-------------------------------------+
| CHARSET(BINARY _latin1 'my string') |
+-------------------------------------+
| binary |
+-------------------------------------+

5.6. Converting the Lettercase of a String
Problem
You want to convert a string to uppercase or lowercase.

Solution
Use the UPPER() or LOWER() function. If they don’t work, you’re probably trying to
convert a binary string. Convert it to a nonbinary string that has a character set and
collation and is subject to case mapping.

Discussion
The UPPER() and LOWER() functions convert the lettercase of a string:

mysql> SELECT thing, UPPER(thing), LOWER(thing) FROM limbs;
+--------------+--------------+--------------+
| thing | UPPER(thing) | LOWER(thing) |
+--------------+--------------+--------------+
human	HUMAN	human
insect	INSECT	insect
squid	SQUID	squid
fish	FISH	fish
centipede	CENTIPEDE	centipede
table	TABLE	table
armchair	ARMCHAIR	armchair
phonograph	PHONOGRAPH	phonograph
tripod	TRIPOD	tripod
Peg Leg Pete	PEG LEG PETE	peg leg pete
space alien	SPACE ALIEN	space alien
+--------------+--------------+--------------+

But some strings are “stubborn” and resist lettercase conversion:
mysql> CREATE TABLE t (b BLOB) SELECT 'aBcD' AS b;
mysql> SELECT b, UPPER(b), LOWER(b) FROM t;
+------+----------+----------+
| b | UPPER(b) | LOWER(b) |
+------+----------+----------+
| aBcD | aBcD | aBcD |
+------+----------+----------+

5.6. Converting the Lettercase of a String | 153

www.it-ebooks.info

http://www.it-ebooks.info/

This problem occurs for strings that have a BINARY or BLOB data type. These are binary
strings that have no character set or collation. Lettercase does not apply, and UPPER()
and LOWER() do nothing.

To map a binary string to a given lettercase, convert it to a nonbinary string, choosing
a character set that has uppercase and lowercase characters. The case-conversion func‐
tions then work as you expect because the collation provides case mapping:

mysql> SELECT b,
 -> UPPER(CONVERT(b USING latin1)) AS upper,
 -> LOWER(CONVERT(b USING latin1)) AS lower
 -> FROM t;
+------+-------+-------+
| b | upper | lower |
+------+-------+-------+
| aBcD | ABCD | abcd |
+------+-------+-------+

The example uses a table column, but the same principles apply to binary string literals
and string expressions.

If you’re not sure whether a string expression is binary or nonbinary, use the CHAR
SET() function to find out; see Recipe 5.5.

To convert the lettercase of only part of a string, break it into pieces, convert the relevant
piece, and put the pieces back together. Suppose that you want to convert only the initial
character of a string to uppercase. The following expression accomplishes that:

CONCAT(UPPER(LEFT(str,1)),MID(str,2))

But it’s ugly to write an expression like that each time you need it. For convenience,
define a stored function:

mysql> CREATE FUNCTION initial_cap (s VARCHAR(255))
 -> RETURNS VARCHAR(255) DETERMINISTIC
 -> RETURN CONCAT(UPPER(LEFT(s,1)),MID(s,2));

Then you can capitalize initial characters more easily:
mysql> SELECT thing, initial_cap(thing) FROM limbs;
+--------------+--------------------+
| thing | initial_cap(thing) |
+--------------+--------------------+
human	Human
insect	Insect
squid	Squid
fish	Fish
centipede	Centipede
table	Table
armchair	Armchair
phonograph	Phonograph
tripod	Tripod
Peg Leg Pete	Peg Leg Pete

154 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

| space alien | Space alien |
+--------------+--------------------+

For more information about writing stored functions, see Chapter 9.

5.7. Controlling Case Sensitivity in String Comparisons
Problem
You want to know whether strings are equal or unequal, or which appears first in lexical
order.

Solution
Use a comparison operator. But remember that strings have properties such as case
sensitivity that you must take into account. A string comparison might be case sensitive
when you don’t want it to be, or vice versa.

Discussion
As for other data types, you can compare string values for equality, inequality, or relative
ordering:

mysql> SELECT 'cat' = 'cat', 'cat' = 'dog', 'cat' <> 'cat', 'cat' <> 'dog';
+---------------+---------------+----------------+----------------+
| 'cat' = 'cat' | 'cat' = 'dog' | 'cat' <> 'cat' | 'cat' <> 'dog' |
+---------------+---------------+----------------+----------------+
| 1 | 0 | 0 | 1 |
+---------------+---------------+----------------+----------------+
mysql> SELECT 'cat' < 'awk', 'cat' < 'dog', 'cat' BETWEEN 'awk' AND 'eel';
+---------------+---------------+-------------------------------+
| 'cat' < 'awk' | 'cat' < 'dog' | 'cat' BETWEEN 'awk' AND 'eel' |
+---------------+---------------+-------------------------------+
| 0 | 1 | 1 |
+---------------+---------------+-------------------------------+

However, comparison and sorting properties of strings are subject to complications that
don’t apply to other types of data. For example, sometimes you must ensure that a string
comparison is case sensitive that would not otherwise be, or vice versa. This section
describes how to do that.

String comparison properties depend on whether the operands are binary or nonbinary
strings:

• A binary string is a sequence of bytes and is compared using numeric byte values.
Lettercase has no meaning. However, because letters in different cases have different
byte values, comparisons of binary strings effectively are case sensitive. (That is, a

5.7. Controlling Case Sensitivity in String Comparisons | 155

www.it-ebooks.info

http://www.it-ebooks.info/

and A are unequal.) To compare binary strings such that lettercase does not matter,
convert them to nonbinary strings that have a case-insensitive collation.

• A nonbinary string is a sequence of characters and is compared in character units.
(Depending on the character set, some characters might have multiple bytes.) The
string has a character set that defines the legal characters and a collation that defines
their sort order. The collation also determines whether to consider characters in
different lettercases the same in comparisons. If the collation is case sensitive, and
you want a case-insensitive collation (or vice versa), convert the strings to use a
collation with the desired case-comparison properties.

By default, strings have a character set of latin1 and a collation of latin1_swed
ish_ci unless you reconfigure the server (see Recipe 22.1). This results in case-
insensitive string comparisons.

The following example shows how two binary strings that compare as unequal can be
handled so that they are equal when compared as case-insensitive nonbinary strings:

mysql> SET @s1 = BINARY 'cat', @s2 = BINARY 'CAT';
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SET @s1 = CONVERT(@s1 USING latin1) COLLATE latin1_swedish_ci;
mysql> SET @s2 = CONVERT(@s2 USING latin1) COLLATE latin1_swedish_ci;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+

In this case, because latin1_swedish_ci is the default collation for latin1, you can
omit the COLLATE operator:

mysql> SET @s1 = CONVERT(@s1 USING latin1);
mysql> SET @s2 = CONVERT(@s2 USING latin1);
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+

The next example shows how to compare, in case-sensitive fashion, two strings that are
not case sensitive:

mysql> SET @s1 = _latin1 'cat', @s2 = _latin1 'CAT';
mysql> SELECT @s1 = @s2;

156 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

+-----------+
| @s1 = @s2 |
+-----------+
| 1 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_general_cs = @s2 COLLATE latin1_general_cs
 -> AS '@s1 = @s2';
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+

If you compare a binary string with a nonbinary string, the comparison treats both
operands as binary strings:

mysql> SELECT _latin1 'cat' = BINARY 'CAT';
+------------------------------+
| _latin1 'cat' = BINARY 'CAT' |
+------------------------------+
| 0 |
+------------------------------+

Thus, to compare two nonbinary strings as binary strings, apply the BINARY operator
to either one when comparing them:

mysql> SET @s1 = _latin1 'cat', @s2 = _latin1 'CAT';
mysql> SELECT @s1 = @s2, BINARY @s1 = @s2, @s1 = BINARY @s2;
+-----------+------------------+------------------+
| @s1 = @s2 | BINARY @s1 = @s2 | @s1 = BINARY @s2 |
+-----------+------------------+------------------+
| 1 | 0 | 0 |
+-----------+------------------+------------------+

If you find that you’ve declared a column using a type not suited to the kind of com‐
parisons for which you typically use it, use ALTER TABLE to change the type. Suppose
that this table stores news articles:

CREATE TABLE news
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 article BLOB,
 PRIMARY KEY (id)
);

Here the article column is declared as a BLOB. That is a binary string type, so com‐
parisons of text stored in the column are made without regard to character set. (In effect,
they are case sensitive.) If that’s not what you want, use ALTER TABLE to convert the
column to a nonbinary type that has a case-insensitive collation:

ALTER TABLE news
 MODIFY article TEXT CHARACTER SET utf8 COLLATE utf8_general_ci;

5.7. Controlling Case Sensitivity in String Comparisons | 157

www.it-ebooks.info

http://www.it-ebooks.info/

5.8. Pattern Matching with SQL Patterns
Problem
You want to perform a pattern match, not a literal comparison.

Solution
Use the LIKE operator and an SQL pattern, described in this section. Or use a regular-
expression pattern match, described in Recipe 5.9.

Discussion
Patterns are strings that contain special characters known as metacharacters because
they stand for something other than themselves. MySQL provides two kinds of pattern
matching. One is based on SQL patterns and the other on regular expressions. SQL
patterns are more standard among different database systems, but regular expressions
are more powerful. The two kinds of pattern match use different operators and different
metacharacters. This section describes SQL patterns. Recipe 5.9 describes regular ex‐
pressions.

The example here uses a table named metal that contains the following rows:
+----------+
| name |
+----------+
| gold |
| iron |
| lead |
| mercury |
| platinum |
| tin |
+----------+

SQL pattern matching uses the LIKE and NOT LIKE operators rather than = and <> to
perform matching against a pattern string. Patterns may contain two special metachar‐
acters: _ matches any single character, and % matches any sequence of characters, in‐
cluding the empty string. You can use these characters to create patterns that match a
variety of values:

• Strings that begin with a particular substring:
mysql> SELECT name FROM metal WHERE name LIKE 'me%';
+---------+
| name |
+---------+
| mercury |
+---------+

158 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

• Strings that end with a particular substring:
mysql> SELECT name FROM metal WHERE name LIKE '%d';
+------+
| name |
+------+
| gold |
| lead |
+------+

• Strings that contain a particular substring at any position:
mysql> SELECT name FROM metal WHERE name LIKE '%in%';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

• Strings that contain a substring at a specific position (the pattern matches only if
at occurs at the third position of the name column):

mysql> SELECT name FROM metal where name LIKE '__at%';
+----------+
| name |
+----------+
| platinum |
+----------+

An SQL pattern matches successfully only if it matches the entire comparison value. Of
the following two pattern matches, only the second succeeds:

'abc' LIKE 'b'
'abc' LIKE '%b%'

To reverse the sense of a pattern match, use NOT LIKE. The following statement finds
strings that contain no i characters:

mysql> SELECT name FROM metal WHERE name NOT LIKE '%i%';
+---------+
| name |
+---------+
| gold |
| lead |
| mercury |
+---------+

SQL patterns do not match NULL values. This is true both for LIKE and for NOT LIKE:

5.8. Pattern Matching with SQL Patterns | 159

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT NULL LIKE '%', NULL NOT LIKE '%';
+---------------+-------------------+
| NULL LIKE '%' | NULL NOT LIKE '%' |
+---------------+-------------------+
| NULL | NULL |
+---------------+-------------------+

In some cases, pattern matches are equivalent to substring comparisons. For example,
using patterns to find strings at one end or the other of a string is like using LEFT() or
RIGHT(), as shown in the following table:

Pattern match Substring comparison

str LIKE 'abc%' LEFT(str,3) = 'abc'

str LIKE '%abc' RIGHT(str,3) = 'abc'

If you’re matching against a column that is indexed and you have a choice of using a
pattern or an equivalent LEFT() expression, you’ll likely find the pattern match to be
faster. MySQL can use the index to narrow the search for a pattern that begins with a
literal string. With LEFT(), it cannot.

Case sensitivity of a pattern match is like that of a string comparison. That is, it depends
on whether the operands are binary or nonbinary strings, and for nonbinary strings, it
depends on their collation. See Recipe 5.7 for discussion of how these factors apply to
comparisons.

Using Patterns with Nonstring Values
Unlike some other database systems, MySQL permits pattern matches to be applied to
nonstring values such as numbers or dates, which can sometimes be useful. The fol‐
lowing table shows some ways to test a DATE value d using function calls that extract date
parts and using the equivalent pattern matches. The pairs of expressions are true for
dates occurring in the year 1976, in the month of April, or on the first day of the month:

Function value test Pattern match test

YEAR(d) = 1976 d LIKE '1976-%'

MONTH(d) = 4 d LIKE '%-04-%'

DAYOFMONTH(d) = 1 d LIKE '%-01'

5.9. Pattern Matching with Regular Expressions
Problem
You want to perform a pattern match, not a literal comparison.

160 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use the REGEXP operator and a regular expression pattern, described in this section. Or
use an SQL pattern, described in Recipe 5.8.

Discussion
SQL patterns (see Recipe 5.8) are likely to be implemented by other database systems,
so they’re reasonably portable beyond MySQL. On the other hand, they’re somewhat
limited. For example, you can easily write an SQL pattern %abc% to find strings that
contain abc, but you cannot write a single SQL pattern to identify strings that contain
any of the characters a, b, or c. Nor can you match string content based on character
types such as letters or digits. For such operations, MySQL supports another type of
pattern-matching operation based on regular expressions and the REGEXP operator (or
NOT REGEXP to reverse the sense of the match). REGEXP matching uses the pattern ele‐
ments shown in the following table:

Pattern What the pattern matches

^ Beginning of string

$ End of string

. Any single character

[...] Any character listed between the square brackets

[^...] Any character not listed between the square brackets

p1|p2|p3 Alternation; matches any of the patterns p1, p2, or p3

* Zero or more instances of preceding element

+ One or more instances of preceding element

{n} n instances of preceding element

{m,n} m through n instances of preceding element

You may already be familiar with these regular expression pattern characters; many of
them are the same as those used by vi, grep, sed, and other Unix utilities that support
regular expressions. Most of them are used also in the regular expressions understood
by programming languages. (For discussion of pattern matching in programs for data
validation and transformation, see Chapter 12.)

Recipe 5.8 shows how to use SQL patterns to match substrings at the beginning or end
of a string, or at an arbitrary or specific position within a string. You can do the same
things with regular expressions:

• Strings that begin with a particular substring:
mysql> SELECT name FROM metal WHERE name REGEXP '^me';
+---------+
| name |

5.9. Pattern Matching with Regular Expressions | 161

www.it-ebooks.info

http://www.it-ebooks.info/

+---------+
| mercury |
+---------+

• Strings that end with a particular substring:
mysql> SELECT name FROM metal WHERE name REGEXP 'd$';
+------+
| name |
+------+
| gold |
| lead |
+------+

• Strings that contain a particular substring at any position:
mysql> SELECT name FROM metal WHERE name REGEXP 'in';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

• Strings that contain a particular substring at a specific position:
mysql> SELECT name FROM metal WHERE name REGEXP '^..at';
+----------+
| name |
+----------+
| platinum |
+----------+

In addition, regular expressions have other capabilities and can perform matches that
SQL patterns cannot. For example, regular expressions can contain character classes,
which match any character in the class:

• To write a character class, use square brackets and list the characters you want the
class to match inside the brackets. Thus, the pattern [abc] matches a, b, or c.

• Classes can indicate ranges of characters; use a dash between the beginning and
end of the range. [a-z] matches any letter, [0-9] matches digits, and [a-z0-9]
matches letters or digits.

• To negate a character class (“match any character but these”), begin the list with a
^ character. For example, [^0-9] matches anything but digits.

MySQL’s regular-expression capabilities also support POSIX character classes. These
match specific character sets, as described in the following table:

162 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

POSIX class What the class matches

[:alnum:] Alphabetic and numeric characters

[:alpha:] Alphabetic characters

[:blank:] Whitespace (space or tab characters)

[:cntrl:] Control characters

[:digit:] Digits

[:graph:] Graphic (nonblank) characters

[:lower:] Lowercase alphabetic characters

[:print:] Graphic or space characters

[:punct:] Punctuation characters

[:space:] Space, tab, newline, carriage return

[:upper:] Uppercase alphabetic characters

[:xdigit:] Hexadecimal digits (0-9, a-f, A-F)

POSIX classes are intended for use within character classes, so use them within square
brackets. The following expression matches values that contain any hexadecimal digit
character:

mysql> SELECT name, name REGEXP '[[:xdigit:]]' FROM metal;
+----------+----------------------------+
| name | name REGEXP '[[:xdigit:]]' |
+----------+----------------------------+
gold	1
iron	0
lead	1
mercury	1
platinum	1
tin	0
+----------+----------------------------+

Regular expressions can specify alternations using this syntax:
alternative1|alternative2|...

An alternation is similar to a character class in the sense that it matches if any of the
alternatives match. But unlike a character class, the alternatives are not limited to single
characters. They can be multiple-character strings or even patterns. The following al‐
ternation matches strings that begin with a vowel or end with er:

mysql> SELECT name FROM metal WHERE name REGEXP '^[aeiou]|d$';
+------+
| name |
+------+
| gold |
| iron |
| lead |
+------+

5.9. Pattern Matching with Regular Expressions | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Parentheses can be used to group alternations. For example, to match strings that consist
entirely of digits or entirely of letters, you might try this pattern, using an alternation:

mysql> SELECT '0m' REGEXP '^[[:digit:]]+|[[:alpha:]]+$';
+---+
| '0m' REGEXP '^[[:digit:]]+|[[:alpha:]]+$' |
+---+
| 1 |
+---+

However, as the query result shows, the pattern doesn’t work. That’s because the ̂ groups
with the first alternative, and the $ groups with the second alternative. So the pattern
actually matches strings that begin with one or more digits, or strings that end with one
or more letters. If you group the alternatives within parentheses, the ^ and $ apply to
both of them, and the pattern acts as you expect:

mysql> SELECT '0m' REGEXP '^([[:digit:]]+|[[:alpha:]]+)$';
+---+
| '0m' REGEXP '^([[:digit:]]+|[[:alpha:]]+)$' |
+---+
| 0 |
+---+

Unlike SQL pattern matches, which are successful only if the pattern matches the entire
comparison value, regular expressions are successful if the pattern matches anywhere
within the value. The following two pattern matches are equivalent in the sense that
each one succeeds only for strings that contain a b character, but the first is more efficient
because the pattern is simpler:

'abc' REGEXP 'b'
'abc' REGEXP '^.*b.*$'

Regular expressions do not match NULL values. This is true both for REGEXP and for NOT
REGEXP:

mysql> SELECT NULL REGEXP '.*', NULL NOT REGEXP '.*';
+------------------+----------------------+
| NULL REGEXP '.*' | NULL NOT REGEXP '.*' |
+------------------+----------------------+
| NULL | NULL |
+------------------+----------------------+

Because a regular expression matches a string if the pattern is found anywhere in the
string, you must take care not to inadvertently specify a pattern that matches the empty
string. If you do, it matches any non-NULL value. For example, the pattern a* matches
any number of a characters, even none. If your goal is to match only strings containing
nonempty sequences of a characters, use a+ instead. The + requires one or more in‐
stances of the preceding pattern element for a match.

As with SQL pattern matches performed using LIKE, regular-expression matches per‐
formed with REGEXP sometimes are equivalent to substring comparisons. As shown in

164 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

the following table, the ̂ and $ metacharacters serve much the same purpose as LEFT()
or RIGHT(), at least if you’re looking for literal strings:

Pattern match Substring comparison

str REGEXP '^abc' LEFT(str,3) = 'abc'

str REGEXP 'abc$' RIGHT(str,3) = 'abc'

For nonliteral patterns, it’s typically not possible to construct an equivalent substring
comparison. For example, to match strings that begin with any nonempty sequence of
digits, use this pattern match:

str REGEXP '^[0-9]+'

That is something that LEFT() cannot do (and neither can LIKE, for that matter).

Case sensitivity of a regular-expression match is like that of a string comparison. That
is, it depends on whether the operands are binary or nonbinary strings, and for non‐
binary strings, it depends on their collation. See Recipe 5.7 for discussion of how these
factors apply to comparisons.

A limitation of regular-expression (REGEXP) matching compared to
SQL pattern (LIKE) matching is that REGEXP works only for single-
byte character sets. Don’t expect it to work with multibyte character
sets such as utf8 or sjis.

5.10. Breaking Apart or Combining Strings
Problem
You want to extract a piece of a string or combine strings to form a larger string.

Solution
To obtain a piece of a string, use a substring-extraction function. To combine strings,
use CONCAT().

Discussion
You can break apart strings by using appropriate substring-extraction functions. For
example, LEFT(), MID(), and RIGHT() extract substrings from the left, middle, or right
part of a string:

mysql> SET @date = '2015-07-21';
mysql> SELECT @date, LEFT(@date,4) AS year,
 -> MID(@date,6,2) AS month, RIGHT(@date,2) AS day;
+------------+------+-------+------+

5.10. Breaking Apart or Combining Strings | 165

www.it-ebooks.info

http://www.it-ebooks.info/

| @date | year | month | day |
+------------+------+-------+------+
| 2015-07-21 | 2015 | 07 | 21 |
+------------+------+-------+------+

For LEFT() and RIGHT(), the second argument indicates how many characters to return
from the left or right end of the string. For MID(), the second argument is the starting
position of the substring you want (beginning from 1), and the third argument indicates
how many characters to return.

The SUBSTRING() function takes a string and a starting position, returning everything
to the right of the position. MID() acts the same way if you omit its third argument
because MID() is actually a synonym for SUBSTRING():

mysql> SET @date = '2015-07-21';
mysql> SELECT @date, SUBSTRING(@date,6), MID(@date,6);
+------------+--------------------+--------------+
| @date | SUBSTRING(@date,6) | MID(@date,6) |
+------------+--------------------+--------------+
| 2015-07-21 | 07-21 | 07-21 |
+------------+--------------------+--------------+

Use SUBSTRING_INDEX(str,c,n) to return everything to the right or left of a given
character. It searches into a string str for the n-th occurrence of the character c and
returns everything to its left. If n is negative, the search for c starts from the right and
returns everything to the right of the character:

mysql> SET @email = 'postmaster@example.com';
mysql> SELECT @email,
 -> SUBSTRING_INDEX(@email,'@',1) AS user,
 -> SUBSTRING_INDEX(@email,'@',-1) AS host;
+------------------------+------------+-------------+
| @email | user | host |
+------------------------+------------+-------------+
| postmaster@example.com | postmaster | example.com |
+------------------------+------------+-------------+

If there is no n-th occurrence of the character, SUBSTRING_INDEX() returns the entire
string. SUBSTRING_INDEX() is case sensitive.

You can use substrings for purposes other than display, such as to perform comparisons.
The following statement finds metal names having a first letter that lies in the last half
of the alphabet:

mysql> SELECT name from metal WHERE LEFT(name,1) >= 'n';
+----------+
| name |
+----------+
| platinum |
| tin |
+----------+

166 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

To combine rather than pull apart strings, use the CONCAT() function. It concatenates
its arguments and returns the result:

mysql> SELECT CONCAT(name,' ends in "d": ',IF(RIGHT(name,1)='d','YES','NO'))
 -> AS 'ends in "d"?'
 -> FROM metal;
+--------------------------+
| ends in "d"? |
+--------------------------+
| gold ends in "d": YES |
| iron ends in "d": NO |
| lead ends in "d": YES |
| mercury ends in "d": NO |
| platinum ends in "d": NO |
| tin ends in "d": NO |
+--------------------------+

Concatenation can be useful for modifying column values “in place.” For example, the
following UPDATE statement adds a string to the end of each name value in the metal
table:

mysql> UPDATE metal SET name = CONCAT(name,'ide');
mysql> SELECT name FROM metal;
+-------------+
| name |
+-------------+
| goldide |
| ironide |
| leadide |
| mercuryide |
| platinumide |
| tinide |
+-------------+

To undo the operation, strip the last three characters (the CHAR_LENGTH() function re‐
turns the length of a string in characters):

mysql> UPDATE metal SET name = LEFT(name,CHAR_LENGTH(name)-3);
mysql> SELECT name FROM metal;
+----------+
| name |
+----------+
| gold |
| iron |
| lead |
| mercury |
| platinum |
| tin |
+----------+

The concept of modifying a column in place can be applied to ENUM or SET values as
well, which usually can be treated as string values even though they are stored internally

5.10. Breaking Apart or Combining Strings | 167

www.it-ebooks.info

http://www.it-ebooks.info/

as numbers. For example, to concatenate a SET element to an existing SET column, use
CONCAT() to add the new value to the existing value, preceded by a comma. But re‐
member to account for the possibility that the existing value might be NULL. In that case,
set the column value equal to the new element, without the leading comma:

UPDATE tbl_name
SET set_col = IF(set_col IS NULL,val,CONCAT(set_col,',',val));

5.11. Searching for Substrings
Problem
You want to know whether a given string occurs within another string.

Solution
Use LOCATE() or a pattern match.

Discussion
The LOCATE() function takes two arguments representing the substring that you’re
looking for and the string in which to look for it. The return value is the position at
which the substring occurs, or 0 if it’s not present. An optional third argument may be
given to indicate the position within the string at which to start looking.

mysql> SELECT name, LOCATE('in',name), LOCATE('in',name,3) FROM metal;
+----------+-------------------+---------------------+
| name | LOCATE('in',name) | LOCATE('in',name,3) |
+----------+-------------------+---------------------+
gold	0	0
iron	0	0
lead	0	0
mercury	0	0
platinum	5	5
tin	2	0
+----------+-------------------+---------------------+

To determine only whether the substring is present if you don’t care about its position,
an alternative is to use LIKE or REGEXP:

mysql> SELECT name, name LIKE '%in%', name REGEXP 'in' FROM metal;
+----------+------------------+------------------+
| name | name LIKE '%in%' | name REGEXP 'in' |
+----------+------------------+------------------+
gold	0	0
iron	0	0
lead	0	0
mercury	0	0
platinum	1	1

168 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

| tin | 1 | 1 |
+----------+------------------+------------------+

LOCATE(), LIKE, and REGEXP use the collation of their arguments to determine whether
the search is case sensitive. Recipes 5.5 and 5.7 discuss changing the argument com‐
parison properties if you want to change the search behavior.

5.12. Using Full-Text Searches
Problem
You want to search a lot of text.

Solution
Use a FULLTEXT index.

Discussion
Pattern matches enable you to look through any number of rows, but as the amount of
text goes up, the match operation can become quite slow. It’s also a common task to
search for the same text in several string columns, but with pattern matching, that results
in unwieldy queries:

SELECT * from tbl_name
WHERE col1 LIKE 'pat' OR col2 LIKE 'pat' OR col3 LIKE 'pat' ...

A useful alternative is full-text searching, which is designed for looking through large
amounts of text and can search multiple columns simultaneously. To use this capability,
add a FULLTEXT index to your table, and then use the MATCH operator to look for strings
in the indexed column or columns. FULLTEXT indexing can be used with MyISAM tables
(or, as of MySQL 5.6, InnoDB tables) for nonbinary string data types (CHAR, VARCHAR,
or TEXT).

Full-text searching is best illustrated with a reasonably good-sized body of text. If you
don’t have a sample dataset, you can find several repositories of freely available electronic
text on the Internet. For the examples here, the one I’ve chosen is the complete text of
the King James Version of the Bible (KJV), which is both relatively large and nicely
structured by book, chapter, and verse. Because of its size, this dataset is not included
with the recipes distribution, but is available separately as the mcb-kjv distribution at
the MySQL Cookbook website (see the Preface). The mcb-kjv distribution includes a file
named kjv.txt that contains the verse records. Some sample records look like this:

O Genesis 1 1 1 In the beginning God created the heaven and the earth.
O Exodus 2 20 13 Thou shalt not kill.
N Luke 42 17 32 Remember Lot's wife.

5.12. Using Full-Text Searches | 169

www.it-ebooks.info

http://www.it-ebooks.info/

Each record contains the following fields:

• Book section (O or N, signifying Old or New Testament)
• Book name and corresponding book number, from 1 to 66
• Chapter and verse numbers
• Text of the verse

To import the records into MySQL, create a table named kjv that looks like this:
CREATE TABLE kjv
(
 bsect ENUM('O','N') NOT NULL, # book section (testament)
 bname VARCHAR(20) NOT NULL, # book name
 bnum TINYINT UNSIGNED NOT NULL, # book number
 cnum TINYINT UNSIGNED NOT NULL, # chapter number
 vnum TINYINT UNSIGNED NOT NULL, # verse number
 vtext TEXT NOT NULL, # text of verse
 FULLTEXT (vtext) # full-text index
) ENGINE = MyISAM; # can be InnoDB for MySQL 5.6+

The table has a FULLTEXT index to enable its use in full-text searching. It also uses the
MyISAM storage engine. If you have MySQL 5.6 or higher and want to use InnoDB
instead, modify the ENGINE clause to ENGINE = InnoDB.

After creating the kjv table, load the kjv.txt file into it using this statement:

mysql> LOAD DATA LOCAL INFILE 'kjv.txt' INTO TABLE kjv;

You’ll notice that the kjv table contains columns both for book names (Genesis, Exo‐
dus, ...) and for book numbers (1, 2, ...). The names and numbers have a fixed corre‐
spondence, and one can be derived from the other—a redundancy that means the table
is not in normal form. It’s possible to eliminate the redundancy by storing just the book
numbers (which take less space than the names), and then producing the names when
necessary in query results by joining the numbers to a mapping table that associates
each book number with the corresponding name. But I want to avoid using joins at this
point. Thus, the table includes book names so search results can be interpreted more
easily, and numbers so the results can be sorted easily into book order.

To perform a search using the FULLTEXT index, use MATCH() to name the indexed column
and AGAINST() to specify what text to look for. For example, you might wonder, “How
many times does the name Hadoram occur?” To answer that question, search the vtext
column using this statement:

mysql> SELECT COUNT(*) from kjv WHERE MATCH(vtext) AGAINST('Hadoram');
+----------+
| COUNT(*) |
+----------+
| 4 |
+----------+

170 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

To find out what those verses are, select the columns you want to see (the example here
truncates the vtext column and uses \G so the results better fit the page):

mysql> SELECT bname, cnum, vnum, LEFT(vtext,65) AS vtext
 -> FROM kjv WHERE MATCH(vtext) AGAINST('Hadoram')\G
*************************** 1. row ***************************
bname: Genesis
 cnum: 10
 vnum: 27
vtext: And Hadoram, and Uzal, and Diklah,
*************************** 2. row ***************************
bname: 1 Chronicles
 cnum: 1
 vnum: 21
vtext: Hadoram also, and Uzal, and Diklah,
*************************** 3. row ***************************
bname: 1 Chronicles
 cnum: 18
 vnum: 10
vtext: He sent Hadoram his son to king David, to inquire of his welfare,
*************************** 4. row ***************************
bname: 2 Chronicles
 cnum: 10
 vnum: 18
vtext: Then king Rehoboam sent Hadoram that was over the tribute; and th

The results may come out in book, chapter, and verse number order, but that’s just
coincidence. By default, full-text searches compute a relevance ranking and use it for
sorting. To make sure a search result is sorted the way you want, add an explicit OR
DER BY clause:

SELECT bname, cnum, vnum, vtext
FROM kjv WHERE MATCH(vtext) AGAINST('search string')
ORDER BY bnum, cnum, vnum;

To see the relevance ranking, repeat the MATCH() … AGAINST() expression in the output
column list.

To narrow the search further, include additional criteria. The following queries perform
progressively more specific searches to determine how often the name Abraham occurs
in the entire KJV, the New Testament, the Book of Hebrews, and Chapter 11 of Hebrews:

mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham');
+----------+
| COUNT(*) |
+----------+
| 229 |
+----------+
mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham')
 -> AND bsect = 'N';

5.12. Using Full-Text Searches | 171

www.it-ebooks.info

http://www.it-ebooks.info/

+----------+
| COUNT(*) |
+----------+
| 69 |
+----------+
mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham')
 -> AND bname = 'Hebrews';
+----------+
| COUNT(*) |
+----------+
| 10 |
+----------+
mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham')
 -> AND bname = 'Hebrews' AND cnum = 11;
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

If you expect to use search criteria frequently that include other non-FULLTEXT columns,
add regular indexes to those columns so that queries perform better. For example, to
index the book, chapter, and verse columns, do this:

mysql> ALTER TABLE kjv ADD INDEX (bnum), ADD INDEX (cnum), ADD INDEX (vnum);

Search strings in full-text queries can include more than one word, and you might
suppose that adding words would make a search more specific. But in fact that widens
it because a full-text search returns rows that contain any of the words. In effect, the
query performs an OR search for any of the words. The following queries illustrate this;
they identify successively larger numbers of verses as additional search words are added:

mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham');
+----------+
| COUNT(*) |
+----------+
| 229 |
+----------+
mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham Sarah');
+----------+
| COUNT(*) |
+----------+
| 243 |
+----------+
mysql> SELECT COUNT(*) from kjv
 -> WHERE MATCH(vtext) AGAINST('Abraham Sarah Ishmael Isaac');
+----------+
| COUNT(*) |

172 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

+----------+
| 334 |
+----------+

To perform a search for which each word in the search string must be present, see
Recipe 5.14.

To use full-text searches that look through multiple columns simultaneously, name all
the columns when you construct the FULLTEXT index:

ALTER TABLE tbl_name ADD FULLTEXT (col1, col2, col3);

To issue a search query that uses the index, name those same columns in the MATCH()
list:

SELECT ... FROM tbl_name
WHERE MATCH(col1, col2, col3) AGAINST('search string');

You need one such FULLTEXT index for each distinct combination of columns that you
want to search.

See Also
FULLTEXT indexes provide a quick-and-easy way to set up a basic search engine. One
way to use this capability is to provide a web-based interface to the indexed text. This
book’s website (see the Preface) includes a simple web-based KJV search page that
demonstrates this. You can use it as the basis for your own search engine that operates
on a different repository of text. The search script, kjv.pl, is included in the mcb-kjv
distribution.

5.13. Using a Full-Text Search with Short Words
Problem
Full-text searches for short words return no rows.

Solution
Change the indexing engine’s minimum word length parameter.

Discussion
In a text like the KJV, certain words have special significance, such as “God” and “sin.”
However, if your kjv table uses the MyISAM storage engine and you perform full-text
searches for those words, you’ll observe a curious phenomenon—both words appear to
be missing from the text entirely:

5.13. Using a Full-Text Search with Short Words | 173

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT COUNT(*) FROM kjv WHERE MATCH(vtext) AGAINST('God');
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+
mysql> SELECT COUNT(*) FROM kjv WHERE MATCH(vtext) AGAINST('sin');
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

One property of the indexing engine is that it ignores words that are “too common”
(that is, words that occur in more than half the rows). This eliminates words such as
“the” or “and” from the index, but that’s not what is going on here. You can verify that
by counting the total number of rows, and by using SQL pattern matches to count the
number of rows containing each word (see Recipe 8.1 regarding the use of COUNT() to
produce multiple counts from the same set of values):

mysql> SELECT COUNT(*) AS 'total verses',
 -> COUNT(IF(vtext LIKE '%God%',1,NULL)) AS 'verses containing "God"',
 -> COUNT(IF(vtext LIKE '%sin%',1,NULL)) AS 'verses containing "sin"'
 -> FROM kjv;
+--------------+-------------------------+-------------------------+
| total verses | verses containing "God" | verses containing "sin" |
+--------------+-------------------------+-------------------------+
| 31102 | 4117 | 1292 |
+--------------+-------------------------+-------------------------+

Neither word is present in more than half the verses, so sheer frequency of occurrence
doesn’t account for the failure of a full-text search to find them. What’s really happening
is that, by default, the MyISAM full-text indexing engine doesn’t include words less than
four characters long. The minimum word length is a configurable parameter; to change
it, set the ft_min_word_len system variable. For example, to tell the indexing engine to
include words as short as three characters, add a line to the [mysqld] group of the /etc/
my.cnf file (or whatever option file you use for server settings):

[mysqld]
ft_min_word_len=3

After making this change, restart the server. Next, rebuild the FULLTEXT index to take
advantage of the new setting:

mysql> REPAIR TABLE kjv QUICK;

(You should also use REPAIR TABLE to rebuild the indexes for all other MyISAM tables
that have FULLTEXT indexes.)

Finally, try the new index to verify that it includes shorter words:

174 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT COUNT(*) FROM kjv WHERE MATCH(vtext) AGAINST('God');
+----------+
| COUNT(*) |
+----------+
| 3892 |
+----------+
mysql> SELECT COUNT(*) FROM kjv WHERE MATCH(vtext) AGAINST('sin');
+----------+
| COUNT(*) |
+----------+
| 389 |
+----------+

That’s better!

But why do the MATCH() queries find 3,892 and 389 rows, whereas the earlier LIKE queries
find 4,117 and 1,292 rows? That’s because the LIKE patterns match substrings and the
full-text search performed by MATCH() matches whole words.

If your kjv table uses the InnoDB storage engine, you won’t see the behavior just de‐
scribed because the default word length is 3 to begin with. However, specific values aside,
similar principles apply:

• There is a minimum word length parameter, innodb_ft_min_token_size in this
case.

• You can set that parameter at startup. If you change it from its previous value, you
should rebuild all InnoDB table FULLTEXT indexes. InnoDB does not support RE
PAIR TABLE, but you can drop and re-create each index. For example:

mysql> ALTER TABLE kjv DROP INDEX vtext, ADD FULLTEXT (vtext);

5.14. Requiring or Prohibiting Full-Text Search Words
Problem
You want to require or prohibit specific words in a full-text search.

Solution
Use a Boolean mode search.

Discussion
Normally, full-text searches return rows that contain any of the words in the search
string, even if some of them are missing. For example, the following statement finds
rows that contain either of the names David or Goliath:

5.14. Requiring or Prohibiting Full-Text Search Words | 175

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('David Goliath');
+----------+
| COUNT(*) |
+----------+
| 898 |
+----------+

This behavior is undesirable if you want only rows that contain both words. One way
to do this is to rewrite the statement to look for each word separately and join the
conditions with AND:

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('David')
 -> AND MATCH(vtext) AGAINST('Goliath');
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

An easier way to require multiple words is with a Boolean mode search. To do this,
precede each word in the search string with a + character and add IN BOOLEAN MODE after
the string:

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('+David +Goliath' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

Boolean mode searches also permit you to exclude words by preceding each one with
a - character. The following queries select kjv rows containing the name David but not
Goliath, and vice versa:

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('+David -Goliath' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 892 |
+----------+
mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('-David +Goliath' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 4 |
+----------+

176 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

Another useful special character in Boolean searches is *; when appended to a search
word, it acts as a wildcard operator. The following statement finds rows containing not
only whirl, but also words such as whirls, whirleth, and whirlwind:

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('whirl*' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 28 |
+----------+

For the complete list of Boolean full-text operators, see the MySQL Reference Manual.

5.15. Performing Full-Text Phrase Searches
Problem
You want to perform a full-text search for a phrase; that is, for words that occur adjacent
to each other and in a specific order.

Solution
Use the full-text phrase-search capability.

Discussion
To find rows that contain a particular phrase, a simple full-text search doesn’t work:

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('still small voice');
+----------+
| COUNT(*) |
+----------+
| 548 |
+----------+

The query returns a result, but not the one you’re looking for. A full-text search computes
a relevance ranking based on the presence of each word individually, no matter where
it occurs within the vtext column, and the ranking is nonzero as long as any of the
words are present. Consequently, that kind of statement tends to find too many rows.

Instead, use full-text Boolean mode, which supports phrase searching. Enclose the
phrase in double quotes within the search string:

5.15. Performing Full-Text Phrase Searches | 177

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT COUNT(*) FROM kjv
 -> WHERE MATCH(vtext) AGAINST('"still small voice"' IN BOOLEAN MODE);
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+

A phrase match succeeds if a column contains the same words as in the phrase, in the
order specified.

178 | Chapter 5: Working with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Working with Dates and Times

6.0. Introduction
MySQL has several data types for representing dates and times, and many functions for
operating on them. MySQL stores dates and times in specific formats, and it’s important
to understand them to avoid surprises in results from manipulating temporal data. This
chapter covers the following aspects of working with date and time values in MySQL:
Choosing a temporal data type

MySQL provides several temporal data types to choose from when you create tables.
Knowing their properties enables you to choose them appropriately.

Displaying dates and times
MySQL displays temporal values using specific formats by default. You can produce
other formats by using the appropriate functions.

Changing the client time zone
The server interprets TIMESTAMP values in the client’s current time zone, not its own.
Clients in different time zones should set their zone so that the server can properly
interpret TIMESTAMP values for them.

Determining the current date and time
MySQL provides functions that return the date and time. These are useful for ap‐
plications that must know these values or need to calculate other temporal values
in relation to them.

Tracking row modification times
The TIMESTAMP and DATETIME data types have special properties that enable you to
record row-creation and last-modification times automatically.

179

www.it-ebooks.info

http://www.it-ebooks.info/

Breaking dates and times into component values, creating dates and times from compo‐
nent values

You can split date and time values when you need only a component, such as the
month part of a date or the hour part of a time. Conversely, you can combine
component values to synthesize dates and times.

Converting between dates or times and basic units
Some temporal calculations such as date arithmetic operations are more easily per‐
formed using the number of days or seconds represented by a date or time value
than by using the value itself. MySQL can perform conversions between date and
time values and more basic units such as days or seconds.

Date and time arithmetic
You can add or subtract temporal values to produce other temporal values or cal‐
culate intervals between values. Applications include age determination, relative
date computation, and date shifting.

Selecting data based on temporal constraints
The calculations discussed in the preceding sections to produce output values can
also be used in WHERE clauses to specify how to select rows using temporal condi‐
tions.

This chapter covers several MySQL functions for operating on date and time values, but
there are many others. To familiarize yourself with the full set, consult the MySQL
Reference Manual. The variety of functions available to you means that it’s often possible
to perform a given temporal calculation more than one way. I sometimes illustrate al‐
ternative methods for achieving a given result, and many of the problems addressed in
this chapter can be solved in ways other than shown here. I invite you to experiment to
find other solutions. You may find a method that’s more efficient or that you find more
intuitive.

Scripts that implement recipes discussed in this chapter are located in the dates directory
of the recipes source distribution. Scripts that create tables used here are located in the
tables directory.

6.1. Choosing a Temporal Data Type
Problem
You need to store temporal data but aren’t sure which is the most appropriate data type.

Solution
Choose the data type according to the characteristics of the information to be stored
and how you need to use it.

180 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
To choose a temporal data type, consider questions such as these:

• Do you need times only, dates only, or combined date and time values?
• What range of values do you require?
• Do you want automatic initialization of the column to the current date and time?

MySQL provides DATE and TIME data types for representing date and time values sepa‐
rately, and DATETIME and TIMESTAMP types for combined date-and-time values. These
values have the following characteristics:

• DATE values have CCYY-MM-DD format, where CC, YY, MM, and DD represent the century,
year within century, month, and day parts of the date. The supported range for DATE
values is 1000-01-01 to 9999-12-31.

• TIME values have hh:mm:ss format, where hh, mm, and ss are the hours, minutes,
and seconds parts of the time. TIME values often can be thought of as time-of-day
values, but MySQL actually treats them as elapsed time. Thus, they may be greater
than 23:59:59 or even negative. (The actual range of a TIME column is -838:59:59
to 838:59:59.)

• DATETIME and TIMESTAMP are combined date-and-time values in CCYY-MM-DD
hh:mm:ss format.
The DATETIME and TIMESTAMP data types are similar in many respects, but watch
out for these differences:
— DATETIME has a supported range of 1000-01-01 00:00:00 to 9999-12-31

23:59:59, whereas TIMESTAMP values are valid only from the year 1970 partially
through 2038.

— TIMESTAMP and DATETIME have special auto-initialization and auto-update prop‐
erties (see Recipe 6.7), but for DATETIME they are not available before MySQL
5.6.5.

— When a client inserts a TIMESTAMP value, the server converts it from the time
zone associated with the client session to UTC and stores the UTC value. When
the client retrieves a TIMESTAMP value, the server performs the reverse operation
to convert the UTC value back to the client session time zone. A client in a time
zone different from the server can configure its session so that this conversion
is appropriate for its own time zone (see Recipe 6.4).

• Types that include a time part can have a fractional seconds part for subsecond
resolution (see Recipe 6.2).

6.1. Choosing a Temporal Data Type | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the examples in this chapter draw on the following tables, which contain col‐
umns representing time, date, and date-and-time values. (The time_val table has two
columns for use in time interval calculation examples.)

mysql> SELECT t1, t2 FROM time_val;
+----------+----------+
| t1 | t2 |
+----------+----------+
15:00:00	15:00:00
05:01:30	02:30:20
12:30:20	17:30:45
+----------+----------+	
mysql> SELECT d FROM date_val;	
+------------+	
d	
+------------+	
1864-02-28	
1900-01-15	
1999-12-31	
2000-06-04	
2017-03-16	
+------------+	
mysql> SELECT dt FROM datetime_val;	
+---------------------+	
dt	
+---------------------+	
1970-01-01 00:00:00	
1999-12-31 09:00:00	
2000-06-04 15:45:30	
2017-03-16 12:30:15	
+---------------------+

It is a good idea to create the time_val, date_val, and datetime_val tables right now
before reading further. (Use the appropriate scripts in the tables directory of the rec
ipes distribution.)

6.2. Using Fractional Seconds Support
As of MySQL 5.6.4, fractional seconds are supported for temporal types that include a
time part: DATETIME, TIME, and TIMESTAMP. For applications that require subsecond
resolution of time values, this enables you to specify fractional seconds precision down
to the microsecond level.

The default is to have no fractional seconds part, so to include it for temporal types that
support this capability, specify it explicitly in the column declaration: include (fsp)
after the data type name in a column definition. fsp can be from 0 to 6 to indicate the
number of fractional digits. 0 means “none” (resolution to seconds), 6 means resolution
to microseconds. For example, to create a TIME column with two fractional digits (res‐
olution to hundredths of seconds), use this syntax:

182 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

mycol TIME(2)

As an example, the 2014 Winter Olympics in Sochi are underway as I write. Scores for
some Olympic events are measured as elapsed time, and events vary in the resolution
used. The following table shows some representative events, their required time reso‐
lution for scores, and the TIME declaration appropriate for recording times of the com‐
petitors:

Event Resolution Data type

Biathlon Tenths TIME(1)

Downhill skiing Hundredths TIME(2)

Luge, skeleton Thousandths TIME(3)

Temporal functions that return current time or date-and-time values also support frac‐
tional seconds. The default without an argument is no fractional part. Otherwise, the
argument specifies the desired resolution. Permitted values are 0 to 6, the same as when
declaring temporal columns:

mysql> SELECT CURTIME(), CURTIME(2), CURTIME(6);
+-----------+-------------+-----------------+
| CURTIME() | CURTIME(2) | CURTIME(6) |
+-----------+-------------+-----------------+
| 18:07:03 | 18:07:03.24 | 18:07:03.244950 |
+-----------+-------------+-----------------+

6.3. Changing MySQL’s Date Format
Problem
You want to change the ISO format that MySQL uses for representing date values.

Solution
You can’t. However, you can rewrite non-ISO input values into ISO format when storing
dates, and you can rewrite ISO values to other formats for display with the DATE_FOR
MAT() function.

Discussion
The CCYY-MM-DD format that MySQL uses for DATE values follows the ISO 8601 standard
for representing dates. Because the year, month, and day parts have a fixed length and
appear left to right in date strings, this format has the useful property that dates sort
naturally into the proper temporal order. Recipes 7.5 and 8.12 discuss ordering and
grouping techniques for date-based values.

6.3. Changing MySQL’s Date Format | 183

www.it-ebooks.info

http://www.it-ebooks.info/

ISO format, although common, is not used by all database systems, which can cause
problems if you move data between different systems. Moreover, people commonly like
to represent dates in other formats such as MM/DD/YY or DD-MM-CCYY. This too can be a
source of trouble, due to mismatches between human expectations of how dates should
look and how MySQL actually represents them.

A question frequently asked by newcomers to MySQL is, “How do I tell MySQL to store
dates in a specific format such as MM/DD/CCYY?” That’s the wrong question. Instead, ask,
“If I have a date in a specific format, how can I store it in MySQL’s supported format,
and vice versa?” MySQL always stores dates in ISO format, a fact with implications both
for data entry (input) and for displaying query results (output):

• For data-entry purposes, to store values that are not in ISO format, you normally
must rewrite them first. If you don’t want to rewrite them, you can store them as
strings (for example, in a CHAR column). But then you can’t operate on them as dates.
Chapter 11 covers the topic of date rewriting for data entry, and Chapter 12 discusses
checking dates to verify that they’re valid. In some cases, if your values are close to
ISO format, rewriting may not be necessary. For example, MySQL interprets the
string values 87-1-7 and 1987-1-7 and the numbers 870107 and 19870107 as the
date 1987-01-07 when storing them into a DATE column.

• For display purposes, you can rewrite dates to non-ISO formats. The DATE_FOR
MAT() function provides a lot of flexibility for changing date values into other for‐
mats (see later in this section). You can also use functions such as YEAR() to extract
parts of dates for display (see Recipe 6.8). For additional discussion, see
Recipe 12.14.

One way to rewrite non-ISO values for date entry is to use the STR_TO_DATE() function,
which takes a string representing a temporal value and a format string that specifies the
“syntax” of the value. Within the formatting string, use special sequences of the form
%c, where c specifies which part of the date to expect. For example, %Y, %M, and %d signify
the four-digit year, the month name, and the two-digit day of the month. To insert the
value May 13, 2007 into a DATE column, do this:

mysql> INSERT INTO t (d) VALUES(STR_TO_DATE('May 13, 2007','%M %d, %Y'));
mysql> SELECT d FROM t;
+------------+
| d |
+------------+
| 2007-05-13 |
+------------+

For date display, MySQL uses ISO format (CCYY-MM-DD) unless you tell it otherwise. To
display dates or times in other formats, use the DATE_FORMAT() or TIME_FORMAT()
function to rewrite them. If you require a more specialized format those functions can‐
not provide, write a stored function.

184 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

The DATE_FORMAT() function takes two arguments: a DATE, DATETIME, or TIMESTAMP
value, and a string describing how to display the value. The format string uses the same
kind of specifiers as STR_TO_DATE(). The following statement shows the values in the
date_val table, both as MySQL displays them by default and as reformatted with
DATE_FORMAT():

mysql> SELECT d, DATE_FORMAT(d,'%M %d, %Y') FROM date_val;
+------------+----------------------------+
| d | DATE_FORMAT(d,'%M %d, %Y') |
+------------+----------------------------+
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
2017-03-16	March 16, 2017
+------------+----------------------------+

Because DATE_FORMAT() produces long column headings, it’s often useful to provide an
alias (see Recipe 3.2) to make a heading more concise or meaningful:

mysql> SELECT d, DATE_FORMAT(d,'%M %d, %Y') AS date FROM date_val;
+------------+-------------------+
| d | date |
+------------+-------------------+
1864-02-28	February 28, 1864
1900-01-15	January 15, 1900
1999-12-31	December 31, 1999
2000-06-04	June 04, 2000
2017-03-16	March 16, 2017
+------------+-------------------+

The MySQL Reference Manual provides a complete list of format sequences to use with
DATE_FORMAT(), TIME_FORMAT(), and STR_TO_DATE(). The following table shows some
of them:

Sequence Meaning

%Y Four-digit year

%y Two-digit year

%M Complete month name

%b Month name, initial three letters

%m Two-digit month of year (01..12)

%c Month of year (1..12)

%d Two-digit day of month (01..31)

%e Day of month (1..31)

%W Weekday name (Sunday..Saturday)

%r 12-hour time with AM or PM suffix

%T 24-hour time

6.3. Changing MySQL’s Date Format | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Sequence Meaning

%H Two-digit hour

%i Two-digit minute

%s Two-digit second

%% Literal %

The time-related format sequences shown in the table are useful only when you pass
DATE_FORMAT() a value that has both date and time parts (a DATETIME or TIMESTAMP).
The following statement displays DATETIME values from the datetime_val table using
formats that include the time of day:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%c/%e/%y %r') AS format1,
 -> DATE_FORMAT(dt,'%M %e, %Y %T') AS format2
 -> FROM datetime_val;
+---------------------+----------------------+----------------------------+
| dt | format1 | format2 |
+---------------------+----------------------+----------------------------+
1970-01-01 00:00:00	1/1/70 12:00:00 AM	January 1, 1970 00:00:00
1999-12-31 09:00:00	12/31/99 09:00:00 AM	December 31, 1999 09:00:00
2000-06-04 15:45:30	6/4/00 03:45:30 PM	June 4, 2000 15:45:30
2017-03-16 12:30:15	3/16/17 12:30:15 PM	March 16, 2017 12:30:15
+---------------------+----------------------+----------------------------+

TIME_FORMAT() is similar to DATE_FORMAT(). It works with TIME, DATETIME, or TIME
STAMP values, but understands only time-related specifiers in the format string:

mysql> SELECT dt,
 -> TIME_FORMAT(dt, '%r') AS '12-hour time',
 -> TIME_FORMAT(dt, '%T') AS '24-hour time'
 -> FROM datetime_val;
+---------------------+--------------+--------------+
| dt | 12-hour time | 24-hour time |
+---------------------+--------------+--------------+
1970-01-01 00:00:00	12:00:00 AM	00:00:00
1999-12-31 09:00:00	09:00:00 AM	09:00:00
2000-06-04 15:45:30	03:45:30 PM	15:45:30
2017-03-16 12:30:15	12:30:15 PM	12:30:15
+---------------------+--------------+--------------+

If DATE_FORMAT() or TIME_FORMAT() cannot produce the results that you want, write a
stored function that does. Suppose that you want to convert 24-hour TIME values to 12-
hour format but with a suffix of a.m. or p.m. rather than AM or PM. The following function
accomplishes that task. It uses TIME_FORMAT() to do most of the work, then strips the
suffix supplied by %r and replaces it with the desired suffix:

CREATE FUNCTION time_ampm (t TIME)
RETURNS VARCHAR(13) # mm:dd:ss {a.m.|p.m.} format
DETERMINISTIC

186 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

RETURN CONCAT(LEFT(TIME_FORMAT(t, '%r'), 9),
 IF(TIME_TO_SEC(t) < 12*60*60, 'a.m.', 'p.m.'));

Use the function like this:
mysql> SELECT t1, time_ampm(t1) FROM time_val;
+----------+---------------+
| t1 | time_ampm(t1) |
+----------+---------------+
15:00:00	03:00:00 p.m.
05:01:30	05:01:30 a.m.
12:30:20	12:30:20 p.m.
+----------+---------------+

For more information about writing stored functions, see Chapter 9.

6.4. Setting the Client Time Zone
Problem
You have a client application that connects from a time zone different from the server.
Consequently, when it stores TIMESTAMP values, they don’t have the correct UTC values.

Solution
The client should set the time_zone system variable after connecting to the server.

Discussion
Time zone settings have an important effect on TIMESTAMP values:

• When the MySQL server starts, it examines its operating environment to determine
its time zone. (To use a different value, start the server with the --default-time-
zone option.)

• For each client that connects, the server interprets TIMESTAMP values with respect
to the time zone associated with the client session. When a client inserts a TIME
STAMP value, the server converts it from the client time zone to UTC and stores the
UTC value. (Internally, the server stores a TIMESTAMP value as the number of seconds
since 1970-01-01 00:00:00 UTC.) When the client retrieves a TIMESTAMP value,
the server performs the reverse operation to convert the UTC value back to the
client time zone.

• The default session time zone for each client when it connects is the server time
zone. If all clients are in the same time zone as the server, nothing special need be
done for proper TIMESTAMP time zone conversion to occur. But if a client is in a time

6.4. Setting the Client Time Zone | 187

www.it-ebooks.info

http://www.it-ebooks.info/

zone different from the server and it inserts TIMESTAMP values without making the
proper time zone correction, the UTC values won’t be correct.

Suppose that the server and client C1 are in the same time zone, and client C1 issues
these statements:

mysql> CREATE TABLE t (ts TIMESTAMP);
mysql> INSERT INTO t (ts) VALUES('2014-06-01 12:30:00');
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2014-06-01 12:30:00 |
+---------------------+

Here, client C1 sees the same value that it stored. A different client, C2, will also see the
same value if it retrieves it, but if client C2 is in a different time zone, that value isn’t
correct for its zone. Conversely, if client C2 stores a value, that value when returned by
client C1 won’t be correct for the client C1 time zone.

To deal with this problem so that TIMESTAMP conversions use the proper time zone, a
client should set its time zone explicitly by setting the session value of the time_zone
system variable. Suppose that the server has a global time zone of six hours ahead of
UTC. Each client initially is assigned that same value as its session time zone:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| +06:00 | +06:00 |
+--------------------+---------------------+

When client C2 connects, it sees the same TIMESTAMP value as client C1:
mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2014-06-01 12:30:00 |
+---------------------+

But that value is incorrect if client C2 is only four hours ahead of UTC. C2 should set
its time zone after connecting so that retrieved TIMESTAMP values are properly adjusted
for its own session:

mysql> SET SESSION time_zone = '+04:00';
mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| +06:00 | +04:00 |
+--------------------+---------------------+

188 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT ts FROM t;
+---------------------+
| ts |
+---------------------+
| 2014-06-01 10:30:00 |
+---------------------+

The client time zone also affects the values displayed from functions that return the
current date and time (see Recipe 6.6).

See Also
To convert individual date-and-time values from one time zone to another, use the
CONVERT_TZ() function (see Recipe 6.5).

6.5. Shifting Temporal Values Between Time Zones
Problem
You have a date-and-time value, but need to know what it would be in a different time
zone. For example, you’re having a teleconference with people in different parts of the
world and you must tell them the meeting time in their local time zones.

Solution
Use the CONVERT_TZ() function.

Discussion
The CONVERT_TZ() function converts temporal values between time zones. It takes three
arguments: a date-and-time value and two time zone indicators. The function interprets
the date-and-time value as a value in the first time zone and returns the value shifted
into the second time zone.

Suppose that I live in Chicago, Illinois in the US, and that I have a meeting with people
in several other parts of the world. The following table shows the location of each meet‐
ing participant and the time zone name for each:

Location Time zone name

Chicago, Illinois, US US/Central

Berlin, Germany Europe/Berlin

London, United Kingdom Europe/London

Edmonton, Alberta, Canada America/Edmonton

Brisbane, Australia Australia/Brisbane

6.5. Shifting Temporal Values Between Time Zones | 189

www.it-ebooks.info

http://www.it-ebooks.info/

If the meeting is to take place at 9 AM local time for me on November 23, 2014, what
time will that be for the other participants? The following statement uses CON
VERT_TZ() to calculate the local times for each time zone:

mysql> SET @dt = '2014-11-23 09:00:00';
mysql> SELECT @dt AS Chicago,
 -> CONVERT_TZ(@dt,'US/Central','Europe/Berlin') AS Berlin,
 -> CONVERT_TZ(@dt,'US/Central','Europe/London') AS London,
 -> CONVERT_TZ(@dt,'US/Central','America/Edmonton') AS Edmonton,
 -> CONVERT_TZ(@dt,'US/Central','Australia/Brisbane') AS Brisbane\G
*************************** 1. row ***************************
 Chicago: 2014-11-23 09:00:00
 Berlin: 2014-11-23 16:00:00
 London: 2014-11-23 15:00:00
Edmonton: 2014-11-23 08:00:00
Brisbane: 2014-11-24 01:00:00

Let’s hope the Brisbane participant doesn’t mind being up after midnight.

The preceding example uses time zone names, so it requires that you have the time zone
tables in the mysql database initialized with support for named time zones. (See the
MySQL Reference Manual for information about setting up the time zone tables.) If you
can’t use named time zones, specify them in terms of their numeric relationship to UTC.
(This can be a little trickier; you might need to account for daylight saving time.) The
corresponding statement with numeric time zones looks like this:

mysql> SELECT @dt AS Chicago,
 -> CONVERT_TZ(@dt,'-06:00','+01:00') AS Berlin,
 -> CONVERT_TZ(@dt,'-06:00','+00:00') AS London,
 -> CONVERT_TZ(@dt,'-06:00','-07:00') AS Edmonton,
 -> CONVERT_TZ(@dt,'-06:00','+10:00') AS Brisbane\G
*************************** 1. row ***************************
 Chicago: 2014-11-23 09:00:00
 Berlin: 2014-11-23 16:00:00
 London: 2014-11-23 15:00:00
Edmonton: 2014-11-23 08:00:00
Brisbane: 2014-11-24 01:00:00

6.6. Determining the Current Date or Time
Problem
What’s today’s date? What time is it?

Solution
Use the CURDATE(), CURTIME(), or NOW() functions to obtain values expressed in the
client session time zone. Use UTC_DATE(), UTC_TIME(), or UTC_TIMESTAMP() for values
in UTC time.

190 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Some applications must know the current date or time, such as those that write time‐
stamped log records. This kind of information is also useful for date calculations per‐
formed in relation to the current date, such as finding the first (or last) day of the month,
or determining the date for Wednesday of next week.

The CURDATE() and CURTIME() functions return the current date and time separately,
and NOW() returns both as a combined date-and-time value:

mysql> SELECT CURDATE(), CURTIME(), NOW();
+------------+-----------+---------------------+
| CURDATE() | CURTIME() | NOW() |
+------------+-----------+---------------------+
| 2014-02-20 | 18:06:45 | 2014-02-20 18:06:45 |
+------------+-----------+---------------------+

CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP are synonyms for CURDATE(),
CURTIME(), and NOW(), respectively.

The preceding functions return values in the client session time zone (see Recipe 6.4).
For values in UTC time, use the UTC_DATE(), UTC_TIME(), or UTC_TIMESTAMP() func‐
tions instead.

To determine the current date and time for an arbitrary time zone, pass the value of the
appropriate UTC function to CONVERT_TZ() (see Recipe 6.5).

To obtain subparts of these values, such as the current day of the month or current hour
of the day, use the decomposition techniques discussed in Recipe 6.8.

6.7. Using TIMESTAMP or DATETIME to Track Row-
Modification Times
Problem
You want to record row-creation time or last modification time automatically.

Solution
Use the auto-initialization and auto-update properties of the TIMESTAMP and DATE
TIME data types.

Discussion
MySQL supports TIMESTAMP and DATETIME data types that store date-and-time values.
Recipe 6.1 covers the range of values for these types. This section focuses on special

6.7. Using TIMESTAMP or DATETIME to Track Row-Modification Times | 191

www.it-ebooks.info

http://www.it-ebooks.info/

column attributes that enable you to track row-creation and -update times automati‐
cally:

• A TIMESTAMP or DATETIME column declared with the DEFAULT CURRENT_TIME
STAMP attribute initializes automatically for new rows. Simply omit the column from
INSERT statements and MySQL sets it to the row-creation time.

• A TIMESTAMP or DATETIME column declared with the ON UPDATE CURRENT_TIME
STAMP attribute automatically updates to the current date and time when you change
any other column in the row from its current value.

These special properties make the TIMESTAMP and DATETIME data types particularly
suited for applications that require recording the times at which rows are inserted or
updated. The following discussion shows how to take advantage of these properties
using TIMESTAMP columns. With some differences to be noted later, the discussion also
applies to DATETIME columns.

This section assumes that you have MySQL 5.6.5 or later. For older
versions, automatic initialization and update properties apply only to
TIMESTAMP (not DATETIME), and to at most a single TIMESTAMP in a
table.

Our example table looks like this:
CREATE TABLE tsdemo
(
 val INT,
 ts_both TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 ts_create TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 ts_update TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

The TIMESTAMP columns have these properties:

• ts_both auto-initializes and auto-updates. This is useful for tracking the time of
any change to a row, for both inserts and updates.

• ts_create auto-initializes only. This is useful when you want a column to be set to
the time at which a row is created, but remain constant thereafter.

• ts_update auto-updates only. It is set to the column default (or value you specify
explicitly) at row-creation time and it auto-updates for changes to the row there‐
after. The use cases for this are more limited—for example, to track row-creation
and last-modification times separately (using ts_update in conjunction with
ts_create), rather than together in a single column like ts_both.

192 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

To see how the table works, insert some rows into the table (a few seconds apart so the
timestamps differ), then select its contents:

mysql> INSERT INTO tsdemo (val) VALUES(5);
mysql> INSERT INTO tsdemo (val,ts_both,ts_create,ts_update)
 -> VALUES(10,NULL,NULL,NULL);
mysql> SELECT * FROM tsdemo;
+------+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+------+---------------------+---------------------+---------------------+
| 5 | 2014-02-20 18:06:45 | 2014-02-20 18:06:45 | 0000-00-00 00:00:00 |
| 10 | 2014-02-20 18:06:50 | 2014-02-20 18:06:50 | 2014-02-20 18:06:50 |
+------+---------------------+---------------------+---------------------+

The first INSERT statement shows that you can set the auto-initialize columns to the
current date and time by omitting them from the INSERT statement entirely. The second
shows that you can set a TIMESTAMP column to the current date and time by setting it
explicitly to NULL, even one that does not auto-initialize. This NULL-assignment behavior
is not specific to INSERT statements; it works for UPDATE as well. You can disable this
special handling of NULL assignments, as we’ll cover later in this section.

To see auto-updating in action, issue a statement that changes one row’s val column
and check its effect on the table’s contents. The result shows that the auto-update col‐
umns are updated (in the modified row only):

mysql> UPDATE tsdemo SET val = 11 WHERE val = 10;
mysql> SELECT * FROM tsdemo;
+------+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+------+---------------------+---------------------+---------------------+
| 5 | 2014-02-20 18:06:45 | 2014-02-20 18:06:45 | 0000-00-00 00:00:00 |
| 11 | 2014-02-20 18:06:55 | 2014-02-20 18:06:50 | 2014-02-20 18:06:55 |
+------+---------------------+---------------------+---------------------+

If you modify multiple rows, updates occur for the auto-update columns in each row:
mysql> UPDATE tsdemo SET val = val + 1;
mysql> SELECT * FROM tsdemo;
+------+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+------+---------------------+---------------------+---------------------+
| 6 | 2014-02-20 18:07:01 | 2014-02-20 18:06:45 | 2014-02-20 18:07:01 |
| 12 | 2014-02-20 18:07:01 | 2014-02-20 18:06:50 | 2014-02-20 18:07:01 |
+------+---------------------+---------------------+---------------------+

An UPDATE statement that doesn’t actually change any value in a row doesn’t modify
auto-update columns. To see this, set every row’s val column to its current value, then
review the table contents to see that auto-update columns retain their values:

mysql> UPDATE tsdemo SET val = val;
mysql> SELECT * FROM tsdemo;

6.7. Using TIMESTAMP or DATETIME to Track Row-Modification Times | 193

www.it-ebooks.info

http://www.it-ebooks.info/

+------+---------------------+---------------------+---------------------+
| val | ts_both | ts_create | ts_update |
+------+---------------------+---------------------+---------------------+
| 6 | 2014-02-20 18:07:01 | 2014-02-20 18:06:45 | 2014-02-20 18:07:01 |
| 12 | 2014-02-20 18:07:01 | 2014-02-20 18:06:50 | 2014-02-20 18:07:01 |
+------+---------------------+---------------------+---------------------+

As stated previously, automatic TIMESTAMP properties also apply to DATETIME, with some
differences:

• For the first TIMESTAMP column in a table, if neither of the DEFAULT or ON UPDATE
attributes are specified, the column is implicitly defined with both. For DATETIME,
automatic properties never apply implicitly; only those specified explicitly. (To
suppress implicit attribute definition for TIMESTAMP columns, enable the explic
it_defaults_for_timestamp system variable.)

• You can set a TIMESTAMP column to the current date and time at any time by setting
it to NULL, unless it has specifically been defined to permit NULL values. Assigning
NULL to a DATETIME column never sets it to the current date and time.
To prevent a TIMESTAMP column from being set to the current date and time when
assigned a NULL value, include the NULL attribute in the column definition. Then
assigning NULL to the column stores NULL.

To determine for any given TIMESTAMP column what happens when NULL is assigned to
it, use SHOW CREATE TABLE to see the column definition. If the definition includes the
NULL attribute, assigning NULL stores NULL. If the definition includes the NOT NULL at‐
tribute, you can specify NULL as the value to be assigned, but you cannot store NULL
because MySQL stores the current date and time instead.

See Also
To simulate TIMESTAMP auto-initialization and auto-update properties for other tem‐
poral types, you can use triggers (see Recipe 9.6). This technique applies to DATE and
TIME, and can also be useful for DATETIME before MySQL 5.6.5 (when automatic prop‐
erties for that type were introduced).

6.8. Extracting Parts of Dates or Times
Problem
You want to obtain just a part of a date or a time.

194 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Invoke a function specifically intended for extracting part of a temporal value, such as
MONTH() or MINUTE(). This is usually the fastest method for component extraction if
you need only a single component of a value. Alternatively, use a formatting function
such as DATE_FORMAT() or TIME_FORMAT() with a format string that includes a specifier
for the part of the value you want to obtain.

Discussion
The following discussion shows different ways to extract parts of temporal values.

Decomposing dates or times using component-extraction functions

MySQL includes many functions for extracting date and time subpart extraction. For
example, DATE() and TIME() extract the date and time components of temporal values:

mysql> SELECT dt, DATE(dt), TIME(dt) FROM datetime_val;
+---------------------+------------+----------+
| dt | DATE(dt) | TIME(dt) |
+---------------------+------------+----------+
1970-01-01 00:00:00	1970-01-01	00:00:00
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
2017-03-16 12:30:15	2017-03-16	12:30:15
+---------------------+------------+----------+

The following table shows some several component-extraction functions; consult the
MySQL Reference Manual for a complete list. The date-related functions work with
DATE, DATETIME, or TIMESTAMP values. The time-related functions work with TIME, DA
TETIME, or TIMESTAMP values:

Function Return value

YEAR() Year of date

MONTH() Month number (1..12)

MONTHNAME() Month name (January..December)

DAYOFMONTH() Day of month (1..31)

DAYNAME() Day name (Sunday..Saturday)

DAYOFWEEK() Day of week (1..7 for Sunday..Saturday)

WEEKDAY() Day of week (0..6 for Monday..Sunday)

DAYOFYEAR() Day of year (1..366)

HOUR() Hour of time (0..23)

MINUTE() Minute of time (0..59)

SECOND() Second of time (0..59)

EXTRACT() Varies

6.8. Extracting Parts of Dates or Times | 195

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s an example:
mysql> SELECT dt, YEAR(dt), DAYOFMONTH(dt), HOUR(dt), SECOND(dt)
 -> FROM datetime_val;
+---------------------+----------+----------------+----------+------------+
| dt | YEAR(dt) | DAYOFMONTH(dt) | HOUR(dt) | SECOND(dt) |
+---------------------+----------+----------------+----------+------------+
1970-01-01 00:00:00	1970	1	0	0
1999-12-31 09:00:00	1999	31	9	0
2000-06-04 15:45:30	2000	4	15	30
2017-03-16 12:30:15	2017	16	12	15
+---------------------+----------+----------------+----------+------------+

Functions such as YEAR() or DAYOFMONTH() extract values that have an obvious corre‐
spondence to a substring of the temporal value to which you apply them. Other
component-extraction functions provide access to values that have no such corre‐
spondence. One is the day-of-year value:

mysql> SELECT d, DAYOFYEAR(d) FROM date_val;
+------------+--------------+
| d | DAYOFYEAR(d) |
+------------+--------------+
1864-02-28	59
1900-01-15	15
1999-12-31	365
2000-06-04	156
2017-03-16	75
+------------+--------------+

Another is the day of the week, which is available by name or number:

• DAYNAME() returns the complete day name. There is no function for returning the
three-character name abbreviation, but you can get it easily by passing the full name
to LEFT():

mysql> SELECT d, DAYNAME(d), LEFT(DAYNAME(d),3) FROM date_val;
+------------+------------+--------------------+
| d | DAYNAME(d) | LEFT(DAYNAME(d),3) |
+------------+------------+--------------------+
1864-02-28	Sunday	Sun
1900-01-15	Monday	Mon
1999-12-31	Friday	Fri
2000-06-04	Sunday	Sun
2017-03-16	Thursday	Thu
+------------+------------+--------------------+

• To get the day of the week as a number, use DAYOFWEEK() or WEEKDAY(), but pay
attention to the range of values each function returns. DAYOFWEEK() returns values
from 1 to 7, corresponding to Sunday through Saturday. WEEKDAY() returns values
from 0 to 6, corresponding to Monday through Sunday:

mysql> SELECT d, DAYNAME(d), DAYOFWEEK(d), WEEKDAY(d) FROM date_val;
+------------+------------+--------------+------------+

196 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

| d | DAYNAME(d) | DAYOFWEEK(d) | WEEKDAY(d) |
+------------+------------+--------------+------------+
1864-02-28	Sunday	1	6
1900-01-15	Monday	2	0
1999-12-31	Friday	6	4
2000-06-04	Sunday	1	6
2017-03-16	Thursday	5	3
+------------+------------+--------------+------------+

EXTRACT() is another function for obtaining individual parts of temporal values:
mysql> SELECT dt, EXTRACT(DAY FROM dt), EXTRACT(HOUR FROM dt)
 -> FROM datetime_val;
+---------------------+----------------------+-----------------------+
| dt | EXTRACT(DAY FROM dt) | EXTRACT(HOUR FROM dt) |
+---------------------+----------------------+-----------------------+
1970-01-01 00:00:00	1	0
1999-12-31 09:00:00	31	9
2000-06-04 15:45:30	4	15
2017-03-16 12:30:15	16	12
+---------------------+----------------------+-----------------------+

The keyword indicating what to extract from the value should be a unit specifier such
as YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND. Unit specifiers are singular, not plural.
(Check the MySQL Reference Manual for the full list.)

Obtaining the Current Year, Month, Day, Hour, Minute, or Second
To obtain the current year, month, day, or day of week, apply the extraction functions
shown in this recipe to CURDATE() or NOW():

mysql> SELECT CURDATE(), YEAR(CURDATE()) AS year,
 -> MONTH(CURDATE()) AS month, MONTHNAME(CURDATE()) AS monthname,
 -> DAYOFMONTH(CURDATE()) AS day, DAYNAME(CURDATE()) AS dayname;
+------------+------+-------+-----------+------+----------+
| CURDATE() | year | month | monthname | day | dayname |
+------------+------+-------+-----------+------+----------+
| 2014-02-20 | 2014 | 2 | February | 20 | Thursday |
+------------+------+-------+-----------+------+----------+

Similarly, to obtain the current hour, minute, or second, pass CURTIME() or NOW() to a
time-component function:

mysql> SELECT NOW(), HOUR(NOW()) AS hour,
 -> MINUTE(NOW()) AS minute, SECOND(NOW()) AS second;
+---------------------+------+--------+--------+
| NOW() | hour | minute | second |
+---------------------+------+--------+--------+
| 2014-02-20 18:07:03 | 18 | 7 | 3 |
+---------------------+------+--------+--------+

6.8. Extracting Parts of Dates or Times | 197

www.it-ebooks.info

http://www.it-ebooks.info/

Decomposing dates or times using formatting functions

The DATE_FORMAT() and TIME_FORMAT() functions reformat date and time values. By
specifying appropriate format strings, you can extract individual parts of temporal val‐
ues:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%Y') AS year,
 -> DATE_FORMAT(dt,'%d') AS day,
 -> TIME_FORMAT(dt,'%H') AS hour,
 -> TIME_FORMAT(dt,'%s') AS second
 -> FROM datetime_val;
+---------------------+------+------+------+--------+
| dt | year | day | hour | second |
+---------------------+------+------+------+--------+
1970-01-01 00:00:00	1970	01	00	00
1999-12-31 09:00:00	1999	31	09	00
2000-06-04 15:45:30	2000	04	15	30
2017-03-16 12:30:15	2017	16	12	15
+---------------------+------+------+------+--------+

Formatting functions are advantageous when you want to extract more than one part
of a value, or display extracted values in a format different from the default. For example,
to extract the entire date or time from DATETIME values, do this:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%Y-%m-%d') AS 'date part',
 -> TIME_FORMAT(dt,'%T') AS 'time part'
 -> FROM datetime_val;
+---------------------+------------+-----------+
| dt | date part | time part |
+---------------------+------------+-----------+
1970-01-01 00:00:00	1970-01-01	00:00:00
1999-12-31 09:00:00	1999-12-31	09:00:00
2000-06-04 15:45:30	2000-06-04	15:45:30
2017-03-16 12:30:15	2017-03-16	12:30:15
+---------------------+------------+-----------+

To present a date in other than CCYY-MM-DD format or a time without the seconds part,
do this:

mysql> SELECT dt,
 -> DATE_FORMAT(dt,'%M %e, %Y') AS 'descriptive date',
 -> TIME_FORMAT(dt,'%H:%i') AS 'hours/minutes'
 -> FROM datetime_val;
+---------------------+-------------------+---------------+
| dt | descriptive date | hours/minutes |
+---------------------+-------------------+---------------+
1970-01-01 00:00:00	January 1, 1970	00:00
1999-12-31 09:00:00	December 31, 1999	09:00
2000-06-04 15:45:30	June 4, 2000	15:45
2017-03-16 12:30:15	March 16, 2017	12:30
+---------------------+-------------------+---------------+

198 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

6.9. Synthesizing Dates or Times from Component Values
Problem
You want to combine the parts of a date or time to produce a complete date or time
value. Or you want to replace parts of a date to produce another date.

Solution
You have several options:

• Use MAKETIME() to construct a TIME value from hour, minute, and second parts.
• Use DATE_FORMAT() or TIME_FORMAT() to combine parts of the existing value with

parts you want to replace.
• Pull out the parts that you need with component-extraction functions and recom‐

bine the parts with CONCAT().

Discussion
The reverse of splitting a date or time value into components is synthesizing a temporal
value from its constituent parts. Techniques for date and time synthesis include using
composition functions, formatting functions, and string concatenation.

The MAKETIME() function takes component hour, minute, and second values as argu‐
ments and combines them to produce a time:

mysql> SELECT MAKETIME(10,30,58), MAKETIME(-5,0,11);
+--------------------+-------------------+
| MAKETIME(10,30,58) | MAKETIME(-5,0,11) |
+--------------------+-------------------+
| 10:30:58 | -05:00:11 |
+--------------------+-------------------+

Date synthesis often is performed beginning with a given date, then keeping parts that
you want to use and replacing the rest. For example, to produce the first day of the
month in which a date falls, use DATE_FORMAT() to extract the year and month parts
from the date, combining them with a day part of 01:

mysql> SELECT d, DATE_FORMAT(d,'%Y-%m-01') FROM date_val;
+------------+---------------------------+
| d | DATE_FORMAT(d,'%Y-%m-01') |
+------------+---------------------------+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01

6.9. Synthesizing Dates or Times from Component Values | 199

www.it-ebooks.info

http://www.it-ebooks.info/

| 2017-03-16 | 2017-03-01 |
+------------+---------------------------+

TIME_FORMAT() can be used similarly. The following example produces time values that
have the seconds part set to 00:

mysql> SELECT t1, TIME_FORMAT(t1,'%H:%i:00') FROM time_val;
+----------+----------------------------+
| t1 | TIME_FORMAT(t1,'%H:%i:00') |
+----------+----------------------------+
15:00:00	15:00:00
05:01:30	05:01:00
12:30:20	12:30:00
+----------+----------------------------+

Another way to construct temporal values is to use date-part extraction functions in
conjunction with CONCAT(). However, this method often is messier than the DATE_FOR
MAT() technique just discussed, and it sometimes yields slightly different results:

mysql> SELECT d, CONCAT(YEAR(d),'-',MONTH(d),'-01') FROM date_val;
+------------+------------------------------------+
| d | CONCAT(YEAR(d),'-',MONTH(d),'-01') |
+------------+------------------------------------+
1864-02-28	1864-2-01
1900-01-15	1900-1-01
1999-12-31	1999-12-01
2000-06-04	2000-6-01
2017-03-16	2017-3-01
+------------+------------------------------------+

Note that the month values in some of these dates have only a single digit. To ensure
that the month has two digits—as required for ISO format—use LPAD() to add a leading
zero as necessary:

mysql> SELECT d, CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01')
 -> FROM date_val;
+------------+--+
| d | CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01') |
+------------+--+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+--+

Recipe 6.19 shows other ways to solve the problem of producing ISO dates from not-
quite-ISO dates.

TIME values can be produced from hours, minutes, and seconds values using methods
analogous to those for creating DATE values. For example, to change a TIME value so that

200 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

its seconds part is 00, extract the hour and minute parts, and then recombine them with
CONCAT():

mysql> SELECT t1,
 -> CONCAT(LPAD(HOUR(t1),2,'0'),':',LPAD(MINUTE(t1),2,'0'),':00')
 -> AS recombined
 -> FROM time_val;
+----------+------------+
| t1 | recombined |
+----------+------------+
15:00:00	15:00:00
05:01:30	05:01:00
12:30:20	12:30:00
+----------+------------+

To produce a combined date-and-time value from separate date and time values, simply
concatenate them separated by a space:

mysql> SET @d = '2014-02-28', @t = '13:10:05';
mysql> SELECT @d, @t, CONCAT(@d,' ',@t);
+------------+----------+---------------------+
| @d | @t | CONCAT(@d,' ',@t) |
+------------+----------+---------------------+
| 2014-02-28 | 13:10:05 | 2014-02-28 13:10:05 |
+------------+----------+---------------------+

6.10. Converting Between Temporal Values and Basic
Units
Problem
You want to convert a temporal value such as a time or date to basic units such as seconds
or days. This is often useful or necessary for performing temporal arithmetic operations
(see Recipes 6.11 and 6.12).

Solution
The conversion method depends on the type of value to be converted:

• To convert between time values and seconds, use the TIME_TO_SEC() and
SEC_TO_TIME() functions.

• To convert between date values and days, use the TO_DAYS() and FROM_DAYS()
functions.

• To convert between date-and-time values and seconds, use the UNIX_TIME
STAMP() and FROM_UNIXTIME() functions.

6.10. Converting Between Temporal Values and Basic Units | 201

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The following discussion shows how to convert several types of temporal values to basic
units and vice versa.

Converting between times and seconds

TIME values are specialized representations of a simpler unit (seconds). To convert from
one to the other, use the TIME_TO_SEC() and SEC_TO_TIME() functions.

TIME_TO_SEC() converts a TIME value to the equivalent number of seconds, and
SEC_TO_TIME() does the opposite. The following statement demonstrates a simple con‐
version in both directions:

mysql> SELECT t1,
 -> TIME_TO_SEC(t1) AS 'TIME to seconds',
 -> SEC_TO_TIME(TIME_TO_SEC(t1)) AS 'TIME to seconds to TIME'
 -> FROM time_val;
+----------+-----------------+-------------------------+
| t1 | TIME to seconds | TIME to seconds to TIME |
+----------+-----------------+-------------------------+
15:00:00	54000	15:00:00
05:01:30	18090	05:01:30
12:30:20	45020	12:30:20
+----------+-----------------+-------------------------+

To express time values as minutes, hours, or days, perform the appropriate divisions:
mysql> SELECT t1,
 -> TIME_TO_SEC(t1) AS 'seconds',
 -> TIME_TO_SEC(t1)/60 AS 'minutes',
 -> TIME_TO_SEC(t1)/(60*60) AS 'hours',
 -> TIME_TO_SEC(t1)/(24*60*60) AS 'days'
 -> FROM time_val;
+----------+---------+----------+---------+--------+
| t1 | seconds | minutes | hours | days |
+----------+---------+----------+---------+--------+
15:00:00	54000	900.0000	15.0000	0.6250
05:01:30	18090	301.5000	5.0250	0.2094
12:30:20	45020	750.3333	12.5056	0.5211
+----------+---------+----------+---------+--------+

Use FLOOR() on the division results if you prefer integer values that have no fractional
part.

If you pass TIME_TO_SEC() a date-and-time value, it extracts the time part and discards
the date. This provides another means of extracting times from DATETIME (or TIME
STAMP) values, in addition to those already discussed in Recipe 6.8:

mysql> SELECT dt,
 -> TIME_TO_SEC(dt) AS 'time part in seconds',
 -> SEC_TO_TIME(TIME_TO_SEC(dt)) AS 'time part as TIME'

202 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

 -> FROM datetime_val;
+---------------------+----------------------+-------------------+
| dt | time part in seconds | time part as TIME |
+---------------------+----------------------+-------------------+
1970-01-01 00:00:00	0	00:00:00
1999-12-31 09:00:00	32400	09:00:00
2000-06-04 15:45:30	56730	15:45:30
2017-03-16 12:30:15	45015	12:30:15
+---------------------+----------------------+-------------------+

Converting between dates and days

If you have a date but want a value in days, or vice versa, use the TO_DAYS() and
FROM_DAYS() functions. Date-and-time values also can be converted to days if you can
suffer loss of the time part.

TO_DAYS() converts a date to the corresponding number of days, and FROM_DAYS() does
the opposite:

mysql> SELECT d,
 -> TO_DAYS(d) AS 'DATE to days',
 -> FROM_DAYS(TO_DAYS(d)) AS 'DATE to days to DATE'
 -> FROM date_val;
+------------+--------------+----------------------+
| d | DATE to days | DATE to days to DATE |
+------------+--------------+----------------------+
1864-02-28	680870	1864-02-28
1900-01-15	693975	1900-01-15
1999-12-31	730484	1999-12-31
2000-06-04	730640	2000-06-04
2017-03-16	736769	2017-03-16
+------------+--------------+----------------------+

When using TO_DAYS(), it’s best to stick to the advice of the MySQL Reference Man‐
ual and avoid DATE values that occur before the beginning of the Gregorian calendar
(1582). Changes in the lengths of calendar years and months prior to that date make it
difficult to speak meaningfully of what the value of “day 0” might be. This differs from
TIME_TO_SEC(), where the correspondence between a TIME value and the resulting sec‐
onds value is obvious and has a meaningful reference point of 0 seconds.

If you pass TO_DAYS() a date-and-time value, it extracts the date part and discards the
time. This provides another means of extracting dates from DATETIME (or TIMESTAMP)
values, in addition to those already discussed in Recipe 6.8:

mysql> SELECT dt,
 -> TO_DAYS(dt) AS 'date part in days',
 -> FROM_DAYS(TO_DAYS(dt)) AS 'date part as DATE'
 -> FROM datetime_val;
+---------------------+-------------------+-------------------+
| dt | date part in days | date part as DATE |
+---------------------+-------------------+-------------------+

6.10. Converting Between Temporal Values and Basic Units | 203

www.it-ebooks.info

http://www.it-ebooks.info/

1970-01-01 00:00:00	719528	1970-01-01
1999-12-31 09:00:00	730484	1999-12-31
2000-06-04 15:45:30	730640	2000-06-04
2017-03-16 12:30:15	736769	2017-03-16
+---------------------+-------------------+-------------------+

Converting between date-and-time values and seconds

For DATETIME or TIMESTAMP values that lie within the range of the TIMESTAMP data type
(from the beginning of 1970 partially through 2038), the UNIX_TIMESTAMP() and
FROM_UNIXTIME() functions convert to and from the number of seconds elapsed since
the beginning of 1970. The conversion to seconds offers higher precision for date-and-
time values than a conversion to days, at the cost of a more limited range of values for
which the conversion may be performed (TIME_TO_SEC() is unsuitable for this because
it discards the date):

mysql> SELECT dt,
 -> UNIX_TIMESTAMP(dt) AS seconds,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
 -> FROM datetime_val;
+---------------------+------------+---------------------+
| dt | seconds | timestamp |
+---------------------+------------+---------------------+
1970-01-01 00:00:00	21600	1970-01-01 00:00:00
1999-12-31 09:00:00	946652400	1999-12-31 09:00:00
2000-06-04 15:45:30	960151530	2000-06-04 15:45:30
2017-03-16 12:30:15	1489685415	2017-03-16 12:30:15
+---------------------+------------+---------------------+

There is a relationship between “UNIX” in the function names and the fact that the
applicable range of values begins with 1970: the “Unix epoch” begins at 1970-01-01
00:00:00 UTC. The epoch is time zero, or the reference point for measuring time in
Unix systems. That being so, you may find it curious that the preceding example shows
a UNIX_TIMESTAMP() value of 21600 for the first value in the datetime_val table. Why
isn’t it 0? The apparent discrepancy is due to the fact that the MySQL server interprets
the UNIX_TIMESTAMP() argument as a value in the client’s local time zone and converts
it to UTC (see Recipe 6.4). My server is in the US Central time zone, six hours (21,600
seconds) west of UTC. Change the session time zone to '+00:00' for UTC time and
run the query again to observe a different result:

mysql> set time_zone = '+00:00';
mysql> SELECT dt,
 -> UNIX_TIMESTAMP(dt) AS seconds,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(dt)) AS timestamp
 -> FROM datetime_val;
+---------------------+------------+---------------------+
| dt | seconds | timestamp |
+---------------------+------------+---------------------+
| 1970-01-01 00:00:00 | 0 | 1970-01-01 00:00:00 |
| 1999-12-31 09:00:00 | 946630800 | 1999-12-31 09:00:00 |

204 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

| 2000-06-04 15:45:30 | 960133530 | 2000-06-04 15:45:30 |
| 2017-03-16 12:30:15 | 1489667415 | 2017-03-16 12:30:15 |
+---------------------+------------+---------------------+

UNIX_TIMESTAMP() can convert DATE values to seconds, too. It treats such values as
having an implicit time-of-day part of 00:00:00:

mysql> SELECT
 -> CURDATE(),
 -> UNIX_TIMESTAMP(CURDATE()),
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE()))\G
*************************** 1. row ***************************
 CURDATE(): 2014-02-20
 UNIX_TIMESTAMP(CURDATE()): 1392876000
FROM_UNIXTIME(UNIX_TIMESTAMP(CURDATE())): 2014-02-20 00:00:00

6.11. Calculating Intervals Between Dates or Times
Problem
You want to know how long it is between two dates or times; that is, the interval between
them.

Solution
To calculate an interval, use one of the temporal-difference functions, or convert your
values to basic units and take the difference. The permitted functions depend on the
types of the values for which you want to know the interval.

Discussion
The following discussion shows several ways to perform interval calculations.

Calculating intervals with temporal-difference functions

To calculate an interval in days between two date values, use the DATEDIFF() function:
mysql> SET @d1 = '2010-01-01', @d2 = '2009-12-01';
mysql> SELECT DATEDIFF(@d1,@d2) AS 'd1 - d2', DATEDIFF(@d2,@d1) AS 'd2 - d1';
+---------+---------+
| d1 - d2 | d2 - d1 |
+---------+---------+
| 31 | -31 |
+---------+---------+

DATEDIFF() also works with date-and-time values, but ignores the time part. This makes
it suitable for producing day intervals for DATE, DATETIME, or TIMESTAMP values.

6.11. Calculating Intervals Between Dates or Times | 205

www.it-ebooks.info

http://www.it-ebooks.info/

To calculate an interval between TIME values as another TIME value, use the TIME
DIFF() function:

mysql> SET @t1 = '12:00:00', @t2 = '16:30:00';
mysql> SELECT TIMEDIFF(@t1,@t2) AS 't1 - t2', TIMEDIFF(@t2,@t1) AS 't2 - t1';
+-----------+----------+
| t1 - t2 | t2 - t1 |
+-----------+----------+
| -04:30:00 | 04:30:00 |
+-----------+----------+

TIMEDIFF() also works for date-and-time values. That is, it accepts either time or date-
and-time values, but the types of the arguments must match.

A time interval expressed as a TIME value can be broken down into components using
the techniques shown in Recipe 6.8. For example, to express a time interval in terms of
its constituent hours, minutes, and seconds values, calculate time interval subparts using
the HOUR(), MINUTE(), and SECOND() functions. (Don’t forget that if your intervals may
be negative, you must take that into account.) The following SQL statement shows how
to determine the components of the interval between the t1 and t2 columns of the
time_val table:

mysql> SELECT t1, t2,
 -> TIMEDIFF(t2,t1) AS 't2 - t1 as TIME',
 -> IF(TIMEDIFF(t2,t1) >= 0,'+','-') AS sign,
 -> HOUR(TIMEDIFF(t2,t1)) AS hour,
 -> MINUTE(TIMEDIFF(t2,t1)) AS minute,
 -> SECOND(TIMEDIFF(t2,t1)) AS second
 -> FROM time_val;
+----------+----------+-----------------+------+------+--------+--------+
| t1 | t2 | t2 - t1 as TIME | sign | hour | minute | second |
+----------+----------+-----------------+------+------+--------+--------+
15:00:00	15:00:00	00:00:00	+	0	0	0
05:01:30	02:30:20	-02:31:10	-	2	31	10
12:30:20	17:30:45	05:00:25	+	5	0	25
+----------+----------+-----------------+------+------+--------+--------+

If you work with date or date-and-time values, the TIMESTAMPDIFF() function provides
another way to calculate intervals. It enables you to specify the units in which intervals
should be expressed:

TIMESTAMPDIFF(unit,val1,val2)

unit is the interval unit and val1 and val2 are the values between which to calculate
the interval. With TIMESTAMPDIFF(), you can express an interval in many different ways:

mysql> SET @dt1 = '1900-01-01 00:00:00', @dt2 = '1910-01-01 00:00:00';
mysql> SELECT
 -> TIMESTAMPDIFF(MINUTE,@dt1,@dt2) AS minutes,
 -> TIMESTAMPDIFF(HOUR,@dt1,@dt2) AS hours,
 -> TIMESTAMPDIFF(DAY,@dt1,@dt2) AS days,
 -> TIMESTAMPDIFF(WEEK,@dt1,@dt2) AS weeks,

206 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

 -> TIMESTAMPDIFF(YEAR,@dt1,@dt2) AS years;
+---------+-------+------+-------+-------+
| minutes | hours | days | weeks | years |
+---------+-------+------+-------+-------+
| 5258880 | 87648 | 3652 | 521 | 10 |
+---------+-------+------+-------+-------+

Permitted unit specifiers are MICROSECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH,
QUARTER, or YEAR. Note that each is singular, not plural.

Be aware of these properties of TIMESTAMPDIFF():

• Its value is negative if the first temporal value is greater than the second, which is
opposite the order of the arguments for DATEDIFF() and TIMEDIFF().

• Despite the TIMESTAMP in its name, TIMESTAMPDIFF() arguments are not limited to
the range of the TIMESTAMP data type.

Calculating intervals using basic units

Another strategy for calculating intervals is to work with basic units such as seconds or
days:

1. Convert your temporal values to basic units.
2. Take the difference between the values to calculate the interval, also in basic units.
3. If you want the result as a temporal value, convert it from basic units to the appro‐

priate type.

The conversion functions involved in implementing this strategy depend on the types
of the values between which you calculate the interval:

• To convert between time values and seconds, use TIME_TO_SEC() and
SEC_TO_TIME().

• To convert between date values and days, use TO_DAYS() and FROM_DAYS().
• To convert between date-and-time values and seconds, use UNIX_TIMESTAMP() and
FROM_UNIXTIME().

Recipe 6.10 discusses those conversion functions (and limitations on their applicability).
The following material assumes familiarity with that discussion.

Time interval calculation using basic units

To calculate intervals in seconds between pairs of time values, convert them to seconds
with TIME_TO_SEC() and take the difference. To express the resulting interval as a TIME
value, pass it to SEC_TO_TIME(). The following statement calculates the intervals be‐

6.11. Calculating Intervals Between Dates or Times | 207

www.it-ebooks.info

http://www.it-ebooks.info/

tween the t1 and t2 columns of the time_val table, expressing each interval both in
seconds and as a TIME value:

mysql> SELECT t1, t2,
 -> TIME_TO_SEC(t2) - TIME_TO_SEC(t1) AS 't2 - t1 (in seconds)',
 -> SEC_TO_TIME(TIME_TO_SEC(t2) - TIME_TO_SEC(t1)) AS 't2 - t1 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------+
| t1 | t2 | t2 - t1 (in seconds) | t2 - t1 (as TIME) |
+----------+----------+----------------------+-------------------+
15:00:00	15:00:00	0	00:00:00
05:01:30	02:30:20	-9070	-02:31:10
12:30:20	17:30:45	18025	05:00:25
+----------+----------+----------------------+-------------------+

Date or date-and-time interval calculation using basic units

When you calculate an interval between dates by converting both dates to a common
unit in relation to a given reference point and take the difference, the range of your
values determines which conversions are available:

• DATE, DATETIME, or TIMESTAMP values dating back to 1970-01-01 00:00:00 UTC—
the Unix epoch—can be converted to seconds elapsed since the epoch. With dates
in that range, you can calculate intervals to an accuracy of one second.

• Older dates from the beginning of the Gregorian calendar (1582) on can be con‐
verted to day values and used to compute intervals in days.

• Dates that begin earlier than either of these reference points present more of a
problem. In such cases, you may find that your programming language offers com‐
putations that are not available or are difficult to perform in SQL. If so, consider
processing date values directly from within your API language. For example, the
Date::Calc and Date::Manip modules are available from CPAN for use in Perl
scripts.

To calculate an interval in days between date or date-and-time values, convert them to
days with TO_DAYS() and take the difference. For an interval in weeks, do the same thing
and divide the result by seven:

mysql> SET @days = TO_DAYS('1884-01-01') - TO_DAYS('1883-06-05');
mysql> SELECT @days AS days, @days/7 AS weeks;
+------+---------+
| days | weeks |
+------+---------+
| 210 | 30.0000 |
+------+---------+

You cannot convert days to months or years by simple division because those units vary
in length. To yield date intervals expressed in those units, use TIMESTAMPDIFF(), dis‐
cussed earlier in this recipe.

208 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

For date-and-time values occurring within the TIMESTAMP range from 1970 partially
through 2038, you can determine intervals to a resolution in seconds using the
UNIX_TIMESTAMP() function. For intervals in other units, seconds are easily converted
to minutes, hours, days, or weeks, as this expression shows for dates that lie two weeks
apart:

mysql> SET @dt1 = '1984-01-01 09:00:00';
mysql> SET @dt2 = @dt1 + INTERVAL 14 DAY;
mysql> SET @interval = UNIX_TIMESTAMP(@dt2) - UNIX_TIMESTAMP(@dt1);
mysql> SELECT @interval AS seconds,
 -> @interval / 60 AS minutes,
 -> @interval / (60 * 60) AS hours,
 -> @interval / (24 * 60 * 60) AS days,
 -> @interval / (7 * 24 * 60 * 60) AS weeks;
+---------+------------+----------+---------+--------+
| seconds | minutes | hours | days | weeks |
+---------+------------+----------+---------+--------+
| 1209600 | 20160.0000 | 336.0000 | 14.0000 | 2.0000 |
+---------+------------+----------+---------+--------+

Use FLOOR() on the division results if you prefer integer values that have no fractional
part.

For values that occur outside the TIMESTAMP range, this interval calculation method is
more general (but messier):

1. Take the difference in days between the date parts of the values and multiply by 24
× 60 × 60 to convert to seconds.

2. Adjust the result by the difference in seconds between the time parts of the values.

Here’s an example, using two date-and-time values that lie slightly less than three days
apart:

mysql> SET @dt1 = '1800-02-14 07:30:00';
mysql> SET @dt2 = '1800-02-17 06:30:00';
mysql> SET @interval =
 -> ((TO_DAYS(@dt2) - TO_DAYS(@dt1)) * 24*60*60)
 -> + TIME_TO_SEC(@dt2) - TIME_TO_SEC(@dt1);
mysql> SELECT @interval AS seconds, SEC_TO_TIME(@interval) AS TIME;
+---------+----------+
| seconds | TIME |
+---------+----------+
| 255600 | 71:00:00 |
+---------+----------+

6.11. Calculating Intervals Between Dates or Times | 209

www.it-ebooks.info

http://www.it-ebooks.info/

Do You Want an Interval or a Span?
When you take a difference between dates (or times), consider whether you want an
interval or a span. Taking a difference between dates gives you the interval from one
date to the next. To determine the range spanned by the two dates, you must add a unit.
For example, it’s a three-day interval from 2002-01-01 to 2002-01-04, but together they
span a range of four days. If you don’t get the results you expect from a difference-of-
values calculation, consider whether an “off-by-one” correction is needed.

6.12. Adding Date or Time Values
Problem
You want to add temporal values. For example, you want to add a given number of
seconds to a time or determine what the date will be three weeks from today.

Solution
To add date or time values, you have several options:

• Use one of the temporal-addition functions.
• Use the + INTERVAL or - INTERVAL operator.
• Convert the values to basic units, and take the sum.

The applicable functions or operators depend on the types of the values.

Discussion
The following discussion shows several ways to add temporal values.

Adding temporal values using temporal-addition functions or operators

To add a time to a time or date-and-time value, use the ADDTIME() function:
mysql> SET @t1 = '12:00:00', @t2 = '15:30:00';
mysql> SELECT ADDTIME(@t1,@t2);
+------------------+
| ADDTIME(@t1,@t2) |
+------------------+
| 27:30:00 |
+------------------+
mysql> SET @dt = '1984-03-01 12:00:00', @t = '12:00:00';
mysql> SELECT ADDTIME(@dt,@t);
+---------------------+

210 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

| ADDTIME(@dt,@t) |
+---------------------+
| 1984-03-02 00:00:00 |
+---------------------+

To add a time to a date or date-and-time value, use the TIMESTAMP() function:
mysql> SET @d = '1984-03-01', @t = '15:30:00';
mysql> SELECT TIMESTAMP(@d,@t);
+---------------------+
| TIMESTAMP(@d,@t) |
+---------------------+
| 1984-03-01 15:30:00 |
+---------------------+
mysql> SET @dt = '1984-03-01 12:00:00', @t = '12:00:00';
mysql> SELECT TIMESTAMP(@dt,@t);
+---------------------+
| TIMESTAMP(@dt,@t) |
+---------------------+
| 1984-03-02 00:00:00 |
+---------------------+

MySQL also provides DATE_ADD() and DATE_SUB() functions for adding intervals to
dates and subtracting intervals from dates. Each function takes a date (or date-and-time)
value d and an interval, expressed using the following syntax:

DATE_ADD(d,INTERVAL val unit)
DATE_SUB(d,INTERVAL val unit)

The + INTERVAL and - INTERVAL operators are similar:
d + INTERVAL val unit
d - INTERVAL val unit

unit is the interval unit and val is an expression indicating the number of units. Some
common unit specifiers are SECOND, MINUTE, HOUR, DAY, MONTH, and YEAR. Note that each
is singular, not plural. (Check the MySQL Reference Manual for the full list.)

Use DATE_ADD() or DATE_SUB() to perform date arithmetic operations such as these:

• Determine the date three days from today:
mysql> SELECT CURDATE(), DATE_ADD(CURDATE(),INTERVAL 3 DAY);
+------------+------------------------------------+
| CURDATE() | DATE_ADD(CURDATE(),INTERVAL 3 DAY) |
+------------+------------------------------------+
| 2014-02-20 | 2014-02-23 |
+------------+------------------------------------+

• Find the date a week ago:
mysql> SELECT CURDATE(), DATE_SUB(CURDATE(),INTERVAL 1 WEEK);
+------------+-------------------------------------+
| CURDATE() | DATE_SUB(CURDATE(),INTERVAL 1 WEEK) |
+------------+-------------------------------------+

6.12. Adding Date or Time Values | 211

www.it-ebooks.info

http://www.it-ebooks.info/

| 2014-02-20 | 2014-02-13 |
+------------+-------------------------------------+

• For questions where you need to know both the date and the time, begin with a
DATETIME or TIMESTAMP value. To answer the question, “What time will it be in 60
hours?” do this:

mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL 60 HOUR);
+---------------------+----------------------------------+
| NOW() | DATE_ADD(NOW(),INTERVAL 60 HOUR) |
+---------------------+----------------------------------+
| 2014-02-20 18:07:06 | 2014-02-23 06:07:06 |
+---------------------+----------------------------------+

• Some interval specifiers have both date and time parts. The following adds 14.5
hours to the current date and time:

mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL '14:30' HOUR_MINUTE);
+---------------------+--+
| NOW() | DATE_ADD(NOW(),INTERVAL '14:30' HOUR_MINUTE) |
+---------------------+--+
| 2014-02-20 18:07:06 | 2014-02-21 08:37:06 |
+---------------------+--+

Similarly, adding 3 days and 4 hours produces this result:
mysql> SELECT NOW(), DATE_ADD(NOW(),INTERVAL '3 4' DAY_HOUR);
+---------------------+---+
| NOW() | DATE_ADD(NOW(),INTERVAL '3 4' DAY_HOUR) |
+---------------------+---+
| 2014-02-20 18:07:06 | 2014-02-23 22:07:06 |
+---------------------+---+

DATE_ADD() and DATE_SUB() are interchangeable because one is the same as the other
with the sign of the interval value flipped. These two expressions are equivalent for any
date value d:

DATE_ADD(d,INTERVAL -3 MONTH)
DATE_SUB(d,INTERVAL 3 MONTH)

You can also use the + INTERVAL or - INTERVAL operator to perform date interval addition
or subtraction:

mysql> SELECT CURDATE(), CURDATE() + INTERVAL 1 YEAR;
+------------+-----------------------------+
| CURDATE() | CURDATE() + INTERVAL 1 YEAR |
+------------+-----------------------------+
| 2014-02-20 | 2015-02-20 |
+------------+-----------------------------+
mysql> SELECT NOW(), NOW() - INTERVAL '1 12' DAY_HOUR;
+---------------------+----------------------------------+
| NOW() | NOW() - INTERVAL '1 12' DAY_HOUR |
+---------------------+----------------------------------+

212 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

| 2014-02-20 18:07:06 | 2014-02-19 06:07:06 |
+---------------------+----------------------------------+

TIMESTAMPADD() is an alternative function for adding intervals to date or date-and-time
values. Its arguments are similar to those for DATE_ADD(), and the following equivalence
holds:

TIMESTAMPADD(unit,interval,d) = DATE_ADD(d,INTERVAL interval unit)

Adding temporal values using basic units

Another way to add intervals to date or date-and-time values is to perform temporal
“shifting” via functions that convert to and from basic units. For background informa‐
tion about the applicable functions, see Recipe 6.10.

Adding time values using basic units

Adding times with basic units is similar to calculating intervals between times, except
that you compute a sum rather than a difference. To add an interval value in seconds to
a TIME value, convert the TIME to seconds so that both values are represented in the same
units, add the values and convert the result back to a TIME. For example, two hours is
7,200 seconds (2 × 60 × 60), so the following statement adds two hours to each t1 value
in the time_val table:

mysql> SELECT t1,
 -> SEC_TO_TIME(TIME_TO_SEC(t1) + 7200) AS 't1 plus 2 hours'
 -> FROM time_val;
+----------+-----------------+
| t1 | t1 plus 2 hours |
+----------+-----------------+
15:00:00	17:00:00
05:01:30	07:01:30
12:30:20	14:30:20
+----------+-----------------+

If the interval itself is expressed as a TIME, it too should be converted to seconds before
adding the values together. The following example calculates the sum of the two TIME
values in each row of the time_val table:

mysql> SELECT t1, t2,
 -> TIME_TO_SEC(t1) + TIME_TO_SEC(t2)
 -> AS 't1 + t2 (in seconds)',
 -> SEC_TO_TIME(TIME_TO_SEC(t1) + TIME_TO_SEC(t2))
 -> AS 't1 + t2 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------+
| t1 | t2 | t1 + t2 (in seconds) | t1 + t2 (as TIME) |
+----------+----------+----------------------+-------------------+
| 15:00:00 | 15:00:00 | 108000 | 30:00:00 |
| 05:01:30 | 02:30:20 | 27110 | 07:31:50 |

6.12. Adding Date or Time Values | 213

www.it-ebooks.info

http://www.it-ebooks.info/

| 12:30:20 | 17:30:45 | 108065 | 30:01:05 |
+----------+----------+----------------------+-------------------+

It’s important to recognize that MySQL TIME values represent elapsed time, not time of
day, so they don’t reset to 0 after reaching 24 hours. You can see this in the first and third
output rows from the previous statement. To produce time-of-day values, enforce a 24-
hour wraparound using a modulo operation before converting the seconds value back
to a TIME value. The number of seconds in a day is 24 × 60 × 60, or 86,400. To convert
any seconds value s to lie within a 24-hour range, use the MOD() function or the % modulo
operator like this:

MOD(s,86400)
s % 86400
s MOD 86400

The three expressions are equivalent. Applying the first of them to the time calculations
from the preceding example produces the following result:

mysql> SELECT t1, t2,
 -> MOD(TIME_TO_SEC(t1) + TIME_TO_SEC(t2), 86400)
 -> AS 't1 + t2 (in seconds)',
 -> SEC_TO_TIME(MOD(TIME_TO_SEC(t1) + TIME_TO_SEC(t2), 86400))
 -> AS 't1 + t2 (as TIME)'
 -> FROM time_val;
+----------+----------+----------------------+-------------------+
| t1 | t2 | t1 + t2 (in seconds) | t1 + t2 (as TIME) |
+----------+----------+----------------------+-------------------+
15:00:00	15:00:00	21600	06:00:00
05:01:30	02:30:20	27110	07:31:50
12:30:20	17:30:45	21665	06:01:05
+----------+----------+----------------------+-------------------+

The permitted range of a TIME column is -838:59:59 to 838:59:59
(that is, -3020399 to 3020399 seconds). However, the range of TIME
expressions can be greater, so when you add time values, you can easily
produce a result that lies outside this range and cannot be stored as
is into a TIME column.

Adding to date or date-and-time values using basic units

Date or date-and-time values converted to basic units can be shifted to produce other
dates. For example, to shift a date forward or backward a week (seven days), use
TO_DAYS() and FROM_DAYS():

mysql> SET @d = '1980-01-01';
mysql> SELECT @d AS date,
 -> FROM_DAYS(TO_DAYS(@d) + 7) AS 'date + 1 week',
 -> FROM_DAYS(TO_DAYS(@d) - 7) AS 'date - 1 week';
+------------+---------------+---------------+
| date | date + 1 week | date - 1 week |

214 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+---------------+---------------+
| 1980-01-01 | 1980-01-08 | 1979-12-25 |
+------------+---------------+---------------+

TO_DAYS() also can convert date-and-time values to days, if you don’t mind having it
chop off the time part.

To preserve the time, you can use UNIX_TIMESTAMP() and FROM_UNIXTIME() instead, if
the initial and resulting values both lie in the permitted range for TIMESTAMP values
(from 1970 partially through 2038). The following statement shifts a DATETIME value
forward and backward by an hour (3,600 seconds):

mysql> SET @dt = '1980-01-01 09:00:00';
mysql> SELECT @dt AS datetime,
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) + 3600) AS 'datetime + 1 hour',
 -> FROM_UNIXTIME(UNIX_TIMESTAMP(@dt) - 3600) AS 'datetime - 1 hour';
+---------------------+---------------------+---------------------+
| datetime | datetime + 1 hour | datetime - 1 hour |
+---------------------+---------------------+---------------------+
| 1980-01-01 09:00:00 | 1980-01-01 10:00:00 | 1980-01-01 08:00:00 |
+---------------------+---------------------+---------------------+

6.13. Calculating Ages
Problem
You want to know how old someone is.

Solution
This is a date-arithmetic problem. It amounts to computing the interval between dates,
but with a twist. For an age in years, it’s necessary to account for the relative placement
of the start and end dates within the calendar year. For an age in months, it’s also nec‐
essary to account for the placement of the months and the days within the month.

Discussion
Age determination is a type of date-interval calculation. However, you cannot simply
compute a difference in days and divide by 365 because leap years throw off the calcu‐
lation. (It is 365 days from 1995-03-01 to 1996-02-29, but that is not a year in age terms.)
Dividing by 365.25 is slightly more accurate, but still not correct for all dates.

To calculate ages, use the TIMESTAMPDIFF() function. Pass it a birth date, a current date,
and the unit in which you want the age expressed:

TIMESTAMPDIFF(unit,birth,current)

6.13. Calculating Ages | 215

www.it-ebooks.info

http://www.it-ebooks.info/

TIMESTAMPDIFF() handles the calculations necessary to adjust for differing month and
year lengths and relative positions of the dates within the calendar year. Suppose that a
sibling table lists the birth dates of Gretchen Smith and her brothers Wilbur and Franz:

mysql> SELECT * FROM sibling;
+----------+------------+
| name | birth |
+----------+------------+
Gretchen	1942-04-14
Wilbur	1946-11-28
Franz	1953-03-05
+----------+------------+

Using TIMESTAMPDIFF(), you can answer questions such as these:

• How old are the Smith children today, in years and months?
mysql> SELECT name, birth, CURDATE() AS today,
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS 'age in years',
 -> TIMESTAMPDIFF(MONTH,birth,CURDATE()) AS 'age in months'
 -> FROM sibling;
+----------+------------+------------+--------------+---------------+
| name | birth | today | age in years | age in months |
+----------+------------+------------+--------------+---------------+
Gretchen	1942-04-14	2014-02-20	71	862
Wilbur	1946-11-28	2014-02-20	67	806
Franz	1953-03-05	2014-02-20	60	731
+----------+------------+------------+--------------+---------------+

• How old were Gretchen and Wilbur when Franz was born, in years and months?
mysql> SELECT name, birth, '1953-03-05' AS 'Franz'' birth',
 -> TIMESTAMPDIFF(YEAR,birth,'1953-03-05') AS 'age in years',
 -> TIMESTAMPDIFF(MONTH,birth,'1953-03-05') AS 'age in months'
 -> FROM sibling WHERE name <> 'Franz';
+----------+------------+--------------+--------------+---------------+
| name | birth | Franz' birth | age in years | age in months |
+----------+------------+--------------+--------------+---------------+
| Gretchen | 1942-04-14 | 1953-03-05 | 10 | 130 |
| Wilbur | 1946-11-28 | 1953-03-05 | 6 | 75 |
+----------+------------+--------------+--------------+---------------+

6.14. Finding the First Day, Last Day, or Length of a Month
Problem
Given a date, you want to determine the date for the first or last day of the month in
which the date occurs, or the first or last day for the month n months away. A related
problem is to determine the number of days in a month.

216 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
To determine the date for the first day in a month, use date shifting (an application of
date arithmetic). To determine the date for the last day, use the LAST_DAY() function.
To determine the number of days in a month, find the date for its last day and use it as
the argument to DAYOFMONTH().

Discussion
Sometimes you have a reference date and want to reach a target date that doesn’t have
a fixed relationship to the reference date. For example, the first or last days of the current
month aren’t a fixed number of days from the current date.

To find the first day of the month for a given date, shift the date back by one fewer days
than its DAYOFMONTH() value:

mysql> SELECT d, DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY) AS '1st of month'
 -> FROM date_val;
+------------+--------------+
| d | 1st of month |
+------------+--------------+
1864-02-28	1864-02-01
1900-01-15	1900-01-01
1999-12-31	1999-12-01
2000-06-04	2000-06-01
2017-03-16	2017-03-01
+------------+--------------+

In the general case, to find the first of the month for any month n months away from a
given date, calculate the first of the month for the date and shift the result by n months:

DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL n MONTH)

For example, to find the first day of the previous and following months relative to a
given date, n is -1 and 1:

mysql> SELECT d,
 -> DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL -1 MONTH)
 -> AS '1st of previous month',
 -> DATE_ADD(DATE_SUB(d,INTERVAL DAYOFMONTH(d)-1 DAY),INTERVAL 1 MONTH)
 -> AS '1st of following month'
 -> FROM date_val;
+------------+-----------------------+------------------------+
| d | 1st of previous month | 1st of following month |
+------------+-----------------------+------------------------+
1864-02-28	1864-01-01	1864-03-01
1900-01-15	1899-12-01	1900-02-01
1999-12-31	1999-11-01	2000-01-01
2000-06-04	2000-05-01	2000-07-01
2017-03-16	2017-02-01	2017-04-01
+------------+-----------------------+------------------------+

6.14. Finding the First Day, Last Day, or Length of a Month | 217

www.it-ebooks.info

http://www.it-ebooks.info/

It’s easier to find the last day of the month for a given date because there is a function
for it:

mysql> SELECT d, LAST_DAY(d) AS 'last of month'
 -> FROM date_val;
+------------+---------------+
| d | last of month |
+------------+---------------+
1864-02-28	1864-02-29
1900-01-15	1900-01-31
1999-12-31	1999-12-31
2000-06-04	2000-06-30
2017-03-16	2017-03-31
+------------+---------------+

For the general case, to find the last of the month for any month n months away from
a given date, shift the date by that many months first, then pass it to LAST_DAY():

LAST_DAY(DATE_ADD(d,INTERVAL n MONTH))

For example, to find the last day of the previous and following months relative to a given
date, n is -1 and 1:

mysql> SELECT d,
 -> LAST_DAY(DATE_ADD(d,INTERVAL -1 MONTH))
 -> AS 'last of previous month',
 -> LAST_DAY(DATE_ADD(d,INTERVAL 1 MONTH))
 -> AS 'last of following month'
 -> FROM date_val;
+------------+------------------------+-------------------------+
| d | last of previous month | last of following month |
+------------+------------------------+-------------------------+
1864-02-28	1864-01-31	1864-03-31
1900-01-15	1899-12-31	1900-02-28
1999-12-31	1999-11-30	2000-01-31
2000-06-04	2000-05-31	2000-07-31
2017-03-16	2017-02-28	2017-04-30
+------------+------------------------+-------------------------+

To find the length of a month in days, determine the date of its last day with
LAST_DAY(), then use DAYOFMONTH() to extract the day-of-month component from the
result:

mysql> SELECT d, DAYOFMONTH(LAST_DAY(d)) AS 'days in month' FROM date_val;
+------------+---------------+
| d | days in month |
+------------+---------------+
1864-02-28	29
1900-01-15	31
1999-12-31	31
2000-06-04	30
2017-03-16	31
+------------+---------------+

218 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 6.18 discusses how to calculate month lengths from within a program without
using SQL. (The trick is that you must account for leap years.)

6.15. Calculating Dates by Substring Replacement
Problem
Given a date, you want to produce another date from it when you know that the two
dates share some components in common.

Solution
Treat a date or time value as a string, and perform direct replacement on parts of the
string.

Discussion
In some cases, you can use substring replacement to calculate dates without performing
any date arithmetic. For example, a string operation produces the first-of-month value
for a given date by replacing the day component with 01. You can do this either with
DATE_FORMAT() or with CONCAT():

mysql> SELECT d,
 -> DATE_FORMAT(d,'%Y-%m-01') AS '1st of month A',
 -> CONCAT(YEAR(d),'-',LPAD(MONTH(d),2,'0'),'-01') AS '1st of month B'
 -> FROM date_val;
+------------+----------------+----------------+
| d | 1st of month A | 1st of month B |
+------------+----------------+----------------+
1864-02-28	1864-02-01	1864-02-01
1900-01-15	1900-01-01	1900-01-01
1999-12-31	1999-12-01	1999-12-01
2000-06-04	2000-06-01	2000-06-01
2017-03-16	2017-03-01	2017-03-01
+------------+----------------+----------------+

The string replacement technique can also produce dates with a specific position within
the calendar year. For New Year’s Day (January 1), replace the month and day with 01;
for Christmas, replace the month and day with 12 and 25:

mysql> SELECT d,
 -> DATE_FORMAT(d,'%Y-01-01') AS 'New Year''s A',
 -> CONCAT(YEAR(d),'-01-01') AS 'New Year''s B',
 -> DATE_FORMAT(d,'%Y-12-25') AS 'Christmas A',
 -> CONCAT(YEAR(d),'-12-25') AS 'Christmas B'
 -> FROM date_val;

6.15. Calculating Dates by Substring Replacement | 219

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+--------------+--------------+-------------+-------------+
| d | New Year's A | New Year's B | Christmas A | Christmas B |
+------------+--------------+--------------+-------------+-------------+
1864-02-28	1864-01-01	1864-01-01	1864-12-25	1864-12-25
1900-01-15	1900-01-01	1900-01-01	1900-12-25	1900-12-25
1999-12-31	1999-01-01	1999-01-01	1999-12-25	1999-12-25
2000-06-04	2000-01-01	2000-01-01	2000-12-25	2000-12-25
2017-03-16	2017-01-01	2017-01-01	2017-12-25	2017-12-25
+------------+--------------+--------------+-------------+-------------+

To perform the same operation for the target calendar day in other years, combine string
replacement with date shifting. The following statement shows two ways to determine
the date for Christmas two years hence. The first method finds Christmas for this year,
and then shifts it two years forward. The second shifts the current date forward two
years, and then finds Christmas in the resulting year:

mysql> SELECT CURDATE(),
 -> DATE_ADD(DATE_FORMAT(CURDATE(),'%Y-12-25'),INTERVAL 2 YEAR)
 -> AS 'Christmas A',
 -> DATE_FORMAT(DATE_ADD(CURDATE(),INTERVAL 2 YEAR),'%Y-12-25')
 -> AS 'Christmas B';
+------------+-------------+-------------+
| CURDATE() | Christmas A | Christmas B |
+------------+-------------+-------------+
| 2014-02-20 | 2016-12-25 | 2016-12-25 |
+------------+-------------+-------------+

6.16. Finding the Day of the Week for a Date
Problem
You want to know the day of the week on which a date falls.

Solution
Use the DAYNAME() function.

Discussion
To determine the name of the day of the week for a given date, use DAYNAME():

mysql> SELECT CURDATE(), DAYNAME(CURDATE());
+------------+--------------------+
| CURDATE() | DAYNAME(CURDATE()) |
+------------+--------------------+
| 2014-02-20 | Thursday |
+------------+--------------------+

220 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

DAYNAME() is often useful in conjunction with other date-related techniques. For ex‐
ample, to determine the day of the week for the first of the month, use the first-of-month
expression from Recipe 6.14 as the argument to DAYNAME():

mysql> SET @d = CURDATE();
mysql> SET @first = DATE_SUB(@d,INTERVAL DAYOFMONTH(@d)-1 DAY);
mysql> SELECT @d AS 'starting date',
 -> @first AS '1st of month date',
 -> DAYNAME(@first) AS '1st of month day';
+---------------+-------------------+------------------+
| starting date | 1st of month date | 1st of month day |
+---------------+-------------------+------------------+
| 2014-02-20 | 2014-02-01 | Saturday |
+---------------+-------------------+------------------+

6.17. Finding Dates for Any Weekday of a Given Week
Problem
You want to compute the date of some weekday for the week in which a given date lies.
Suppose that you want to know the date of the Tuesday that falls in the same week as
2014-07-09.

Solution
This is an application of date shifting. Figure out the number of days between the starting
weekday of the given date and the desired day, and shift the date by that many days.

Discussion
This section and the next describe how to convert one date to another when the target
date is specified in terms of days of the week. To solve such problems, you need to know
day-of-week values. Suppose you begin with a target date of 2014-07-09. To determine
the date for Tuesday of the week in which that date lies, the calculation depends on what
weekday it is. If it’s a Monday, you add a day to produce 2014-07-10, but if it’s a Wed‐
nesday, you subtract a day to produce 2014-07-08.

MySQL provides two functions that are useful here. DAYOFWEEK() treats Sunday as the
first day of the week and returns 1 through 7 for Sunday through Saturday. WEEKDAY()
treats Monday as the first day of the week and returns 0 through 6 for Monday through
Sunday. (The examples shown here use DAYOFWEEK().) Another kind of day-of-week
operation involves determining the name of the day. DAYNAME() can be used for that.

Calculations that determine one day of the week from another depend on the day you
start from as well as the day you want to reach. I find it easiest to shift the reference date
first to a known point relative to the beginning of the week, and then shift forward:

6.17. Finding Dates for Any Weekday of a Given Week | 221

www.it-ebooks.info

http://www.it-ebooks.info/

1. Shift the reference date back by its DAYOFWEEK() value, which always produces the
date for the Saturday preceding the week.

2. Shift the Saturday date by one day to reach the Sunday date, by two days to reach
the Monday date, and so forth.

In SQL, those operations can be expressed as follows for a date d, where n is 1 through
7 to produce the dates for Sunday through Saturday:

DATE_ADD(DATE_SUB(d,INTERVAL DAYOFWEEK(d) DAY),INTERVAL n DAY)

That expression splits the “shift back to Saturday” and “shift forward” phases into sep‐
arate operations, but because the intervals for both DATE_SUB() and DATE_ADD() are in
days, the expression can be simplified into a single DATE_ADD() call:

DATE_ADD(d,INTERVAL n-DAYOFWEEK(d) DAY)

Applying this formula to the dates in our date_val table, using an n of 1 for Sunday and
7 for Saturday to find the first and last days of the week, yields this result:

mysql> SELECT d, DAYNAME(d) AS day,
 -> DATE_ADD(d,INTERVAL 1-DAYOFWEEK(d) DAY) AS Sunday,
 -> DATE_ADD(d,INTERVAL 7-DAYOFWEEK(d) DAY) AS Saturday
 -> FROM date_val;
+------------+----------+------------+------------+
| d | day | Sunday | Saturday |
+------------+----------+------------+------------+
1864-02-28	Sunday	1864-02-28	1864-03-05
1900-01-15	Monday	1900-01-14	1900-01-20
1999-12-31	Friday	1999-12-26	2000-01-01
2000-06-04	Sunday	2000-06-04	2000-06-10
2017-03-16	Thursday	2017-03-12	2017-03-18
+------------+----------+------------+------------+

To determine the date of some weekday in a week relative to that of the target date,
modify the preceding procedure a bit. First, determine the date of the desired weekday
in the target date. Then shift the result into the desired week.

Calculating the date for a day of the week in some other week is a problem that breaks
down into a day-within-week shift (using the formula just given) plus a week shift. These
operations can be done in either order because the amount of shift within the week is
the same whether or not you shift the reference date into a different week first. For
example, to calculate Wednesday of a week by the preceding formula, n is 4. To compute
the date for Wednesday two weeks ago, you can perform the day-within-week shift first,
like this:

mysql> SET @target =
 -> DATE_SUB(DATE_ADD(CURDATE(),INTERVAL 4-DAYOFWEEK(CURDATE()) DAY),
 -> INTERVAL 14 DAY);
mysql> SELECT CURDATE(), @target, DAYNAME(@target);

222 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+------------+------------------+
| CURDATE() | @target | DAYNAME(@target) |
+------------+------------+------------------+
| 2014-02-20 | 2014-02-05 | Wednesday |
+------------+------------+------------------+

Or you can perform the week shift first:
mysql> SET @target =
 -> DATE_ADD(DATE_SUB(CURDATE(),INTERVAL 14 DAY),
 -> INTERVAL 4-DAYOFWEEK(CURDATE()) DAY);
mysql> SELECT CURDATE(), @target, DAYNAME(@target);
+------------+------------+------------------+
| CURDATE() | @target | DAYNAME(@target) |
+------------+------------+------------------+
| 2014-02-20 | 2014-02-05 | Wednesday |
+------------+------------+------------------+

Some applications need to determine dates such as the n-th instance of particular week‐
days. For example, to administer a payroll for which paydays are the second and fourth
Thursdays of each month, you must know what those dates are. One way to do this for
any given month is to begin with the first-of-month date and shift it forward. It’s easy
enough to shift the date to the Thursday in that week; the trick is to figure out how many
weeks forward to shift the result to reach the second and fourth Thursdays. If the first
of the month occurs on any day from Sunday through Thursday, you shift forward one
week to reach the second Thursday. If the first of the month occurs on Friday or later,
you shift forward by two weeks. The fourth Thursday is, of course, two weeks after that.

The following Perl code implements this logic to find all paydays in the year 2014. It
runs a loop that constructs the first-of-month date for the months of the year. For each
month, it issues a statement that determines the dates of the second and fourth Thurs‐
days:

my $year = 2014;
print "MM/CCYY 2nd Thursday 4th Thursday\n";
foreach my $month (1..12)
{
 my $first = sprintf ("%04d-%02d-01", $year, $month);
 my ($thu2, $thu4) = $dbh->selectrow_array (qq{
 SELECT
 DATE_ADD(
 DATE_ADD(?,INTERVAL 5-DAYOFWEEK(?) DAY),
 INTERVAL IF(DAYOFWEEK(?) <= 5, 7, 14) DAY),
 DATE_ADD(
 DATE_ADD(?,INTERVAL 5-DAYOFWEEK(?) DAY),
 INTERVAL IF(DAYOFWEEK(?) <= 5, 21, 28) DAY)
 }, undef, $first, $first, $first, $first, $first, $first);
 printf "%02d/%04d %s %s\n", $month, $year, $thu2, $thu4;
}

The program produces this output:

6.17. Finding Dates for Any Weekday of a Given Week | 223

www.it-ebooks.info

http://www.it-ebooks.info/

MM/CCYY 2nd Thursday 4th Thursday
01/2014 2014-01-09 2014-01-23
02/2014 2014-02-13 2014-02-27
03/2014 2014-03-13 2014-03-27
04/2014 2014-04-10 2014-04-24
05/2014 2014-05-08 2014-05-22
06/2014 2014-06-12 2014-06-26
07/2014 2014-07-10 2014-07-24
08/2014 2014-08-14 2014-08-28
09/2014 2014-09-11 2014-09-25
10/2014 2014-10-09 2014-10-23
11/2014 2014-11-13 2014-11-27
12/2014 2014-12-11 2014-12-25

6.18. Performing Leap-Year Calculations
Problem
A date calculation must account for leap years. For example, the length of a month or
a year depends on whether the date falls in a leap year.

Solution
Know how to test whether a year is a leap year, and factor the result into your calculation.

Discussion
Date calculations are complicated by the fact that months differ in length. An additional
twist is that February has an extra day during leap years. This recipe shows how to
determine whether any given date falls within a leap year and how to take leap years
into account when determining the length of a year or month.

Determining whether a date occurs in a leap year

To determine whether a date d falls within a leap year, obtain the year component using
YEAR() and test the result. The common rule-of-thumb test for leap years is “divisible
by four,” which you can test using a modulo operation:

YEAR(d) % 4 = 0

However, that test is not technically correct. (For example, the year 1900 is divisible by
four, but is not a leap year.) For a year to qualify as a leap year, it must satisfy both of
these constraints:

• The year must be divisible by four.
• The year cannot be divisible by 100, unless it is also divisible by 400.

224 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

The meaning of the second constraint is that turn-of-century years are not leap years,
except every fourth century. In SQL, express these conditions as follows:

(YEAR(d) % 4 = 0) AND ((YEAR(d) % 100 <> 0) OR (YEAR(d) % 400 = 0))

Running our date_val table through both the rule-of-thumb leap-year test and the
complete test produces the following results:

mysql> SELECT
 -> d,
 -> YEAR(d) % 4 = 0
 -> AS 'rule-of-thumb test',
 -> (YEAR(d) % 4 = 0) AND ((YEAR(d) % 100 <> 0) OR (YEAR(d) % 400 = 0))
 -> AS 'complete test'
 -> FROM date_val;
+------------+--------------------+---------------+
| d | rule-of-thumb test | complete test |
+------------+--------------------+---------------+
1864-02-28	1	1
1900-01-15	1	0
1999-12-31	0	0
2000-06-04	1	1
2017-03-16	0	0
+------------+--------------------+---------------+

As you can see, results from the two tests sometimes differ. In particular, the rule-of-
thumb test fails for the year 1900; the complete test result is correct because it accounts
for the turn-of-century constraint.

Because the complete leap-year test must check the century, it requires four-digit year
values. Two-digit years are ambiguous with respect to the century, making it impossible
to assess the turn-of-century constraint.

To make the leap-year test easier to perform in SQL statements, use a stored function
that encapsulates the expression just shown. The routines directory of the recipes
distribution contains a script that creates an is_leap_year() function.

If you work with date values within a program, you can perform leap-year tests with
your API language rather than at the SQL level. Extract the first four digits of the date
string to get the year, then test it. If the language performs automatic string-to-number
conversion of the year value, this is easy. Otherwise, you must explicitly convert the year
value to numeric form before testing it.

Perl, PHP:
$year = substr ($date, 0, 4);
$is_leap = ($year % 4 == 0) && ($year % 100 != 0 || $year % 400 == 0);

6.18. Performing Leap-Year Calculations | 225

www.it-ebooks.info

http://www.it-ebooks.info/

Ruby:
year = date[0..3].to_i
is_leap = (year.modulo(4) == 0) &&
 (year.modulo(100) != 0 || year.modulo(400) == 0)

Python:
year = int(date[0:4])
is_leap = (year % 4 == 0) and (year % 100 != 0 or year % 400 == 0)

Java:
int year = Integer.valueOf (date.substring (0, 4)).intValue ();
boolean is_leap = (year % 4 == 0) && (year % 100 != 0 || year % 400 == 0);

Your API language might provide its own means of determining leap years. For example,
the PHP date() function has an L option to return whether a date falls in a leap year:

prevent date () from complaining about not knowing time zone
date_default_timezone_set ("UTC");
$is_leap = date ("L", strtotime ($date));

Using leap-year tests for year-length calculations

Years usually have 365 days, but leap years have 366. To determine the length of a year
in which a date falls, use one of the leap-year tests just shown to figure out whether to
add a day. This example uses Perl:

$year = substr ($date, 0, 4);
$is_leap = ($year % 4 == 0) && ($year % 100 != 0 || $year % 400 == 0);
$days_in_year = ($is_leap ? 366 : 365);

To compute a year’s length in SQL, compute the date of the last day of the year and pass
it to DAYOFYEAR():

mysql> SET @d1 = '2014-04-13', @d2 = '2016-04-13';
mysql> SELECT
 -> DAYOFYEAR(DATE_FORMAT(@d1,'%Y-12-31')) AS 'days in 2014',
 -> DAYOFYEAR(DATE_FORMAT(@d2,'%Y-12-31')) AS 'days in 2016';
+--------------+--------------+
| days in 2014 | days in 2016 |
+--------------+--------------+
| 365 | 366 |
+--------------+--------------+

Using leap-year tests for month-length calculations

Recipe 6.14 discusses how to determine the number of days in a month in SQL state‐
ments using the LAST_DAY() function. Within an API language, you can write a non
−SQL-based function that, given an ISO-format date argument, returns the number of
days in the month during which the date occurs. This is straightforward except for

226 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

February, where the function must return 29 or 28 depending on whether the year is a
leap year. Here’s a Ruby version:

def days_in_month(date)
 year = date[0..3].to_i
 month = date[5..6].to_i # month, 1-based
 days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 days = days_in_month[month-1]
 is_leap = (year.modulo(4) == 0) &&
 (year.modulo(100) != 0 || year.modulo(400) == 0)

 # add a day for Feb of leap years
 days += 1 if month == 2 && is_leap
 return days
end

See Also
Recipe 12.11 discusses leap-year calculations in the context of date validation.

6.19. Canonizing Not-Quite-ISO Date Strings
Problem
A date is in a format that’s close to but not exactly ISO format.

Solution
Canonize the date by passing it to a function that always returns an ISO-format date
result.

Discussion
In Recipe 6.9, we ran into the problem that synthesizing dates with CONCAT() may pro‐
duce values that are not quite in ISO format. For example, the following statement
produces first-of-month values in which the month part may have only a single digit:

mysql> SELECT d, CONCAT(YEAR(d),'-',MONTH(d),'-01') FROM date_val;
+------------+------------------------------------+
| d | CONCAT(YEAR(d),'-',MONTH(d),'-01') |
+------------+------------------------------------+
1864-02-28	1864-2-01
1900-01-15	1900-1-01
1999-12-31	1999-12-01
2000-06-04	2000-6-01
2017-03-16	2017-3-01
+------------+------------------------------------+

6.19. Canonizing Not-Quite-ISO Date Strings | 227

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 6.9 shows a technique using LPAD() for making sure the month values have two
digits. Another way to standardize a close-to-ISO date is to use it in an expression that
produces an ISO date result. For a date d, any of the following expressions will do:

DATE_ADD(d,INTERVAL 0 DAY)
d + INTERVAL 0 DAY
FROM_DAYS(TO_DAYS(d))
STR_TO_DATE(d,'%Y-%m-%d')

Using those expressions with the non-ISO results from the CONCAT() operation yields
ISO format in several ways:

mysql> SELECT
 -> CONCAT(YEAR(d),'-',MONTH(d),'-01') AS 'non-ISO',
 -> DATE_ADD(CONCAT(YEAR(d),'-',MONTH(d),'-01'),INTERVAL 0 DAY) AS 'ISO 1',
 -> CONCAT(YEAR(d),'-',MONTH(d),'-01') + INTERVAL 0 DAY AS 'ISO 2',
 -> FROM_DAYS(TO_DAYS(CONCAT(YEAR(d),'-',MONTH(d),'-01'))) AS 'ISO 3',
 -> STR_TO_DATE(CONCAT(YEAR(d),'-',MONTH(d),'-01'),'%Y-%m-%d') AS 'ISO 4'
 -> FROM date_val;
+------------+------------+------------+------------+------------+
| non-ISO | ISO 1 | ISO 2 | ISO 3 | ISO 4 |
+------------+------------+------------+------------+------------+
1864-2-01	1864-02-01	1864-02-01	1864-02-01	1864-02-01
1900-1-01	1900-01-01	1900-01-01	1900-01-01	1900-01-01
1999-12-01	1999-12-01	1999-12-01	1999-12-01	1999-12-01
2000-6-01	2000-06-01	2000-06-01	2000-06-01	2000-06-01
2017-3-01	2017-03-01	2017-03-01	2017-03-01	2017-03-01
+------------+------------+------------+------------+------------+

6.20. Selecting Rows Based on Temporal Characteristics
Problem
You want to select rows based on temporal conditions.

Solution
Use a date or time condition in the WHERE clause. This may be based on direct comparison
of column values with known values. Or it may be necessary to apply a function to
column values to convert them to a more appropriate form for testing, such as using
MONTH() to test the month part of a date.

Discussion
Most of the preceding date-based techniques were illustrated by example statements
that produce date or time values as output. To place date-based restrictions on the rows
selected by a statement, use the same techniques in a WHERE clause. For example, you

228 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

can select rows by looking for values that occur before or after a given date, within a
date range, or that match particular month or day values.

Comparing dates to one another

The following statements find rows from the date_val table that occur either before
1900 or during the 1900s:

mysql> SELECT d FROM date_val where d < '1900-01-01';
+------------+
| d |
+------------+
| 1864-02-28 |
+------------+
mysql> SELECT d FROM date_val where d BETWEEN '1900-01-01' AND '1999-12-31';
+------------+
| d |
+------------+
| 1900-01-15 |
| 1999-12-31 |
+------------+

When you don’t know the exact date needed for a comparison in a WHERE clause, you
can often calculate it using an expression. For example, to perform an “on this day in
history” statement to search for rows in a table named history to find events occurring
exactly 50 years ago, do this:

SELECT * FROM history WHERE d = DATE_SUB(CURDATE(),INTERVAL 50 YEAR);

You see this kind of thing in newspapers that run columns showing what the news events
were in times past. (In essence, the statement identifies those events that have reached
their n-th anniversary.) To retrieve events that occurred “on this day” for any year rather
than “on this date” for a specific year, the statement is a bit different. In that case, you
need to find rows that match the current calendar day, ignoring the year. That topic is
discussed in “Comparing dates to calendar days” on page 231.

Calculated dates are useful for range testing as well. For example, to find dates that occur
later than 20 years ago, use DATE_SUB() to calculate the cutoff date:

mysql> SELECT d FROM date_val WHERE d >= DATE_SUB(CURDATE(),INTERVAL 20 YEAR);
+------------+
| d |
+------------+
| 1999-12-31 |
| 2000-06-04 |
| 2017-03-16 |
+------------+

Note that the expression in the WHERE clause isolates the date column d on one side of
the comparison operator. This is usually a good idea; if the column is indexed, placing
it alone on one side of a comparison enables MySQL to process the statement more

6.20. Selecting Rows Based on Temporal Characteristics | 229

www.it-ebooks.info

http://www.it-ebooks.info/

efficiently. To illustrate, the preceding WHERE clause can be written in a way that’s logically
equivalent but much less efficient for MySQL to execute:

WHERE DATE_ADD(d,INTERVAL 20 YEAR) >= CURDATE();

Here, the d column is used within an expression. That means every row must be retrieved
so that the expression can be evaluated and tested, which makes any index on the column
useless.

Sometimes it’s not so obvious how to rewrite a comparison to isolate a date column on
one side. For example, the following WHERE clause uses only part of the date column in
the comparisons:

WHERE YEAR(d) >= 1987 AND YEAR(d) <= 1991;

To rewrite the first comparison, eliminate the YEAR() call, and replace its right side with
a complete date:

WHERE d >= '1987-01-01' AND YEAR(d) <= 1991;

Rewriting the second comparison is a little trickier. You can eliminate the YEAR() call
on the left side, just as with the first expression, but you can’t just add -01-01 to the year
on the right side. That produces the following result, which is incorrect:

WHERE d >= '1987-01-01' AND d <= '1991-01-01';

That fails because dates from 1991-01-02 to 1991-12-31 fail the test, but should pass.
To rewrite the second comparison correctly, do this:

WHERE d >= '1987-01-01' AND d < '1992-01-01';

Another use for calculated dates occurs frequently in applications that create rows that
have a limited lifetime. Such applications must be able to determine which rows to delete
when performing an expiration operation. You can approach this problem a couple
ways:

• Store a date in each row indicating when it was created. (Do this by making the
column a TIMESTAMP or by setting it to NOW(); see Recipe 6.7 for details.) To perform
an expiration operation later, determine which rows have a creation date that is too
old by comparing that date to the current date. For example, the statement to expire
rows that were created more than n days ago might look like this:

DELETE FROM mytbl WHERE create_date < DATE_SUB(NOW(),INTERVAL n DAY);

• Store an explicit expiration date in each row by calculating the expiration date with
DATE_ADD() when the row is created. For a row that should expire in n days, do this:

INSERT INTO mytbl (expire_date,...)
VALUES(DATE_ADD(NOW(),INTERVAL n DAY),...);

To perform the expiration operation in this case, compare the expiration dates to
the current date to see which have been reached:

230 | Chapter 6: Working with Dates and Times

www.it-ebooks.info

http://www.it-ebooks.info/

DELETE FROM mytbl WHERE expire_date < NOW();

Comparing times to one another

Comparisons involving times are similar to those involving dates. For example, to find
times in the t1 column that occurred from 9 AM to 2 PM, use an expression like one
of these:

WHERE t1 BETWEEN '09:00:00' AND '14:00:00';
WHERE HOUR(t1) BETWEEN 9 AND 14;

For an indexed TIME column, the first method is more efficient. The second method has
the property that it works not only for TIME columns, but for DATETIME and TIME
STAMP columns as well.

Comparing dates to calendar days

To answer questions about particular days of the year, use calendar-day testing. The
following examples illustrate how to do this in the context of looking for birthdays:

• Who has a birthday today? This requires matching a particular calendar day, so you
extract the month and day but ignore the year when performing comparisons:

WHERE MONTH(d) = MONTH(CURDATE()) AND DAYOFMONTH(d) = DAYOFMONTH(CURDATE());

This kind of statement commonly is applied to biographical data to find lists of
actors, politicians, musicians, and so forth, who were born on a particular day of
the year.
It’s tempting to use DAYOFYEAR() to solve “on this day” problems because it results
in simpler statements. But DAYOFYEAR() doesn’t work properly for leap years. The
presence of February 29 throws off the values for days from March through De‐
cember.

• Who has a birthday this month? In this case, it’s necessary to check only the month:
WHERE MONTH(d) = MONTH(CURDATE());

• Who has a birthday next month? The trick here is that you can’t just add one to the
current month to get the month number that qualifying dates must match. That
gives you 13 for dates in December. To make sure that you get 1 (January), use either
of the following techniques:

WHERE MONTH(d) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));
WHERE MONTH(d) = MOD(MONTH(CURDATE()),12)+1;

6.20. Selecting Rows Based on Temporal Characteristics | 231

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Sorting Query Results

7.0. Introduction
This chapter covers sorting, an extremely important operation for controlling how
MySQL displays results from SELECT statements. To sort a query result, add an ORDER
BY clause to the query. Without such a clause, MySQL is free to return rows in any order,
so sorting helps bring order to disorder and makes query results easier to examine and
understand.

You can sort rows of a query result several ways:

• Using a single column, a combination of columns, or even parts of columns or
expression results

• Using ascending or descending order
• Using case-sensitive or case-insensitive string comparisons
• Using temporal ordering

Several examples in this chapter use the driver_log table, which contains columns for
recording daily mileage logs for a set of truck drivers:

mysql> SELECT * FROM driver_log;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197

233

www.it-ebooks.info

http://www.it-ebooks.info/

| 9 | Ben | 2014-08-02 | 79 |
| 10 | Henry | 2014-07-30 | 203 |
+--------+-------+------------+-------+

Many other examples use the mail table (used in earlier chapters):
mysql> SELECT * FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
2014-05-14 09:31:37	gene	venus	barb	mars	2291
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-14 14:42:21	barb	venus	barb	venus	98151
2014-05-14 17:03:01	tricia	saturn	phil	venus	2394482
2014-05-15 07:17:48	gene	mars	gene	saturn	3824
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-15 17:35:31	gene	saturn	gene	mars	3856
2014-05-16 09:00:28	gene	venus	barb	mars	613
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-19 22:21:51	gene	saturn	gene	venus	23992
+---------------------+---------+---------+---------+---------+---------+

Other tables are used occasionally as well. To create them, use scripts found in the tables
directory of the recipes distribution.

7.1. Using ORDER BY to Sort Query Results
Problem
Rows in a query result don’t appear in the order you want.

Solution
Add an ORDER BY clause to the query to sort its result.

Discussion
The contents of the driver_log and mail tables shown in the chapter introduction are
disorganized and difficult to make sense of. The exception is that the values in the id
and t columns are in order, but that’s just coincidental. Rows do tend to be returned
from a table in the order in which they were originally inserted, but only until the table
is subjected to delete and update operations. Rows inserted after that are likely to be
returned in the middle of the result set somewhere. Many MySQL users notice this

234 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

disturbance in row-retrieval order, which leads them to ask, “How can I store rows in
my table so they come out in a particular order when I retrieve them?” The answer to
this question is, “That’s the wrong question.” Storing rows is the server’s job, and you
should let the server do it. Even if you could specify storage order, it wouldn’t help you
if you want results in different orders at different times.

When you select rows, they’re returned from the database in whatever order the server
happens to use. A relational database makes no guarantee about the order in which it
returns rows—unless you tell it how, by adding an ORDER BY clause to your SELECT
statement. Without ORDER BY, you may find that the retrieval order changes over time
as you modify the table contents. With an ORDER BY clause, MySQL always sorts rows as
you indicate.

ORDER BY has the following general characteristics:

• You can sort using one or more column or expression values.
• You can sort columns independently in ascending order (the default) or descending

order.
• You can refer to sort columns by name or by using an alias.

This section shows some basic sorting techniques, such as how to name the sort columns
and specify the sort direction. The following sections illustrate how to perform more
complex sorts. Paradoxically, you can even use ORDER BY to disorder a result set, which
is useful for randomizing the rows or (in conjunction with LIMIT) for picking a row at
random from a result set (see Recipes 15.7 and 15.8).

The following examples demonstrate how to sort on a single column or multiple col‐
umns and how to sort in ascending or descending order. The examples select the rows
in the driver_log table but sort them in different orders to demonstrate the effect of
the different ORDER BY clauses.

This query produces a single-column sort using the driver name:
mysql> SELECT * FROM driver_log ORDER BY name;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
5	Ben	2014-07-29	131
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
7	Suzi	2014-08-02	502
2	Suzi	2014-07-29	391
+--------+-------+------------+-------+

7.1. Using ORDER BY to Sort Query Results | 235

www.it-ebooks.info

http://www.it-ebooks.info/

The default sort direction is ascending. To make the direction for an ascending sort
explicit, add ASC after the sorted column’s name:

SELECT * FROM driver_log ORDER BY name ASC;

The opposite (or reverse) of ascending order is descending order, specified by adding
DESC after the sorted column’s name:

mysql> SELECT * FROM driver_log ORDER BY name DESC;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
5	Ben	2014-07-29	131
9	Ben	2014-08-02	79
1	Ben	2014-07-30	152
+--------+-------+------------+-------+

Closely examine the output from the queries just shown and you’ll notice that although
rows are sorted by name, rows for any given name are in no special order. (The
trav_date values aren’t in date order for Henry or Ben, for example.) That’s because
MySQL doesn’t sort something unless you tell it to:

• The overall order of rows returned by a query is indeterminate unless you specify
an ORDER BY clause.

• Within a group of rows that sort together based on the values in a given column,
the order of values in other columns also is indeterminate unless you name them
in the ORDER BY clause.

To more fully control output order, specify a multiple-column sort by listing each col‐
umn to use for sorting, separated by commas. The following query sorts in ascending
order by name and by trav_date within the rows for each name:

mysql> SELECT * FROM driver_log ORDER BY name, trav_date;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
5	Ben	2014-07-29	131
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203

236 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

8	Henry	2014-08-01	197
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
+--------+-------+------------+-------+

Multiple-column sorts can be descending as well, but DESC must be specified after each
column name to perform a fully descending sort.

Multiple-column ORDER BY clauses can perform mixed-order sorting where some col‐
umns are sorted in ascending order and others in descending order. The following query
sorts by name in descending order, then by trav_date in ascending order for each name:

mysql> SELECT * FROM driver_log ORDER BY name DESC, trav_date;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
2	Suzi	2014-07-29	391
7	Suzi	2014-08-02	502
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
5	Ben	2014-07-29	131
1	Ben	2014-07-30	152
9	Ben	2014-08-02	79
+--------+-------+------------+-------+

The ORDER BY clauses in the queries shown thus far refer to the sorted columns by name.
You can also name the columns by using aliases. That is, if an output column has an
alias, you can refer to the alias in the ORDER BY clause:

mysql> SELECT name, trav_date, miles AS distance FROM driver_log
 -> ORDER BY distance;
+-------+------------+----------+
| name | trav_date | distance |
+-------+------------+----------+
Ben	2014-08-02	79
Henry	2014-07-27	96
Henry	2014-07-26	115
Ben	2014-07-29	131
Ben	2014-07-30	152
Henry	2014-08-01	197
Henry	2014-07-30	203
Henry	2014-07-29	300
Suzi	2014-07-29	391
Suzi	2014-08-02	502
+-------+------------+----------+

7.1. Using ORDER BY to Sort Query Results | 237

www.it-ebooks.info

http://www.it-ebooks.info/

7.2. Using Expressions for Sorting
Problem
You want to sort a query result based on values calculated from a column rather than
the values actually stored in the column.

Solution
Put the expression that calculates the values in the ORDER BY clause.

Discussion
One of the mail table columns shows how large each mail message is, in bytes:

mysql> SELECT * FROM mail;
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
2014-05-12 18:59:18	barb	saturn	tricia	venus	271
…

Suppose that you want to retrieve rows for “big” mail messages (defined as those larger
than 50,000 bytes), but you want them to be displayed and sorted by sizes in terms of
kilobytes, not bytes. In this case, the values to sort are calculated by an expression:

FLOOR((size+1023)/1024)

The +1023 in the FLOOR() expression groups size values to the nearest upper boundary
of the 1,024-byte categories. Without it, the values group by lower boundaries (for ex‐
ample, a 2,047-byte message is reported as having a size of 1 kilobyte rather than 2).
Recipe 8.10 disscusses this technique in more detail.

To sort by that expression, put it directly in the ORDER BY clause:
mysql> SELECT t, srcuser, FLOOR((size+1023)/1024)
 -> FROM mail WHERE size > 50000
 -> ORDER BY FLOOR((size+1023)/1024);
+---------------------+---------+-------------------------+
| t | srcuser | FLOOR((size+1023)/1024) |
+---------------------+---------+-------------------------+
2014-05-11 10:15:08	barb	57
2014-05-14 14:42:21	barb	96
2014-05-12 12:48:13	tricia	191
2014-05-15 10:25:52	gene	976
2014-05-14 17:03:01	tricia	2339
+---------------------+---------+-------------------------+

238 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, if the sorting expression appears in the output column list, you can alias
it there and refer to the alias in the ORDER BY clause:

mysql> SELECT t, srcuser, FLOOR((size+1023)/1024) AS kilobytes
 -> FROM mail WHERE size > 50000
 -> ORDER BY kilobytes;
+---------------------+---------+-----------+
| t | srcuser | kilobytes |
+---------------------+---------+-----------+
2014-05-11 10:15:08	barb	57
2014-05-14 14:42:21	barb	96
2014-05-12 12:48:13	tricia	191
2014-05-15 10:25:52	gene	976
2014-05-14 17:03:01	tricia	2339
+---------------------+---------+-----------+

You might prefer the alias method for several reasons:

• It’s easier to write the alias in the ORDER BY clause than to repeat the (cumbersome)
expression.

• Without the alias, if you change the expression one place, you must change it in the
other.

• The alias may be useful for display purposes, to provide a better column label. Note
how the third column heading is much more meaningful in the second of the two
preceding queries.

7.3. Displaying One Set of Values While Sorting by
Another
Problem
You want to sort a result set using values that don’t appear in the output column list.

Solution
That’s not a problem. The ORDER BY clause can refer to columns you don’t display.

Discussion
ORDER BY is not limited to sorting only those columns named in the output column list.
It can sort using values that are “hidden” (that is, not displayed in the query output).
This technique is commonly used when you have values that can be represented dif‐
ferent ways and you want to display one type of value but sort by another. For example,
you may want to display mail message sizes not in terms of bytes, but as strings such as

7.3. Displaying One Set of Values While Sorting by Another | 239

www.it-ebooks.info

http://www.it-ebooks.info/

103K for 103 kilobytes. You can convert a byte count to that kind of value using this
expression:

CONCAT(FLOOR((size+1023)/1024),'K')

However, such values are strings, so they sort lexically, not numerically. If you use them
for sorting, a value such as 96K sorts after 2339K, even though it represents a smaller
number:

mysql> SELECT t, srcuser,
 -> CONCAT(FLOOR((size+1023)/1024),'K') AS size_in_K
 -> FROM mail WHERE size > 50000
 -> ORDER BY size_in_K;
+---------------------+---------+-----------+
| t | srcuser | size_in_K |
+---------------------+---------+-----------+
2014-05-12 12:48:13	tricia	191K
2014-05-14 17:03:01	tricia	2339K
2014-05-11 10:15:08	barb	57K
2014-05-14 14:42:21	barb	96K
2014-05-15 10:25:52	gene	976K
+---------------------+---------+-----------+

To achieve the desired output order, display the string, but use actual numeric size for
sorting:

mysql> SELECT t, srcuser,
 -> CONCAT(FLOOR((size+1023)/1024),'K') AS size_in_K
 -> FROM mail WHERE size > 50000
 -> ORDER BY size;
+---------------------+---------+-----------+
| t | srcuser | size_in_K |
+---------------------+---------+-----------+
2014-05-11 10:15:08	barb	57K
2014-05-14 14:42:21	barb	96K
2014-05-12 12:48:13	tricia	191K
2014-05-15 10:25:52	gene	976K
2014-05-14 17:03:01	tricia	2339K
+---------------------+---------+-----------+

Displaying values as strings but sorting them as numbers helps solve some otherwise
difficult problems. Members of sports teams typically are assigned a jersey number,
which normally you might think should be stored using a numeric column. Not so fast!
Some players like to have a jersey number of zero (0), and some like double-zero (00).
If a team happens to have players with both numbers, you cannot represent them using
a numeric column because both values will be treated as the same number. To solve this
problem, store jersey numbers as strings:

CREATE TABLE roster
(
 name CHAR(30), # player name

240 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

 jersey_num CHAR(3) # jersey number
);

Then the jersey numbers will display the same way you enter them, and 0 and 00 will
be treated as distinct values. Unfortunately, although representing numbers as strings
solves the problem of distinguishing 0 and 00, it introduces a different problem. Suppose
that a team has the following players:

mysql> SELECT name, jersey_num FROM roster;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Lynne	29
Ella	0
Elizabeth	100
Nancy	00
Jean	8
Sherry	47
+-----------+------------+

Now try to sort the team members by jersey number. If those numbers are stored as
strings, they sort lexically, and lexical order often differs from numeric order. That’s
certainly true for the team in question:

mysql> SELECT name, jersey_num FROM roster ORDER BY jersey_num;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Ella	0
Nancy	00
Elizabeth	100
Lynne	29
Sherry	47
Jean	8
+-----------+------------+

The values 100 and 8 are out of place, but that’s easily solved: display the string values
and use the numeric values for sorting. To accomplish this, add zero to the jer
sey_num values to force a string-to-number conversion:

mysql> SELECT name, jersey_num FROM roster ORDER BY jersey_num+0;
+-----------+------------+
| name | jersey_num |
+-----------+------------+
Ella	0
Nancy	00
Jean	8
Lynne	29
Sherry	47
Elizabeth	100
+-----------+------------+

7.3. Displaying One Set of Values While Sorting by Another | 241

www.it-ebooks.info

http://www.it-ebooks.info/

The technique of displaying one value but sorting by another is also useful when you
display values composed from multiple columns that don’t sort the way you want. For
example, the mail table lists message senders using separate srcuser and srchost
values. To display message senders from the mail table as email addresses in srcus
er@srchost format with the username first, construct those values using the following
expression:

CONCAT(srcuser,'@',srchost)

However, those values are no good for sorting if you want to treat the hostname as more
significant than the username. Instead, sort the results using the underlying column
values rather than the displayed composite values:

mysql> SELECT t, CONCAT(srcuser,'@',srchost) AS sender, size
 -> FROM mail WHERE size > 50000
 -> ORDER BY srchost, srcuser;
+---------------------+---------------+---------+
| t | sender | size |
+---------------------+---------------+---------+
2014-05-15 10:25:52	gene@mars	998532
2014-05-12 12:48:13	tricia@mars	194925
2014-05-11 10:15:08	barb@saturn	58274
2014-05-14 17:03:01	tricia@saturn	2394482
2014-05-14 14:42:21	barb@venus	98151
+---------------------+---------------+---------+

The same idea commonly applies to sorting people’s names. Suppose that a names table
contains last and first names. To display rows sorted by last name first, the query is
straightforward when the columns are displayed separately:

mysql> SELECT last_name, first_name FROM name
 -> ORDER BY last_name, first_name;
+-----------+------------+
| last_name | first_name |
+-----------+------------+
Blue	Vida
Brown	Kevin
Gray	Pete
White	Devon
White	Rondell
+-----------+------------+

If instead you want to display each name as a single string composed of the first name,
a space, and the last name, begin the query like this:

SELECT CONCAT(first_name,' ',last_name) AS full_name FROM name ...

But then how do you sort the names so they come out in last-name order? Display
composite names, but refer to the constituent values in the ORDER BY clause:

mysql> SELECT CONCAT(first_name,' ',last_name) AS full_name
 -> FROM name

242 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

 -> ORDER BY last_name, first_name;
+---------------+
| full_name |
+---------------+
| Vida Blue |
| Kevin Brown |
| Pete Gray |
| Devon White |
| Rondell White |
+---------------+

7.4. Controlling Case Sensitivity of String Sorts
Problem
String-sorting operations are case sensitive when you don’t want them to be, or vice
versa.

Solution
Alter the comparison characteristics of the sorted values.

Discussion
Recipe 5.1 discusses how string-comparison properties depend on whether the strings
are binary or nonbinary:

• Binary strings are sequences of bytes. They are compared byte by byte using nu‐
meric byte values. Character set and lettercase have no meaning for comparisons.

• Nonbinary strings are sequences of characters. They have a character set and col‐
lation and are compared character by character using the order defined by the
collation.

These properties also apply to string sorting because sorting is based on comparison.
To alter the sorting properties of a string column, alter its comparison properties. (For
a summary of which string data types are binary and nonbinary, see Recipe 5.2.)

The examples in this section use a table that has case-insensitive and case-sensitive
nonbinary columns, and a binary column:

CREATE TABLE str_val
(
 ci_str CHAR(3) CHARACTER SET latin1 COLLATE latin1_swedish_ci,
 cs_str CHAR(3) CHARACTER SET latin1 COLLATE latin1_general_cs,
 bin_str BINARY(3)
);

7.4. Controlling Case Sensitivity of String Sorts | 243

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose that the table has these contents:
+--------+--------+---------+
| ci_str | cs_str | bin_str |
+--------+--------+---------+
AAA	AAA	AAA
aaa	aaa	aaa
bbb	bbb	bbb
BBB	BBB	BBB
+--------+--------+---------+

Each column contains the same values, but the natural sort orders for the column data
types produce three different results:

• The case-insensitive collation sorts a and A together, placing them before b and B.
However, for a given letter, it does not necessarily order one lettercase before an‐
other, as shown by the following result:

mysql> SELECT ci_str FROM str_val ORDER BY ci_str;
+--------+
| ci_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

• The case-sensitive collation puts A and a before B and b, and sorts uppercase before
lowercase:

mysql> SELECT cs_str FROM str_val ORDER BY cs_str;
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| BBB |
| bbb |
+--------+

• The binary strings sort numerically. Assuming that uppercase letters have numeric
values less than those of lowercase letters, a binary sort results in the following
ordering:

mysql> SELECT bin_str FROM str_val ORDER BY bin_str;
+---------+
| bin_str |
+---------+
| AAA |
| BBB |
| aaa |

244 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

| bbb |
+---------+

You get the same result for a nonbinary string column that has a binary collation,
as long as the column contains single-byte characters (for example, CHAR(3) CHAR
ACTER SET latin1 COLLATE latin1_bin). For multibyte characters, a binary colla‐
tion still produces a numeric sort, but the character values use multibyte numbers.

To alter the sorting properties of each column, use the techniques described in Recipe 5.7
for controlling string comparisons:

• To sort case-insensitive strings in case-sensitive fashion, order the sorted values
using a case-sensitive collation:

mysql> SELECT ci_str FROM str_val
 -> ORDER BY ci_str COLLATE latin1_general_cs;
+--------+
| ci_str |
+--------+
| AAA |
| aaa |
| BBB |
| bbb |
+--------+

• To sort case-sensitive strings in case-insensitive fashion, order the sorted values
using a case-insensitive collation:

mysql> SELECT cs_str FROM str_val
 -> ORDER BY cs_str COLLATE latin1_swedish_ci;
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

Alternatively, sort using values that have been converted to the same lettercase,
which makes lettercase irrelevant:

mysql> SELECT cs_str FROM str_val
 -> ORDER BY UPPER(cs_str);
+--------+
| cs_str |
+--------+
| AAA |
| aaa |
| bbb |
| BBB |
+--------+

7.4. Controlling Case Sensitivity of String Sorts | 245

www.it-ebooks.info

http://www.it-ebooks.info/

• Binary strings sort using numeric byte values, so there is no concept of lettercase
involved. However, because letters in different cases have different byte values,
comparisons of binary strings effectively are case sensitive. (That is, a and A are
unequal.) To sort binary strings using a case-insensitive ordering, convert them to
nonbinary strings and apply an appropriate collation. For example, to perform a
case-insensitive sort, use a statement like this:

mysql> SELECT bin_str FROM str_val
 -> ORDER BY CONVERT(bin_str USING latin1) COLLATE latin1_swedish_ci;
+---------+
| bin_str |
+---------+
| AAA |
| aaa |
| bbb |
| BBB |
+---------+

If the character-set default collation is case insensitive (as is true for latin1), you
can omit the COLLATE clause.

7.5. Date-Based Sorting
Problem
You want to sort rows in temporal order.

Solution
Sort using a date or time column. If some parts of the values are irrelevant for the sort
that you want to accomplish, ignore them.

Discussion
Many database tables include date or time information and it’s very often necessary to
sort results in temporal order. MySQL knows how to sort temporal data types, so there’s
no special trick to ordering them. The next few examples use the mail table, which
contains a DATETIME column, but the same sorting principles apply to DATE, TIME, and
TIMESTAMP columns.

Here are the messages sent by phil:
mysql> SELECT * FROM mail WHERE srcuser = 'phil';
+---------------------+---------+---------+---------+---------+-------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+-------+
| 2014-05-12 15:02:49 | phil | mars | phil | saturn | 1048 |

246 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
+---------------------+---------+---------+---------+---------+-------+

To display the messages, most recently sent ones first, use ORDER BY with DESC:
mysql> SELECT * FROM mail WHERE srcuser = 'phil' ORDER BY t DESC;
+---------------------+---------+---------+---------+---------+-------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+-------+
2014-05-19 12:49:23	phil	mars	tricia	saturn	873
2014-05-16 23:04:19	phil	venus	barb	venus	10294
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-12 15:02:49	phil	mars	phil	saturn	1048
+---------------------+---------+---------+---------+---------+-------+

Sometimes a temporal sort uses only part of a date or time column. In that case, use an
expression that extracts the part or parts you need and sort the result using the expres‐
sion. Some examples of this are given in the following discussion.

Sorting by time of day

You can do time-of-day sorting different ways, depending on your column type. If the
values are stored in a TIME column named timecol, just sort them directly using OR
DER BY timecol. To put DATETIME or TIMESTAMP values in time-of-day order, extract the
time parts and sort them. For example, the mail table contains DATETIME values, which
can be sorted by time of day like this:

mysql> SELECT * FROM mail ORDER BY TIME(t);
+---------------------+---------+---------+---------+---------+---------+
| t | srcuser | srchost | dstuser | dsthost | size |
+---------------------+---------+---------+---------+---------+---------+
2014-05-15 07:17:48	gene	mars	gene	saturn	3824
2014-05-15 08:50:57	phil	venus	phil	venus	978
2014-05-16 09:00:28	gene	venus	barb	mars	613
2014-05-14 09:31:37	gene	venus	barb	mars	2291
2014-05-11 10:15:08	barb	saturn	tricia	mars	58274
2014-05-15 10:25:52	gene	mars	tricia	saturn	998532
2014-05-14 11:52:17	phil	mars	tricia	saturn	5781
2014-05-12 12:48:13	tricia	mars	gene	venus	194925
…

Sorting by calendar day

To sort date values in calendar order, ignore the year part of the dates and use only the
month and day to order values by where they fall during the calendar year. Suppose that
an occasion table looks like this when values are ordered by date:

7.5. Date-Based Sorting | 247

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT date, description FROM occasion ORDER BY date;
+------------+-------------------------------------+
| date | description |
+------------+-------------------------------------+
1215-06-15	Signing of the Magna Carta
1732-02-22	George Washington's birthday
1776-07-14	Bastille Day
1789-07-04	US Independence Day
1809-02-12	Abraham Lincoln's birthday
1919-06-28	Signing of the Treaty of Versailles
1944-06-06	D-Day at Normandy Beaches
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
+------------+-------------------------------------+

To put these items in calendar order, sort them by month and day within month:
mysql> SELECT date, description FROM occasion
 -> ORDER BY MONTH(date), DAYOFMONTH(date);
+------------+-------------------------------------+
| date | description |
+------------+-------------------------------------+
1809-02-12	Abraham Lincoln's birthday
1732-02-22	George Washington's birthday
1944-06-06	D-Day at Normandy Beaches
1215-06-15	Signing of the Magna Carta
1919-06-28	Signing of the Treaty of Versailles
1789-07-04	US Independence Day
1776-07-14	Bastille Day
1957-10-04	Sputnik launch date
1989-11-09	Opening of the Berlin Wall
+------------+-------------------------------------+

MySQL has a DAYOFYEAR() function that you might suspect would be useful for
calendar-day sorting. However, it can generate the same value for different calendar
days. For example, February 29 of leap years and March 1 of nonleap years have the
same day-of-year value:

mysql> SELECT DAYOFYEAR('1996-02-29'), DAYOFYEAR('1997-03-01');
+-------------------------+-------------------------+
| DAYOFYEAR('1996-02-29') | DAYOFYEAR('1997-03-01') |
+-------------------------+-------------------------+
| 60 | 60 |
+-------------------------+-------------------------+

This means that DAYOFYEAR() can group dates that actually occur on different calendar
days.

If a table represents dates using separate year, month, and day columns, calendar sorting
requires no date-part extraction. Just sort the relevant columns directly. For large da‐
tasets, sorting using separate date-part columns can be much faster than sorts based on
extracting pieces of DATE values. There’s no overhead for part extraction, but more

248 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

importantly, you can index the date-part columns separately—something not possible
with a DATE column. The principle here is that you should design the table to make it
easy to extract or sort by the values that you expect to use a lot.

Sorting by day of week

Day-of-week sorting is similar to calendar-day sorting, except that you use different
functions to obtain the relevant ordering values.

You can get the day of the week using DAYNAME(), but that produces strings that sort
lexically rather than in day-of-week order (Sunday, Monday, Tuesday, and so forth).
Here the technique of displaying one value but sorting by another is useful (see
Recipe 7.3). Display day names using DAYNAME(), but sort in day-of-week order using
DAYOFWEEK(), which returns numeric values from 1 to 7 for Sunday through Saturday:

mysql> SELECT DAYNAME(date) AS day, date, description
 -> FROM occasion
 -> ORDER BY DAYOFWEEK(date);
+----------+------------+-------------------------------------+
| day | date | description |
+----------+------------+-------------------------------------+
Sunday	1776-07-14	Bastille Day
Sunday	1809-02-12	Abraham Lincoln's birthday
Monday	1215-06-15	Signing of the Magna Carta
Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1732-02-22	George Washington's birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
+----------+------------+-------------------------------------+

To sort rows in day-of-week order but treat Monday as the first day of the week and
Sunday as the last, use the MOD() function to map Monday to 0, Tuesday to 1, …, Sunday
to 6:

mysql> SELECT DAYNAME(date), date, description
 -> FROM occasion
 -> ORDER BY MOD(DAYOFWEEK(date)+5, 7);
+---------------+------------+-------------------------------------+
| DAYNAME(date) | date | description |
+---------------+------------+-------------------------------------+
Monday	1215-06-15	Signing of the Magna Carta
Tuesday	1944-06-06	D-Day at Normandy Beaches
Thursday	1989-11-09	Opening of the Berlin Wall
Friday	1957-10-04	Sputnik launch date
Friday	1732-02-22	George Washington's birthday
Saturday	1789-07-04	US Independence Day
Saturday	1919-06-28	Signing of the Treaty of Versailles
Sunday	1776-07-14	Bastille Day

7.5. Date-Based Sorting | 249

www.it-ebooks.info

http://www.it-ebooks.info/

| Sunday | 1809-02-12 | Abraham Lincoln's birthday |
+---------------+------------+-------------------------------------+

The following table shows the DAYOFWEEK() expressions for putting any day of the week
first in the sort order:

Day to list first DAYOFWEEK() expression

Sunday DAYOFWEEK(date)

Monday MOD(DAYOFWEEK(date)+5, 7)

Tuesday MOD(DAYOFWEEK(date)+4, 7)

Wednesday MOD(DAYOFWEEK(date)+3, 7)

Thursday MOD(DAYOFWEEK(date)+2, 7)

Friday MOD(DAYOFWEEK(date)+1, 7)

Saturday MOD(DAYOFWEEK(date)+0, 7)

You can also use WEEKDAY() for day-of-week sorting, although it returns a different set
of values (0 for Monday through 6 for Sunday).

7.6. Sorting by Substrings of Column Values
Problem
You want to sort a set of values using one or more substrings of each value.

Solution
Extract the pieces you want and sort them separately.

Discussion
This is a specific application of sorting by expression value (see Recipe 7.2). To sort rows
using just a particular portion of a column’s values, extract the substring you need and
use it in the ORDER BY clause. This is easiest if the substrings are at a fixed position and
length within the column. For substrings of variable position or length, you can still use
them for sorting if you have a reliable way to identify them. The next several recipes
show how to use substring extraction to produce specialized sort orders.

7.7. Sorting by Fixed-Length Substrings
Problem
You want to sort using parts of a column that occur at a given position within the column.

250 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Pull out the parts you need with LEFT(), MID(), or RIGHT(), and sort them.

Discussion
Suppose that a housewares table catalogs houseware furnishings, each identified by 10-
character ID values consisting of three subparts: a three-character category abbreviation
(such as DIN for “dining room” or KIT for “kitchen”), a five-digit serial number, and a
two-character country code indicating where the part is manufactured:

mysql> SELECT * FROM housewares;
+------------+------------------+
| id | description |
+------------+------------------+
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
BED00038SG	bedside lamp
BTH00485US	shower stall
BTH00415JP	lavatory
+------------+------------------+

This is not necessarily a good way to store complex ID values, and later we’ll consider
how to represent them using separate columns. For now, assume that the values must
be stored as shown.

To sort rows from this table based on the id values, use the entire column value:
mysql> SELECT * FROM housewares ORDER BY id;
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
BTH00415JP	lavatory
BTH00485US	shower stall
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
+------------+------------------+

But you might also have a need to sort on any of the three subparts (for example, to sort
by country of manufacture). For that kind of operation, functions such as LEFT(),
MID(), and RIGHT() are useful to extract id value components:

mysql> SELECT id,
 -> LEFT(id,3) AS category,
 -> MID(id,4,5) AS serial,
 -> RIGHT(id,2) AS country
 -> FROM housewares;
+------------+----------+--------+---------+
| id | category | serial | country |

7.7. Sorting by Fixed-Length Substrings | 251

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+----------+--------+---------+
DIN40672US	DIN	40672	US
KIT00372UK	KIT	00372	UK
KIT01729JP	KIT	01729	JP
BED00038SG	BED	00038	SG
BTH00485US	BTH	00485	US
BTH00415JP	BTH	00415	JP
+------------+----------+--------+---------+

Those fixed-length substrings of the id values can be used for sorting, either alone or
in combination. For example, to sort by product category, extract and use the category
in the ORDER BY clause:

mysql> SELECT * FROM housewares ORDER BY LEFT(id,3);
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
BTH00485US	shower stall
BTH00415JP	lavatory
DIN40672US	dining table
KIT00372UK	garbage disposal
KIT01729JP	microwave oven
+------------+------------------+

To sort by product serial number, use MID() to extract the middle five characters from
the id values, beginning with the fourth:

mysql> SELECT * FROM housewares ORDER BY MID(id,4,5);
+------------+------------------+
| id | description |
+------------+------------------+
BED00038SG	bedside lamp
KIT00372UK	garbage disposal
BTH00415JP	lavatory
BTH00485US	shower stall
KIT01729JP	microwave oven
DIN40672US	dining table
+------------+------------------+

This appears to be a numeric sort, but it’s actually a string sort because MID() returns
strings. The lexical and numeric sort order are the same in this case because the “num‐
bers” have leading zeros to make them all the same length.

To sort by country code, use the rightmost two characters of the id values (ORDER BY
RIGHT(id,2)).

You can also sort using combinations of substrings; for example, by country code and
serial number within country:

mysql> SELECT * FROM housewares ORDER BY RIGHT(id,2), MID(id,4,5);
+------------+------------------+
| id | description |

252 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+------------------+
BTH00415JP	lavatory
KIT01729JP	microwave oven
BED00038SG	bedside lamp
KIT00372UK	garbage disposal
BTH00485US	shower stall
DIN40672US	dining table
+------------+------------------+

The ORDER BY clauses just shown suffice to sort by substrings of the id values, but if such
operations on the table are common, it might be worth representing houseware IDs
differently; for example, using separate columns for the ID components. This table,
housewares2, is like housewares but uses category, serial, and country columns
rather than an id column:

CREATE TABLE housewares2
(
 category VARCHAR(3) NOT NULL,
 serial INT(5) UNSIGNED ZEROFILL NOT NULL,
 country VARCHAR(2) NOT NULL,
 description VARCHAR(255),
 PRIMARY KEY (category, country, serial)
);

With the ID values split into separate parts, sorting operations are easier to specify; refer
to individual columns directly rather than pulling out substrings of the original id
column. You can also make operations that sort the serial and country columns more
efficient by adding indexes on those columns. But a problem remains: how do you
display each product ID as a single string rather than as three separate values? Do that
with CONCAT():

mysql> SELECT category, serial, country,
 -> CONCAT(category,serial,country) AS id
 -> FROM housewares2 ORDER BY category, country, serial;
+----------+--------+---------+------------+
| category | serial | country | id |
+----------+--------+---------+------------+
BED	00038	SG	BED00038SG
BTH	00415	JP	BTH00415JP
BTH	00485	US	BTH00485US
DIN	40672	US	DIN40672US
KIT	01729	JP	KIT01729JP
KIT	00372	UK	KIT00372UK
+----------+--------+---------+------------+

This example illustrates an important principle: you might think about values one way
(id values as single strings), but you need not necessarily represent them that way in
the database. If an alternative representation (separate columns) is more efficient or
easier to work with, it may well be worth using—even if you must reformat the under‐
lying columns so they appear as people expect.

7.7. Sorting by Fixed-Length Substrings | 253

www.it-ebooks.info

http://www.it-ebooks.info/

7.8. Sorting by Variable-Length Substrings
Problem
You want to sort using parts of a column that do not occur at a given position within
the column.

Solution
Determine how to identify the parts you need so that you can extract them. Otherwise,
you’re out of luck.

Discussion
If substrings to be used for sorting vary in length, you need a reliable means of extracting
just the part you want. To see how this works, create a housewares3 table that is like the
housewares table used in Recipe 7.7, except that it has no leading zeros in the serial
number part of the id values:

mysql> SELECT * FROM housewares3;
+------------+------------------+
| id | description |
+------------+------------------+
DIN40672US	dining table
KIT372UK	garbage disposal
KIT1729JP	microwave oven
BED38SG	bedside lamp
BTH485US	shower stall
BTH415JP	lavatory
+------------+------------------+

The category and country parts of the id values can be extracted and sorted using LEFT()
and RIGHT(), just as for the housewares table. But now the numeric segments of the
values have different lengths and cannot be extracted and sorted using a simple MID()
call. Instead, use SUBSTRING() to skip the first three characters. Of the remainder be‐
ginning with the fourth character (the first digit), take everything but the rightmost two
columns. One way to do this is as follows:

mysql> SELECT id, LEFT(SUBSTRING(id,4),CHAR_LENGTH(SUBSTRING(id,4)-2))
 -> FROM housewares3;
+------------+--+
| id | LEFT(SUBSTRING(id,4),CHAR_LENGTH(SUBSTRING(id,4)-2)) |
+------------+--+
DIN40672US	40672
KIT372UK	372
KIT1729JP	1729
BED38SG	38
BTH485US	485

254 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

| BTH415JP | 415 |
+------------+--+

But that’s more complex than necessary. The SUBSTRING() function takes an optional
third argument specifying a desired result length, and we know that the length of the
middle part is equal to the length of the string minus five (three for the characters at the
beginning and two for the characters at the end). The following query demonstrates
how to get the numeric middle part by beginning with the ID, and then stripping the
rightmost suffix:

mysql> SELECT id, SUBSTRING(id,4), SUBSTRING(id,4,CHAR_LENGTH(id)-5)
 -> FROM housewares3;
+------------+-----------------+-----------------------------------+
| id | SUBSTRING(id,4) | SUBSTRING(id,4,CHAR_LENGTH(id)-5) |
+------------+-----------------+-----------------------------------+
DIN40672US	40672US	40672
KIT372UK	372UK	372
KIT1729JP	1729JP	1729
BED38SG	38SG	38
BTH485US	485US	485
BTH415JP	415JP	415
+------------+-----------------+-----------------------------------+

Unfortunately, although the final expression correctly extracts the numeric part from
the IDs, the resulting values are strings. Consequently, they sort lexically rather than
numerically:

mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4,CHAR_LENGTH(id)-5);
+------------+------------------+
| id | description |
+------------+------------------+
KIT1729JP	microwave oven
KIT372UK	garbage disposal
BED38SG	bedside lamp
DIN40672US	dining table
BTH415JP	lavatory
BTH485US	shower stall
+------------+------------------+

How to deal with that? One way is to add zero, which tells MySQL to perform a string-
to-number conversion that results in a numeric sort of the serial number values:

mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4,CHAR_LENGTH(id)-5)+0;
+------------+------------------+
| id | description |
+------------+------------------+
BED38SG	bedside lamp
KIT372UK	garbage disposal
BTH415JP	lavatory
BTH485US	shower stall

7.8. Sorting by Variable-Length Substrings | 255

www.it-ebooks.info

http://www.it-ebooks.info/

| KIT1729JP | microwave oven |
| DIN40672US | dining table |
+------------+------------------+

In this particular case, a simpler solution is possible. It’s unnecessary to calculate the
length of the numeric part of the string, because a string-to-number conversion oper‐
ation strips trailing nonnumeric suffixes and provides the values needed to sort on the
variable-length serial number portion of the id values. That means the third argument
to SUBSTRING() actually isn’t needed:

mysql> SELECT * FROM housewares3
 -> ORDER BY SUBSTRING(id,4)+0;
+------------+------------------+
| id | description |
+------------+------------------+
BED38SG	bedside lamp
KIT372UK	garbage disposal
BTH415JP	lavatory
BTH485US	shower stall
KIT1729JP	microwave oven
DIN40672US	dining table
+------------+------------------+

In the preceding example, the ability to extract variable-length substrings is based on
the different kinds of characters in the middle of the id values, compared to the char‐
acters on the ends (that is, digits versus nondigits). In other cases, you may be able to
use delimiter characters to pull apart column values. For the next examples, assume a
housewares4 table with id values that look like this:

mysql> SELECT * FROM housewares4;
+---------------+------------------+
| id | description |
+---------------+------------------+
13-478-92-2	dining table
873-48-649-63	garbage disposal
8-4-2-1	microwave oven
97-681-37-66	bedside lamp
27-48-534-2	shower stall
5764-56-89-72	lavatory
+---------------+------------------+

To extract segments from these values, use SUBSTRING_INDEX(str,c,n). It searches a
string str for the n-th occurrence of a given character c and returns everything to the
left of that character. For example, the following call returns 13-478:

SUBSTRING_INDEX('13-478-92-2','-',2)

If n is negative, the search for c proceeds from the right and returns the rightmost string.
This call returns 478-92-2:

SUBSTRING_INDEX('13-478-92-2','-',-3)

256 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

By combining SUBSTRING_INDEX() calls with positive and negative indexes, it’s possible
to extract successive pieces from each id value: extract the first n segments of the value
and pull off the rightmost one. By varying n from 1 to 4, we get the successive segments
from left to right:

SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',1),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',3),'-',-1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',4),'-',-1)

The first of those expressions can be optimized because the inner SUBSTRING_IN
DEX() call returns a single-segment string and is sufficient by itself to return the leftmost
id segment:

SUBSTRING_INDEX(id,'-',1)

Another way to obtain substrings is to extract the rightmost n segments of the value and
pull off the first one. Here we vary n from –4 to –1:

SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-4),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-3),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-2),'-',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',-1),'-',1)

Again, an optimization is possible. For the fourth expression, the inner SUBSTRING_IN
DEX() call is sufficient to return the final substring:

SUBSTRING_INDEX(id,'-',-1)

These expressions can be difficult to read and understand, and experimenting with a
few to see how they work may be useful. Here is an example that shows how to get the
second and fourth segments from the id values:

mysql> SELECT
 -> id,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1) AS segment2,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',4),'-',-1) AS segment4
 -> FROM housewares4;
+---------------+----------+----------+
| id | segment2 | segment4 |
+---------------+----------+----------+
13-478-92-2	478	2
873-48-649-63	48	63
8-4-2-1	4	1
97-681-37-66	681	66
27-48-534-2	48	2
5764-56-89-72	56	72
+---------------+----------+----------+

To use the substrings for sorting, use the appropriate expressions in the ORDER BY clause.
(Remember to force a string-to-number conversion by adding zero if you want a

7.8. Sorting by Variable-Length Substrings | 257

www.it-ebooks.info

http://www.it-ebooks.info/

numeric rather than lexical sort.) The following two queries order the results based on
the second id segment. The first sorts lexically, the second numerically:

mysql> SELECT * FROM housewares4
 -> ORDER BY SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1);
+---------------+------------------+
| id | description |
+---------------+------------------+
8-4-2-1	microwave oven
13-478-92-2	dining table
873-48-649-63	garbage disposal
27-48-534-2	shower stall
5764-56-89-72	lavatory
97-681-37-66	bedside lamp
+---------------+------------------+
mysql> SELECT * FROM housewares4
 -> ORDER BY SUBSTRING_INDEX(SUBSTRING_INDEX(id,'-',2),'-',-1)+0;
+---------------+------------------+
| id | description |
+---------------+------------------+
8-4-2-1	microwave oven
873-48-649-63	garbage disposal
27-48-534-2	shower stall
5764-56-89-72	lavatory
13-478-92-2	dining table
97-681-37-66	bedside lamp
+---------------+------------------+

The substring-extraction expressions here are messy, but at least the column values to
which we apply the expressions have a consistent number of segments. To sort values
that have varying numbers of segments, the job can be more difficult. Recipe 7.9 shows
an example illustrating why that is.

7.9. Sorting Hostnames in Domain Order
Problem
You want to sort hostnames in domain order, with the rightmost parts of the names
more significant than the leftmost parts.

Solution
Break apart the names, and sort the pieces from right to left.

Discussion
Hostnames are strings and therefore their natural sort order is lexical. However, it’s often
desirable to sort hostnames in domain order, where the rightmost segments of the

258 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

hostname values are more significant than the leftmost segments. Suppose that a host
name table contains the following names:

mysql> SELECT name FROM hostname ORDER BY name;
+--------------------+
| name |
+--------------------+
| dbi.perl.org |
| jakarta.apache.org |
| lists.mysql.com |
| mysql.com |
| svn.php.net |
| www.kitebird.com |
+--------------------+

The preceding query demonstrates the natural lexical sort order of the name values. That
differs from domain order, as the following table shows:

Lexical order Domain order

dbi.perl.org www.kitebird.com

jakarta.apache.org mysql.com

lists.mysql.com lists.mysql.com

mysql.com svn.php.net

svn.php.net jakarta.apache.org

www.kitebird.com dbi.perl.org

Producing domain-ordered output is a substring-sorting problem for which it’s neces‐
sary to extract each segment of the names so they can be sorted in right-to-left fashion.
There is also an additional complication if your values contain different numbers of
segments, as our example hostnames do. (Most of them have three segments, but
mysql.com has only two.)

To extract the pieces of the hostnames, begin by using SUBSTRING_INDEX() in a manner
similar to that described previously in Recipe 7.8. The hostname values have a maximum
of three segments, from which the pieces can be extracted left to right like this:

SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-3),'.',1)
SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-2),'.',1)
SUBSTRING_INDEX(name,'.',-1)

These expressions work properly as long as all the hostnames have three components.
But if a name has fewer than three, you don’t get the correct result, as the following
query demonstrates:

mysql> SELECT name,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-3),'.',1) AS leftmost,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(name,'.',-2),'.',1) AS middle,
 -> SUBSTRING_INDEX(name,'.',-1) AS rightmost
 -> FROM hostname;

7.9. Sorting Hostnames in Domain Order | 259

www.it-ebooks.info

http://www.it-ebooks.info/

+--------------------+----------+----------+-----------+
| name | leftmost | middle | rightmost |
+--------------------+----------+----------+-----------+
svn.php.net	svn	php	net
dbi.perl.org	dbi	perl	org
lists.mysql.com	lists	mysql	com
mysql.com	mysql	mysql	com
jakarta.apache.org	jakarta	apache	org
www.kitebird.com	www	kitebird	com
+--------------------+----------+----------+-----------+

Notice the output for the mysql.com row; it has mysql for the value of the leftmost
column, where it should have an empty string. The segment-extraction expressions
work by pulling off the rightmost n segments, and then returning the leftmost segment
of the result. The source of the problem for mysql.com is that if there aren’t n segments,
the expression simply returns the leftmost segment of however many there are. To fix
this problem, add a sufficient number of periods at the beginning of the hostname values
to guarantee that they have the requisite number of segments:

mysql> SELECT name,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('..',name),'.',-3),'.',1)
 -> AS leftmost,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('.',name),'.',-2),'.',1)
 -> AS middle,
 -> SUBSTRING_INDEX(name,'.',-1) AS rightmost
 -> FROM hostname;
+--------------------+----------+----------+-----------+
| name | leftmost | middle | rightmost |
+--------------------+----------+----------+-----------+
svn.php.net	svn	php	net
dbi.perl.org	dbi	perl	org
lists.mysql.com	lists	mysql	com
mysql.com		mysql	com
jakarta.apache.org	jakarta	apache	org
www.kitebird.com	www	kitebird	com
+--------------------+----------+----------+-----------+

That’s pretty ugly. But the expressions do serve to extract the substrings that are needed
for sorting hostname values correctly in right-to-left fashion:

mysql> SELECT name FROM hostname
 -> ORDER BY
 -> SUBSTRING_INDEX(name,'.',-1),
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('.',name),'.',-2),'.',1),
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(CONCAT('..',name),'.',-3),'.',1);
+--------------------+
| name |
+--------------------+
| www.kitebird.com |
| mysql.com |
| lists.mysql.com |
| svn.php.net |

260 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

| jakarta.apache.org |
| dbi.perl.org |
+--------------------+

If your hostnames have a maximum of four segments rather than three, add to the ORDER
BY clause another SUBSTRING_INDEX() expression that adds three dots at the beginning
of the hostname values.

7.10. Sorting Dotted-Quad IP Values in Numeric Order
Problem
You want to sort in numeric order strings that represent IP numbers.

Solution
Break apart the strings, and sort the pieces numerically. Or just use INET_ATON(). Or
consider storing the values as numbers instead.

Discussion
If a table contains IP numbers represented as strings in dotted-quad notation
(192.168.1.10), they sort lexically rather than numerically. To produce a numeric or‐
dering instead, sort them as four-part values with each part sorted numerically. Or, to
be more efficient, represent the IP numbers as 32-bit unsigned integers, which take less
space and can be ordered by a simple numeric sort. This section shows both methods.

To sort string-valued dotted-quad IP numbers, use a technique similar to that for sorting
hostnames (see Recipe 7.9), but with the following differences:

• Dotted quads always have four segments. There’s no need to add dots to the value
before extracting substrings.

• Dotted quads sort left to right. The order of the substrings used in the ORDER BY
clause is opposite to that used for hostname sorting.

• The segments of dotted-quad values are numbers. Add zero to each substring to
force a numeric rather than lexical sort.

Suppose that a hostip table has a string-valued ip column containing IP numbers:
mysql> SELECT ip FROM hostip ORDER BY ip;
+-----------------+
| ip |
+-----------------+
| 127.0.0.1 |
| 192.168.0.10 |
| 192.168.0.2 |

7.10. Sorting Dotted-Quad IP Values in Numeric Order | 261

www.it-ebooks.info

http://www.it-ebooks.info/

| 192.168.1.10 |
| 192.168.1.2 |
| 21.0.0.1 |
| 255.255.255.255 |
+-----------------+

The preceding query produces output sorted in lexical order. To sort the ip values
numerically, extract each segment and add zero to convert it to a number like this:

mysql> SELECT ip FROM hostip
 -> ORDER BY
 -> SUBSTRING_INDEX(ip,'.',1)+0,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,'.',-3),'.',1)+0,
 -> SUBSTRING_INDEX(SUBSTRING_INDEX(ip,'.',-2),'.',1)+0,
 -> SUBSTRING_INDEX(ip,'.',-1)+0;
+-----------------+
| ip |
+-----------------+
| 21.0.0.1 |
| 127.0.0.1 |
| 192.168.0.2 |
| 192.168.0.10 |
| 192.168.1.2 |
| 192.168.1.10 |
| 255.255.255.255 |
+-----------------+

However, although that ORDER BY clause produces a correct result, it’s complicated. A
simpler solution uses the INET_ATON() function to convert network addresses in string
form to their underlying numeric values, then sorts those numbers:

mysql> SELECT ip FROM hostip ORDER BY INET_ATON(ip);
+-----------------+
| ip |
+-----------------+
| 21.0.0.1 |
| 127.0.0.1 |
| 192.168.0.2 |
| 192.168.0.10 |
| 192.168.1.2 |
| 192.168.1.10 |
| 255.255.255.255 |
+-----------------+

If you’re tempted to sort by simply adding zero to the ip value and using ORDER BY on
the result, consider the values that kind of string-to-number conversion actually pro‐
duces:

mysql> SELECT ip, ip+0 FROM hostip;
+-----------------+---------+
| ip | ip+0 |
+-----------------+---------+
| 127.0.0.1 | 127 |

262 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

192.168.0.2	192.168
192.168.0.10	192.168
192.168.1.2	192.168
192.168.1.10	192.168
255.255.255.255	255.255
21.0.0.1	21
+-----------------+---------+
7 rows in set, 7 warnings (0.00 sec)

The conversion retains only as much of each value as can be interpreted as a valid
number (hence the warnings). The remainder becomes unavailable for sorting purpos‐
es, even though it’s required for a correct ordering.

Use of INET_ATON() in the ORDER BY clause is more efficient than six SUBSTRING_IN
DEX() calls. Moreover, if you’re willing to consider storing IP addresses as numbers
rather than as strings, you can avoid performing any conversion at all when sorting. You
gain other benefits as well: numeric IP addresses have 32 bits, so you can use a 4-byte
INT UNSIGNED column to store them, which requires less storage than the string form.
Also, if you index the column, the query optimizer may be able to use the index for
certain queries. For cases requiring display of numeric IP values in dotted-quad nota‐
tion, convert them with the INET_NTOA() function.

7.11. Floating Values to the Head or Tail of the Sort Order
Problem
You want a column to sort the way it normally does, except for a few values that should
appear at the beginning or end of the sort order. For example, you want to sort a list in
lexical order except for certain high-priority values that should appear first no matter
where they fall in the normal sort order.

Solution
Add an initial sort column to the ORDER BY clause that places those few values where you
want them. The remaining sort columns have their usual effect for the other values.

Discussion
To sort a result set normally except that you want particular values first, create an ad‐
ditional sort column that is 0 for those values and 1 for everything else. This enables
you to float the values to the head of the sort order. To put the values at the tail instead,
use the additional column to map the values to 1 and all other values to 0.

7.11. Floating Values to the Head or Tail of the Sort Order | 263

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose that a column contains NULL values:
mysql> SELECT val FROM t;
+------+
| val |
+------+
| 3 |
| 100 |
| NULL |
| NULL |
| 9 |
+------+

Normally, sorting groups the NULL values at the beginning for an ascending sort:
mysql> SELECT val FROM t ORDER BY val;
+------+
| val |
+------+
| NULL |
| NULL |
| 3 |
| 9 |
| 100 |
+------+

To put them at the end instead, without changing the order of other values, introduce
an extra ORDER BY column that maps NULL values to a higher value than non-NULL values:

mysql> SELECT val FROM t ORDER BY IF(val IS NULL,1,0), val;
+------+
| val |
+------+
| 3 |
| 9 |
| 100 |
| NULL |
| NULL |
+------+

The IF() expression creates a new column for the sort that is used as the primary sort
value.

For descending sorts, NULL values group at the end. To put them at the beginning instead,
use the same technique, but reverse the second and third arguments of the IF() function
to map NULL values to a lower value than non-NULL values:

IF(val IS NULL,0,1)

The same technique is useful for floating values other than NULL to either end of the sort
order. Suppose that you want to sort mail table messages in sender/recipient order, but
you want to put messages for a particular sender first. In the real world, the most

264 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

interesting sender might be postmaster or root. Those names don’t appear in the table,
so let’s use phil as the name of interest instead:

mysql> SELECT t, srcuser, dstuser, size
 -> FROM mail
 -> ORDER BY IF(srcuser='phil',0,1), srcuser, dstuser;
+---------------------+---------+---------+---------+
| t | srcuser | dstuser | size |
+---------------------+---------+---------+---------+
2014-05-16 23:04:19	phil	barb	10294
2014-05-12 15:02:49	phil	phil	1048
2014-05-15 08:50:57	phil	phil	978
2014-05-14 11:52:17	phil	tricia	5781
2014-05-19 12:49:23	phil	tricia	873
2014-05-14 14:42:21	barb	barb	98151
2014-05-11 10:15:08	barb	tricia	58274
2014-05-12 18:59:18	barb	tricia	271
2014-05-14 09:31:37	gene	barb	2291
2014-05-16 09:00:28	gene	barb	613
2014-05-15 17:35:31	gene	gene	3856
2014-05-15 07:17:48	gene	gene	3824
2014-05-19 22:21:51	gene	gene	23992
2014-05-15 10:25:52	gene	tricia	998532
2014-05-12 12:48:13	tricia	gene	194925
2014-05-14 17:03:01	tricia	phil	2394482
+---------------------+---------+---------+---------+

The value of the extra sort column is 0 for rows in which the srcuser value is phil, and
1 for all other rows. By making that the most significant sort column, rows for messages
sent by phil float to the top of the output. (To sink them to the bottom instead, either
sort the column in reverse order using DESC, or reverse the order of the second and third
arguments of the IF() function.)

You can also use this technique for particular conditions, not only specific values. To
put first those rows where people sent messages to themselves, do this:

mysql> SELECT t, srcuser, dstuser, size
 -> FROM mail
 -> ORDER BY IF(srcuser=dstuser,0,1), srcuser, dstuser;
+---------------------+---------+---------+---------+
| t | srcuser | dstuser | size |
+---------------------+---------+---------+---------+
2014-05-14 14:42:21	barb	barb	98151
2014-05-19 22:21:51	gene	gene	23992
2014-05-15 17:35:31	gene	gene	3856
2014-05-15 07:17:48	gene	gene	3824
2014-05-12 15:02:49	phil	phil	1048
2014-05-15 08:50:57	phil	phil	978
2014-05-11 10:15:08	barb	tricia	58274
2014-05-12 18:59:18	barb	tricia	271
2014-05-16 09:00:28	gene	barb	613
2014-05-14 09:31:37	gene	barb	2291

7.11. Floating Values to the Head or Tail of the Sort Order | 265

www.it-ebooks.info

http://www.it-ebooks.info/

2014-05-15 10:25:52	gene	tricia	998532
2014-05-16 23:04:19	phil	barb	10294
2014-05-14 11:52:17	phil	tricia	5781
2014-05-19 12:49:23	phil	tricia	873
2014-05-12 12:48:13	tricia	gene	194925
2014-05-14 17:03:01	tricia	phil	2394482
+---------------------+---------+---------+---------+

If you have a pretty good idea about the contents of your table, it’s sometimes possible
to eliminate the extra sort column. For example, srcuser is never NULL in the mail table,
so the previous query can be rewritten as follows to use one less column in the ORDER
BY clause (this relies on the property that NULL values sort ahead of all non-NULL values):

SELECT t, srcuser, dstuser, size
FROM mail
ORDER BY IF(srcuser=dstuser,NULL,srcuser), dstuser;

7.12. Defining a Custom Sort Order
Problem
You want to sort values in a nonstandard order.

Solution
Use FIELD() to map column values to a sequence that places the values in the desired
order.

Discussion
Recipe 7.11 shows how to make a specific group of rows float to the head of the sort
order. To impose a specific order on all values in a column, use the FIELD() function
to map them to a list of numeric values and use the numbers for sorting. FIELD()
compares its first argument to the following arguments and returns an integer indicating
which one it matches. (This works best when the column contains a small number of
distinct values.)

The following FIELD() call compares value to str1, str2, str3, and str4, and returns
1, 2, 3, or 4, depending on which of them value is equal to:

FIELD(value,str1,str2,str3,str4)

If value is NULL or none of the values match, FIELD() returns 0.

You can use FIELD() to sort an arbitrary set of values into any order you please. For
example, to display driver_log rows for Henry, Suzi, and Ben, in that order, do this:

mysql> SELECT * FROM driver_log
 -> ORDER BY FIELD(name,'Henry','Suzi','Ben');

266 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
10	Henry	2014-07-30	203
8	Henry	2014-08-01	197
6	Henry	2014-07-26	115
4	Henry	2014-07-27	96
3	Henry	2014-07-29	300
7	Suzi	2014-08-02	502
2	Suzi	2014-07-29	391
5	Ben	2014-07-29	131
9	Ben	2014-08-02	79
1	Ben	2014-07-30	152
+--------+-------+------------+-------+

7.13. Sorting ENUM Values
Problem
ENUM values don’t sort like other string columns.

Solution
Learn how they work, and exploit those properties to your advantage.

Discussion
ENUM is a string data type, but ENUM values actually are stored numerically with values
ordered the same way they are listed in the table definition. These numeric values affect
how enumerations are sorted, which can be very useful. Suppose that a table named
weekday contains an enumeration column named day that has weekday names as its
members:

CREATE TABLE weekday
(
 day ENUM('Sunday','Monday','Tuesday','Wednesday',
 'Thursday','Friday','Saturday')
);

Internally, MySQL defines the enumeration values Sunday through Saturday in that
definition to have numeric values from 1 to 7. To see this for yourself, create the table
using the definition just shown, and then insert into it a row for each day of the week.
To make the insertion order differ from sorted order (so that you can see the effect of
sorting), add the days in random order:

mysql> INSERT INTO weekday (day) VALUES('Monday'),('Friday'),
 -> ('Tuesday'), ('Sunday'), ('Thursday'), ('Saturday'), ('Wednesday');

7.13. Sorting ENUM Values | 267

www.it-ebooks.info

http://www.it-ebooks.info/

Then select the values, both as strings and as the internal numeric value (obtain the
latter using +0 to force a string-to-number conversion):

mysql> SELECT day, day+0 FROM weekday;
+-----------+-------+
| day | day+0 |
+-----------+-------+
Monday	2
Friday	6
Tuesday	3
Sunday	1
Thursday	5
Saturday	7
Wednesday	4
+-----------+-------+

Notice that because the query includes no ORDER BY clause, the rows are returned in
unsorted order. If you add an ORDER BY day clause, it becomes apparent that MySQL
uses the internal numeric values for sorting:

mysql> SELECT day, day+0 FROM weekday ORDER BY day;
+-----------+-------+
| day | day+0 |
+-----------+-------+
Sunday	1
Monday	2
Tuesday	3
Wednesday	4
Thursday	5
Friday	6
Saturday	7
+-----------+-------+

What about occasions when you want to sort ENUM values in lexical order? Force them
to be treated as strings for sorting using the CAST() function:

mysql> SELECT day, day+0 FROM weekday ORDER BY CAST(day AS CHAR);
+-----------+-------+
| day | day+0 |
+-----------+-------+
Friday	6
Monday	2
Saturday	7
Sunday	1
Thursday	5
Tuesday	3
Wednesday	4
+-----------+-------+

If you always (or nearly always) sort a non-enumeration column in a specific nonlexical
order, consider changing the data type to ENUM, with its values listed in the desired sort

268 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

order. To see how this works, create a color table containing a string column, and
populate it with some sample rows:

mysql> CREATE TABLE color (name CHAR(10));
mysql> INSERT INTO color (name) VALUES ('blue'),('green'),
 -> ('indigo'),('orange'),('red'),('violet'),('yellow');

Sorting by the name column at this point produces lexical order because the column
contains CHAR values:

mysql> SELECT name FROM color ORDER BY name;
+--------+
| name |
+--------+
| blue |
| green |
| indigo |
| orange |
| red |
| violet |
| yellow |
+--------+

Now suppose that you want to sort the column by the order in which colors occur in
the rainbow. (This is “Roy G. Biv” order; successive letters of that name indicate the first
letters of the corresponding color names.) One way to produce a rainbow sort is to use
FIELD():

mysql> SELECT name FROM color
 -> ORDER BY
 -> FIELD(name,'red','orange','yellow','green','blue','indigo','violet');
+--------+
| name |
+--------+
| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |
+--------+

To accomplish the same end without FIELD(), use ALTER TABLE to convert the name
column to an ENUM that lists the colors in the desired sort order:

mysql> ALTER TABLE color
 -> MODIFY name
 -> ENUM('red','orange','yellow','green','blue','indigo','violet');

After converting the table, sorting on the name column produces rainbow sorting nat‐
urally with no special treatment:

7.13. Sorting ENUM Values | 269

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT name FROM color ORDER BY name;
+--------+
| name |
+--------+
| red |
| orange |
| yellow |
| green |
| blue |
| indigo |
| violet |
+--------+

270 | Chapter 7: Sorting Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Generating Summaries

8.0. Introduction
Database systems are useful for data storage and retrieval, but can also summarize your
data in more concise forms. Summaries are useful when you want the overall picture,
not the details. They’re more readily understood than a long list of records. They enable
you to answer questions such as “How many?” or “What is the total?” or “What is the
range of values?” If you run a business, you may want to know how many customers
you have in each state, or how much sales volume you generate each month.

The preceding examples include two common summary types: counting summaries
and content summaries. The first (the number of customer records per state) is a count‐
ing summary. The content of each record is important only for purposes of placing it
into the proper group or category for counting. Such summaries are essentially histo‐
grams, where you sort items into a set of bins and count the number of items in each
bin. The second example (sales volume per month) is a content summary, in which sales
totals are based on sales values in order records.

Another summary type produces neither counts nor sums, but simply a list of unique
values. This is useful if you care which values are present rather than how many of each
there are. To determine the states in which you have customers, you need a list of the
distinct state names contained in the records, not a list consisting of the state value from
every record.

The summary types available to you depend on the nature of your data. A counting
summary can be generated from all kinds of values, whether they be numbers, strings,
or dates. Summaries that produce sums or averages apply only to numeric values. You
can count instances of customer state names to produce a demographic analysis of your
customer base. And sometimes it makes sense to apply one summary technique to the
result of another. For example, to determine how many states your customers live in,
generate a list of unique customer states, then count them.

271

www.it-ebooks.info

http://www.it-ebooks.info/

Summary operations in MySQL involve the following SQL constructs:

• To compute a summary value from a set of individual values, use one of the func‐
tions known as aggregate functions. These are so called because they operate on
aggregates (groups) of values. Aggregate functions include COUNT(), which counts
rows or values in a query result; MIN() and MAX(), which find smallest and largest
values; and SUM() and AVG(), which produce sums and means of values. These
functions can be used to compute a value for the entire result set, or with a GROUP
BY clause to group rows into subsets and obtain an aggregate value for each one.

• To obtain a list of unique values, use SELECT DISTINCT rather than SELECT.
• To count unique values, use COUNT(DISTINCT) rather than COUNT().

The recipes in this chapter first illustrate basic summary techniques, and then show
how to perform more complex summary operations. You’ll find additional examples of
summary methods in later chapters, particularly those that cover joins and statistical
operations. (See Chapter 14 and Chapter 15.)

Summary queries sometimes involve complex expressions. For summaries that you
execute often, keep in mind that views can make queries easier to use. Recipe 3.7 dem‐
onstrates the basic technique of creating a view. Recipe 8.2 shows how it applies to
summary simplification, and you’ll easily see how it can be used in later sections of the
chapter as well.

The primary tables used for examples in this chapter are the driver_log and mail tables.
These were also used in Chapter 7, so they should look familiar. A third table used
throughout the chapter is states, which has rows containing a few columns of infor‐
mation for each of the United States:

mysql> SELECT * FROM states ORDER BY name;
+----------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+----------------+--------+------------+----------+
Alabama	AL	1819-12-14	4779736
Alaska	AK	1959-01-03	710231
Arizona	AZ	1912-02-14	6392017
Arkansas	AR	1836-06-15	2915918
California	CA	1850-09-09	37253956
Colorado	CO	1876-08-01	5029196
Connecticut	CT	1788-01-09	3574097
…

The name and abbrev columns list the full state name and the corresponding abbrevi‐
ation. The statehood column indicates the day on which the state entered the Union.
pop is the state population from the 2010 census, as reported by the US Census Bureau.

272 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter uses other tables occasionally as well. You can create them with scripts
found in the tables directory of the recipes distribution. Recipe 5.12 describes the kjv
table.

8.1. Basic Summary Techniques
Problem
You want to summarize a dataset in various ways, such as counting the number of rows
that match certain conditions, determining the smallest or largest of a set of values,
adding or averaging a set of numbers, or finding which unique values are present.

Solution
Use the appropriate aggregate function to summarize values, DISTINCT to select unique
values, or COUNT(DISTINCT) to count unique values.

Discussion
The following discussion illustrates how to apply the aggregate functions to produce
basic summaries, and how to use DISTINCT to find unique values.

Summarizing with COUNT()

To count the number of rows in an entire table or that match particular conditions, use
the COUNT() function. For example, to display the rows in a table, use a SELECT * state‐
ment, but to count them instead, use SELECT COUNT(*). Without a WHERE clause, the
statement counts all the rows in the table, such as in the following statement that shows
how many rows the driver_log table contains:

mysql> SELECT COUNT(*) FROM driver_log;
+----------+
| COUNT(*) |
+----------+
| 10 |
+----------+

If you don’t know how many US states there are (perhaps you think there are 57?), this
statement tells you:

mysql> SELECT COUNT(*) FROM states;
+----------+
| COUNT(*) |
+----------+
| 50 |
+----------+

8.1. Basic Summary Techniques | 273

www.it-ebooks.info

http://www.it-ebooks.info/

COUNT(*) with no WHERE clause performs a full table scan. For MyISAM tables, this is
very quick. For InnoDB tables, you may want to avoid it because it can be slow for large
tables. If an approximate row count is good enough, avoid a full scan by extracting the
TABLE_ROWS value from the INFORMATION_SCHEMA database:

SELECT TABLE_ROWS FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'states';

To count only the number of rows that match certain conditions, include an appropriate
WHERE clause in a SELECT COUNT(*) statement. The conditions can be chosen to make
COUNT(*) useful for answering many kinds of questions:

• How many times did drivers travel more than 200 miles in a day?
mysql> SELECT COUNT(*) FROM driver_log WHERE miles > 200;
+----------+
| COUNT(*) |
+----------+
| 4 |
+----------+

• How many days did Suzi drive?
mysql> SELECT COUNT(*) FROM driver_log WHERE name = 'Suzi';
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+

• How many of the United States joined the Union in the 19th century?
mysql> SELECT COUNT(*) FROM states
 -> WHERE statehood BETWEEN '1800-01-01' AND '1899-12-31';
+----------+
| COUNT(*) |
+----------+
| 29 |
+----------+

The COUNT() function actually has two forms. The form we’ve been using, COUNT(*),
counts rows. The other form, COUNT(expr), takes a column name or expression argu‐
ment and counts the number of non-NULL values. The following statement shows how
to produce both a row count for a table and a count of the number of non-NULL values
in one of its columns:

SELECT COUNT(*), COUNT(mycol) FROM mytbl;

The fact that COUNT(expr) doesn’t count NULL values is useful for producing multiple
counts from the same set of rows. To count the number of Saturday and Sunday trips
in the driver_log table with a single statement, do this:

274 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date)=7,1,NULL)) AS 'Saturday trips',
 -> COUNT(IF(DAYOFWEEK(trav_date)=1,1,NULL)) AS 'Sunday trips'
 -> FROM driver_log;
+----------------+--------------+
| Saturday trips | Sunday trips |
+----------------+--------------+
| 3 | 1 |
+----------------+--------------+

Or to count weekend versus weekday trips, do this:
mysql> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS 'weekend trips',
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS 'weekday trips'
 -> FROM driver_log;
+---------------+---------------+
| weekend trips | weekday trips |
+---------------+---------------+
| 4 | 6 |
+---------------+---------------+

The IF() expressions determine, for each column value, whether it should be counted.
If so, the expression evaluates to 1 and COUNT() counts it. If not, the expression evaluates
to NULL and COUNT() ignores it. The effect is to count the number of values that satisfy
the condition given as the first argument to IF().

Summarizing with MIN() and MAX()

Finding smallest or largest values in a dataset is somewhat akin to sorting, except that
instead of producing an entire set of sorted values, you select only a single value at one
end or the other of the sorted range. This operation applies to questions about smallest,
largest, oldest, newest, most expensive, least expensive, and so forth. One way to find
such values is to use the MIN() and MAX() functions. (Another way is to use LIMIT; see
Recipe 3.9.)

Because MIN() and MAX() determine the extreme values in a set, they’re useful for char‐
acterizing ranges:

• What date range is represented by the rows in the mail table? What are the smallest
and largest messages sent?

mysql> SELECT
 -> MIN(t) AS earliest, MAX(t) AS latest,
 -> MIN(size) AS smallest, MAX(size) AS largest
 -> FROM mail;
+---------------------+---------------------+----------+---------+
| earliest | latest | smallest | largest |
+---------------------+---------------------+----------+---------+
| 2014-05-11 10:15:08 | 2014-05-19 22:21:51 | 271 | 2394482 |
+---------------------+---------------------+----------+---------+

8.1. Basic Summary Techniques | 275

www.it-ebooks.info

http://www.it-ebooks.info/

• What are the smallest and largest US state populations?
mysql> SELECT MIN(pop) AS 'fewest people', MAX(pop) AS 'most people'
 -> FROM states;
+---------------+-------------+
| fewest people | most people |
+---------------+-------------+
| 563626 | 37253956 |
+---------------+-------------+

• What are the first and last state names, lexically speaking? The shortest and longest
names?

mysql> SELECT
 -> MIN(name) AS first,
 -> MAX(name) AS last,
 -> MIN(CHAR_LENGTH(name)) AS shortest,
 -> MAX(CHAR_LENGTH(name)) AS longest
 -> FROM states;
+---------+---------+----------+---------+
| first | last | shortest | longest |
+---------+---------+----------+---------+
| Alabama | Wyoming | 4 | 14 |
+---------+---------+----------+---------+

The final query illustrates that MIN() and MAX() need not be applied directly to column
values; they’re also useful for expressions or values derived from column values.

Summarizing with SUM() and AVG()

SUM() and AVG() produce the total and average (mean) of a set of values:

• What is the total amount of mail traffic in bytes and the average size of each message?
mysql> SELECT
 -> SUM(size) AS 'total traffic',
 -> AVG(size) AS 'average message size'
 -> FROM mail;
+---------------+----------------------+
| total traffic | average message size |
+---------------+----------------------+
| 3798185 | 237386.5625 |
+---------------+----------------------+

• How many miles did the drivers in the driver_log table travel? What was the
average number of miles traveled per day?

mysql> SELECT
 -> SUM(miles) AS 'total miles',
 -> AVG(miles) AS 'average miles/day'
 -> FROM driver_log;
+-------------+-------------------+
| total miles | average miles/day |

276 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

+-------------+-------------------+
| 2166 | 216.6000 |
+-------------+-------------------+

• What is the total population of the United States?
mysql> SELECT SUM(pop) FROM states;
+-----------+
| SUM(pop) |
+-----------+
| 308143815 |
+-----------+

The value represents the population reported for the 2010 census. The figure shown
here differs from the US population reported by the US Census Bureau because the
states table contains no count for Washington, D.C.

SUM() and AVG() are numeric functions, so they can’t be used with strings or temporal
values. But sometimes you can convert nonnumeric values to useful numeric forms.
Suppose that a table stores TIME values that represent elapsed time:

mysql> SELECT t1 FROM time_val;
+----------+
| t1 |
+----------+
| 15:00:00 |
| 05:01:30 |
| 12:30:20 |
+----------+

To compute the total elapsed time, use TIME_TO_SEC() to convert the values to seconds
before summing them. The resulting sum is also in seconds; pass it to SEC_TO_TIME()
to convert it back to TIME format:

mysql> SELECT SUM(TIME_TO_SEC(t1)) AS 'total seconds',
 -> SEC_TO_TIME(SUM(TIME_TO_SEC(t1))) AS 'total time'
 -> FROM time_val;
+---------------+------------+
| total seconds | total time |
+---------------+------------+
| 117110 | 32:31:50 |
+---------------+------------+

Using DISTINCT to eliminate duplicates

A summary operation that uses no aggregate functions is determining the unique values
or rows in a dataset. Do this with DISTINCT (or DISTINCTROW, a synonym). DISTINCT
boils down a query result, and often is combined with ORDER BY to place values in more
meaningful order. This query lists in lexical order the drivers named in the driv
er_log table:

8.1. Basic Summary Techniques | 277

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT DISTINCT name FROM driver_log ORDER BY name;
+-------+
| name |
+-------+
| Ben |
| Henry |
| Suzi |
+-------+

Without DISTINCT, the statement produces the same names, but is not nearly as easy to
understand, even with a small dataset:

mysql> SELECT name FROM driver_log ORDER BY NAME;
+-------+
| name |
+-------+
| Ben |
| Ben |
| Ben |
| Henry |
| Henry |
| Henry |
| Henry |
| Henry |
| Suzi |
| Suzi |
+-------+

To determine the number of different drivers, use COUNT(DISTINCT):
mysql> SELECT COUNT(DISTINCT name) FROM driver_log;
+----------------------+
| COUNT(DISTINCT name) |
+----------------------+
| 3 |
+----------------------+

COUNT(DISTINCT) ignores NULL values. To count NULL as one of the values in the set if
it’s present, use one of the following expressions:

COUNT(DISTINCT val) + IF(COUNT(IF(val IS NULL,1,NULL))=0,0,1)
COUNT(DISTINCT val) + IF(SUM(ISNULL(val))=0,0,1)
COUNT(DISTINCT val) + (SUM(ISNULL(val))<>0)

DISTINCT queries often are useful in conjunction with aggregate functions to more fully
characterize your data. Suppose that a customer table contains a state column indi‐
cating customer location. Applying COUNT(*) to the customer table indicates how many
customers you have, using DISTINCT on the state column tells you the number of states
in which you have customers, and COUNT(DISTINCT) on the state column tells you how
many states your customer base represents.

When used with multiple columns, DISTINCT shows the different combinations of val‐
ues in the columns and COUNT(DISTINCT) counts the number of combinations. The

278 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

following statements show the different sender/recipient pairs in the mail table and the
number of such pairs:

mysql> SELECT DISTINCT srcuser, dstuser FROM mail
 -> ORDER BY srcuser, dstuser;
+---------+---------+
| srcuser | dstuser |
+---------+---------+
barb	barb
barb	tricia
gene	barb
gene	gene
gene	tricia
phil	barb
phil	phil
phil	tricia
tricia	gene
tricia	phil
+---------+---------+	
mysql> SELECT COUNT(DISTINCT srcuser, dstuser) FROM mail;	
+----------------------------------+	
COUNT(DISTINCT srcuser, dstuser)	
+----------------------------------+	
10	
+----------------------------------+

See Also
Recipe 8.2 shows how to use a view to “encapsulate” the summary expressions.
Recipe 8.6 further discusses the difference between COUNT(*) and COUNT(expr). The
SUM() and AVG() functions are especially useful in statistical applications. They’re ex‐
plored further in Chapter 15, along with STD(), a related function that calculates stan‐
dard deviations.

8.2. Creating a View to Simplify Using a Summary
Problem
You want to make it easier to perform a summary.

Solution
Create a view that does it for you.

Discussion
If you often need a given summary, a technique that enables you to avoid typing the
summarizing expressions repeatedly is to use a view (see Recipe 3.7). For example, the

8.2. Creating a View to Simplify Using a Summary | 279

www.it-ebooks.info

http://www.it-ebooks.info/

following view implements the weekend versus weekday trip summary discussed in
Recipe 8.1:

mysql> CREATE VIEW trip_summary_view AS
 -> SELECT
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),1,NULL)) AS weekend_trips,
 -> COUNT(IF(DAYOFWEEK(trav_date) IN (1,7),NULL,1)) AS weekday_trips
 -> FROM driver_log;

Selecting from this view is much easier than selecting directly from the underlying table:
mysql> SELECT * FROM trip_summary_view;
+---------------+---------------+
| weekend_trips | weekday_trips |
+---------------+---------------+
| 4 | 6 |
+---------------+---------------+

8.3. Finding Values Associated with Minimum and
Maximum Values
Problem
You want to know the values for other columns in the row that contains a minimum or
maximum value.

Solution
Use two statements and a user-defined variable. Or a subquery. Or a join.

Discussion
MIN() and MAX() find an endpoint of a range of values, but you may also be interested
in other values from the row in which the value occurs. For example, you can find the
largest state population like this:

mysql> SELECT MAX(pop) FROM states;
+----------+
| MAX(pop) |
+----------+
| 35893799 |
+----------+

But that doesn’t show you which state has this population. The obvious attempt at getting
that information looks like this:

mysql> SELECT MAX(pop), name FROM states WHERE pop = MAX(pop);
ERROR 1111 (HY000): Invalid use of group function

280 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

Probably everyone tries something like that sooner or later, but it doesn’t work. Aggre‐
gate functions such as MIN() and MAX() cannot be used in WHERE clauses, which require
expressions that apply to individual rows. The intent of the statement is to determine
which row has the maximum population value and display the associated state name.
The problem is that although you and I know perfectly well what we mean by writing
such a thing, it makes no sense at all in SQL. The statement fails because SQL uses the
WHERE clause to determine which rows to select, but the value of an aggregate function
is known only after selecting the rows from which the function’s value is determined!
So, in a sense, the statement is self-contradictory. To solve this problem, save the max‐
imum population value in a user-defined variable, then compare rows to the variable
value:

mysql> SET @max = (SELECT MAX(pop) FROM states);
mysql> SELECT pop AS 'highest population', name FROM states WHERE pop = @max;
+--------------------+------------+
| highest population | name |
+--------------------+------------+
| 37253956 | California |
+--------------------+------------+

Alternatively, for a single-statement solution, use a subquery in the WHERE clause that
returns the maximum population value:

SELECT pop AS 'highest population', name FROM states
WHERE pop = (SELECT MAX(pop) FROM states);

This technique also works even if the minimum or maximum value itself isn’t actually
contained in the row, but is only derived from it. To determine the length of the shortest
verse in the King James Version, do this:

mysql> SELECT MIN(CHAR_LENGTH(vtext)) FROM kjv;
+-------------------------+
| MIN(CHAR_LENGTH(vtext)) |
+-------------------------+
| 11 |
+-------------------------+

If you want to know “Which verse is that?” do this instead:
mysql> SELECT bname, cnum, vnum, vtext FROM kjv
 -> WHERE CHAR_LENGTH(vtext) = (SELECT MIN(CHAR_LENGTH(vtext)) FROM kjv);
+-------+------+------+-------------+
| bname | cnum | vnum | vtext |
+-------+------+------+-------------+
| John | 11 | 35 | Jesus wept. |
+-------+------+------+-------------+

Yet another way to select other columns from rows containing a minimum or maximum
value is to use a join. Select the value into another table, then join it to the original table
to select the row that matches the value. To find the row for the state with the highest
population, use a join like this:

8.3. Finding Values Associated with Minimum and Maximum Values | 281

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> CREATE TEMPORARY TABLE tmp SELECT MAX(pop) as maxpop FROM states;
mysql> SELECT states.* FROM states INNER JOIN tmp
 -> ON states.pop = tmp.maxpop;
+------------+--------+------------+----------+
| name | abbrev | statehood | pop |
+------------+--------+------------+----------+
| California | CA | 1850-09-09 | 37253956 |
+------------+--------+------------+----------+

See Also
Recipe 14.7 extends the discussion here to the problem of finding rows that contain
minimum or maximum values for multiple groups in a dataset.

8.4. Controlling String Case Sensitivity for MIN() and
MAX()
Problem
MIN() and MAX() select strings in case-sensitive fashion when you don’t want them to,
or vice versa.

Solution
Alter the comparison characteristics of the strings.

Discussion
Recipe 5.1 discusses how string-comparison properties depend on whether the strings
are binary or nonbinary:

• Binary strings are sequences of bytes. They are compared byte by byte using nu‐
meric byte values. Character set and lettercase have no meaning for comparisons.

• Nonbinary strings are sequences of characters. They have a character set and col‐
lation and are compared character by character using the order defined by the
collation.

These properties also apply to string columns used as the argument to the MIN() or
MAX() function because they are based on comparison. To alter how these functions
work with a string column, alter the column’s comparison properties. Recipe 5.7 dis‐
cusses how to control these properties, and Recipe 7.4 shows how they apply to string
sorts. The same principles apply to finding minimum and maximum string values, so
I’ll just summarize here; read Recipe 7.4 for additional details.

282 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

• To compare case-insensitive strings in case-sensitive fashion, order the values using
a case-sensitive collation:

SELECT
MIN(str_col COLLATE latin1_general_cs) AS min,
MAX(str_col COLLATE latin1_general_cs) AS max
FROM tbl;

• To compare case-sensitive strings in case-insensitive fashion, order the values using
a case-insensitive collation:

SELECT
MIN(str_col COLLATE latin1_swedish_ci) AS min,
MAX(str_col COLLATE latin1_swedish_ci) AS max
FROM tbl;

Another possibility is to compare values that have all been converted to the same
lettercase, which makes lettercase irrelevant. However, that also changes the re‐
trieved values:

SELECT
MIN(UPPER(str_col)) AS min,
MAX(UPPER(str_col)) AS max
FROM tbl;

• Binary strings compare using numeric byte values, so there is no concept of letter‐
case involved. However, because letters in different cases have different byte values,
comparisons of binary strings effectively are case sensitive. (That is, a and A are
unequal.) To compare binary strings using a case-insensitive ordering, convert
them to nonbinary strings and apply an appropriate collation:

SELECT
MIN(CONVERT(str_col USING latin1) COLLATE latin1_swedish_ci) AS min,
MAX(CONVERT(str_col USING latin1) COLLATE latin1_swedish_ci) AS max
FROM tbl;

If the default collation is case insensitive (as is true for latin1), you can omit the
COLLATE clause.

8.5. Dividing a Summary into Subgroups
Problem
You want a summary for each subgroup of a set of rows, not an overall summary value.

Solution
Use a GROUP BY clause to arrange rows into groups.

8.5. Dividing a Summary into Subgroups | 283

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The summary statements shown so far calculate summary values over all rows in the
result set. For example, the following statement determines the number of records in
the mail table, and thus the total number of mail messages sent:

mysql> SELECT COUNT(*) FROM mail;
+----------+
| COUNT(*) |
+----------+
| 16 |
+----------+

To arrange a set of rows into subgroups and summarize each group, use aggregate func‐
tions in conjunction with a GROUP BY clause. To determine the number of messages per
sender, group the rows by sender name, count how many times each name occurs, and
display the names with the counts:

mysql> SELECT srcuser, COUNT(*) FROM mail GROUP BY srcuser;
+---------+----------+
| srcuser | COUNT(*) |
+---------+----------+
barb	3
gene	6
phil	5
tricia	2
+---------+----------+

That query summarizes the same column that is used for grouping (srcuser), but that’s
not always necessary. Suppose that you want a quick characterization of the mail table,
showing for each sender listed in it the total amount of traffic sent (in bytes) and the
average number of bytes per message. In this case, you still use the srcuser column to
group the rows, but summarize the size values:

mysql> SELECT srcuser,
 -> SUM(size) AS 'total bytes',
 -> AVG(size) AS 'bytes per message'
 -> FROM mail GROUP BY srcuser;
+---------+-------------+-------------------+
| srcuser | total bytes | bytes per message |
+---------+-------------+-------------------+
barb	156696	52232.0000
gene	1033108	172184.6667
phil	18974	3794.8000
tricia	2589407	1294703.5000
+---------+-------------+-------------------+

Use as many grouping columns as necessary to achieve a grouping as fine-grained as
you require. The earlier query that shows the number of messages per sender is a coarse
summary. To be more specific and find out how many messages each sender sent from

284 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

each host, use two grouping columns. This produces a result with nested groups (groups
within groups):

mysql> SELECT srcuser, srchost, COUNT(srcuser) FROM mail
 -> GROUP BY srcuser, srchost;
+---------+---------+----------------+
| srcuser | srchost | COUNT(srcuser) |
+---------+---------+----------------+
barb	saturn	2
barb	venus	1
gene	mars	2
gene	saturn	2
gene	venus	2
phil	mars	3
phil	venus	2
tricia	mars	1
tricia	saturn	1
+---------+---------+----------------+

The preceding examples in this section used COUNT(), SUM(), and AVG() for per-group
summaries. You can use MIN() or MAX(), too. With a GROUP BY clause, they return the
smallest or largest value per group. The following query groups mail table rows by
message sender, displaying for each the size of the largest message sent and the date of
the most recent message:

mysql> SELECT srcuser, MAX(size), MAX(t) FROM mail GROUP BY srcuser;
+---------+-----------+---------------------+
| srcuser | MAX(size) | MAX(t) |
+---------+-----------+---------------------+
barb	98151	2014-05-14 14:42:21
gene	998532	2014-05-19 22:21:51
phil	10294	2014-05-19 12:49:23
tricia	2394482	2014-05-14 17:03:01
+---------+-----------+---------------------+

You can group by multiple columns and display a maximum for each combination of
values in those columns. This query finds the size of the largest message sent between
each pair of sender and recipient values listed in the mail table:

mysql> SELECT srcuser, dstuser, MAX(size) FROM mail GROUP BY srcuser, dstuser;
+---------+---------+-----------+
| srcuser | dstuser | MAX(size) |
+---------+---------+-----------+
barb	barb	98151
barb	tricia	58274
gene	barb	2291
gene	gene	23992
gene	tricia	998532
phil	barb	10294
phil	phil	1048
phil	tricia	5781
tricia	gene	194925

8.5. Dividing a Summary into Subgroups | 285

www.it-ebooks.info

http://www.it-ebooks.info/

| tricia | phil | 2394482 |
+---------+---------+-----------+

When using aggregate functions to produce per-group summary values, watch out for
the following trap, which involves selecting nonsummary table columns not related to
the grouping columns. Suppose that you want to know the longest trip per driver in the
driver_log table:

mysql> SELECT name, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
+-------+--------------+
| name | longest trip |
+-------+--------------+
Ben	152
Henry	300
Suzi	502
+-------+--------------+

But what if you also want to show the date on which each driver’s longest trip occurred?
Can you just add trav_date to the output column list? Sorry, that doesn’t work:

mysql> SELECT name, trav_date, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-07-29	502
+-------+------------+--------------+

The query does produce a result, but if you compare it to the full table (shown here),
you’ll see that although the dates for Ben and Henry are correct, the date for Suzi is not:

+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
| 1 | Ben | 2014-07-30 | 152 | ← Ben's longest trip
| 2 | Suzi | 2014-07-29 | 391 |
| 3 | Henry | 2014-07-29 | 300 | ← Henry's longest trip
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+

So what’s going on? Why does the summary statement produce incorrect results? This
happens because when you include a GROUP BY clause in a query, the only values that
you can meaningfully select are the grouping columns or summary values calculated

286 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

from the groups. If you display additional table columns, they’re not tied to the grouped
columns and the values displayed for them are indeterminate. (For the statement just
shown, it appears that MySQL may simply be picking the first date for each driver,
regardless of whether it matches the driver’s maximum mileage value.)

To make queries that pick indeterminate values illegal so that you won’t inadvertantly
suppose that the trav_date values are correct, set the ONLY_FULL_GROUP_BY SQL mode:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
mysql> SELECT name, trav_date, MAX(miles) AS 'longest trip'
 -> FROM driver_log GROUP BY name;
ERROR 1055 (42000): 'cookbook.driver_log.trav_date' isn't in GROUP BY

The general solution to the problem of displaying contents of rows associated with
minimum or maximum group values involves a join. The technique is described in
Recipe 14.7. For the problem at hand, produce the required results as follows:

mysql> CREATE TEMPORARY TABLE t
 -> SELECT name, MAX(miles) AS miles FROM driver_log GROUP BY name;
mysql> SELECT d.name, d.trav_date, d.miles AS 'longest trip'
 -> FROM driver_log AS d INNER JOIN t USING (name, miles) ORDER BY name;
+-------+------------+--------------+
| name | trav_date | longest trip |
+-------+------------+--------------+
Ben	2014-07-30	152
Henry	2014-07-29	300
Suzi	2014-08-02	502
+-------+------------+--------------+

8.6. Summaries and NULL Values
Problem
You’re summarizing a set of values that may include NULL values and you need to know
how to interpret the results.

Solution
Understand how aggregate functions handle NULL values.

Discussion
Most aggregate functions ignore NULL values. COUNT() is different: COUNT(expr) ignores
NULL instances of expr, but COUNT(*) counts rows, regardless of content.

Suppose that an expt table contains experimental results for subjects who are to be given
four tests each and that lists the test score as NULL for tests not yet administered:

8.6. Summaries and NULL Values | 287

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT subject, test, score FROM expt ORDER BY subject, test;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

By using a GROUP BY clause to arrange the rows by subject name, the number of tests
taken by each subject, as well as the total, average, lowest, and highest scores, can be
calculated like this:

mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> SUM(score) AS total,
 -> AVG(score) AS average,
 -> MIN(score) AS lowest,
 -> MAX(score) AS highest
 -> FROM expt GROUP BY subject;
+---------+---+-------+---------+--------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+--------+---------+
| Jane | 2 | 97 | 48.5000 | 47 | 50 |
| Marvin | 3 | 150 | 50.0000 | 45 | 53 |
+---------+---+-------+---------+--------+---------+

You can see from the results in the column labeled n (number of tests) that the query
counts only five values, even though the table contains eight. Why? Because the values
in that column correspond to the number of non-NULL test scores for each subject. The
other summary columns display results that are calculated only from the non-NULL
scores as well.

It makes a lot of sense for aggregate functions to ignore NULL values. If they followed
the usual SQL arithmetic rules, adding NULL to any other value would produce a NULL
result. That would make aggregate functions really difficult to use: to avoid getting a
NULL result, you’d have to filter out NULL values every time you performed a summary.
By ignoring NULL values, aggregate functions become a lot more convenient.

However, be aware that even though aggregate functions may ignore NULL values, some
of them can still produce NULL as a result. This happens if there’s nothing to summarize,
which occurs if the set of values is empty or contains only NULL values. The following
query is the same as the previous one, with one small difference. It selects only NULL test
scores to illustrate what happens when there’s nothing for the aggregate functions to
operate on:

288 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> SUM(score) AS total,
 -> AVG(score) AS average,
 -> MIN(score) AS lowest,
 -> MAX(score) AS highest
 -> FROM expt WHERE score IS NULL GROUP BY subject;
+---------+---+-------+---------+--------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+--------+---------+
| Jane | 0 | NULL | NULL | NULL | NULL |
| Marvin | 0 | NULL | NULL | NULL | NULL |
+---------+---+-------+---------+--------+---------+

For COUNT(), the number of scores per subject is zero and is reported that way. On the
other hand, SUM(), AVG(), MIN(), and MAX() return NULL when there are no values to
summarize. If you don’t want an aggregate value of NULL to display as NULL, use IF
NULL() to map it appropriately:

mysql> SELECT subject,
 -> COUNT(score) AS n,
 -> IFNULL(SUM(score),0) AS total,
 -> IFNULL(AVG(score),0) AS average,
 -> IFNULL(MIN(score),'Unknown') AS lowest,
 -> IFNULL(MAX(score),'Unknown') AS highest
 -> FROM expt WHERE score IS NULL GROUP BY subject;
+---------+---+-------+---------+---------+---------+
| subject | n | total | average | lowest | highest |
+---------+---+-------+---------+---------+---------+
| Jane | 0 | 0 | 0.0000 | Unknown | Unknown |
| Marvin | 0 | 0 | 0.0000 | Unknown | Unknown |
+---------+---+-------+---------+---------+---------+

COUNT() is somewhat different with regard to NULL values than the other aggregate
functions. Like other aggregate functions, COUNT(expr) counts only non-NULL values,
but COUNT(*) counts rows, no matter what they contain. You can see the difference
between the forms of COUNT() like this:

mysql> SELECT COUNT(*), COUNT(score) FROM expt;
+----------+--------------+
| COUNT(*) | COUNT(score) |
+----------+--------------+
| 8 | 5 |
+----------+--------------+

This tells us that there are eight rows in the expt table but that only five of them have
the score value filled in. The different forms of COUNT() can be very useful for counting
missing values. Just take the difference:

mysql> SELECT COUNT(*) - COUNT(score) AS missing FROM expt;
+---------+
| missing |

8.6. Summaries and NULL Values | 289

www.it-ebooks.info

http://www.it-ebooks.info/

+---------+
| 3 |
+---------+

Missing and nonmissing counts can be determined for subgroups as well. The following
query does so for each subject, providing an easy way to assess the extent to which the
experiment has been completed:

mysql> SELECT subject,
 -> COUNT(*) AS total,
 -> COUNT(score) AS 'nonmissing',
 -> COUNT(*) - COUNT(score) AS missing
 -> FROM expt GROUP BY subject;
+---------+-------+------------+---------+
| subject | total | nonmissing | missing |
+---------+-------+------------+---------+
| Jane | 4 | 2 | 2 |
| Marvin | 4 | 3 | 1 |
+---------+-------+------------+---------+

8.7. Selecting Only Groups with Certain Characteristics
Problem
You want to calculate group summaries but display results only for groups that match
certain criteria.

Solution
Use a HAVING clause.

Discussion
You’re familiar with the use of WHERE to specify conditions that rows must satisfy to be
selected by a statement. It’s natural, therefore, to use WHERE to write conditions that
involve summary values. The only trouble is that it doesn’t work. To identify drivers in
the driver_log table who drove more than three days, you might write the statement
like this:

mysql> SELECT COUNT(*), name FROM driver_log
 -> WHERE COUNT(*) > 3
 -> GROUP BY name;
ERROR 1111 (HY000): Invalid use of group function

The problem is that WHERE specifies the initial constraints that determine which rows to
select, but the value of COUNT() can be determined only after the rows have been selected.
The solution is to put the COUNT() expression in a HAVING clause instead. HAVING is
analogous to WHERE, but it applies to group characteristics rather than to single rows.

290 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

That is, HAVING operates on the already-selected-and-grouped set of rows, applying
additional constraints based on aggregate function results that aren’t known during the
initial selection process. The preceding query therefore should be written like this:

mysql> SELECT COUNT(*), name FROM driver_log
 -> GROUP BY name
 -> HAVING COUNT(*) > 3;
+----------+-------+
| COUNT(*) | name |
+----------+-------+
| 5 | Henry |
+----------+-------+

When you use HAVING, you can still include a WHERE clause, but only to select rows to be
summarized, not to test already calculated summary values.

HAVING can refer to aliases, so the previous query can be rewritten like this:
mysql> SELECT COUNT(*) AS count, name FROM driver_log
 -> GROUP BY name
 -> HAVING count > 3;
+-------+-------+
| count | name |
+-------+-------+
| 5 | Henry |
+-------+-------+

8.8. Using Counts to Determine Whether Values Are
Unique
Problem
You want to know whether values in a table are unique.

Solution
Use HAVING in conjunction with COUNT().

Discussion
DISTINCT eliminates duplicates but doesn’t show which values actually were duplicated
in the original data. You can use HAVING to find unique values in situations to which
DISTINCT does not apply. HAVING can tell you which values were unique or nonunique.

The following statements show the days on which only one driver was active, and the
days on which more than one driver was active. They’re based on using HAVING and
COUNT() to determine which trav_date values are unique or nonunique:

8.8. Using Counts to Determine Whether Values Are Unique | 291

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT trav_date, COUNT(trav_date) FROM driver_log
 -> GROUP BY trav_date HAVING COUNT(trav_date) = 1;
+------------+------------------+
| trav_date | COUNT(trav_date) |
+------------+------------------+
2014-07-26	1
2014-07-27	1
2014-08-01	1
+------------+------------------+
mysql> SELECT trav_date, COUNT(trav_date) FROM driver_log
 -> GROUP BY trav_date HAVING COUNT(trav_date) > 1;
+------------+------------------+
| trav_date | COUNT(trav_date) |
+------------+------------------+
2014-07-29	3
2014-07-30	2
2014-08-02	2
+------------+------------------+

This technique works for combinations of values, too. For example, to find message
sender/recipient pairs between whom only one message was sent, look for combinations
that occur only once in the mail table:

mysql> SELECT srcuser, dstuser FROM mail
 -> GROUP BY srcuser, dstuser HAVING COUNT(*) = 1;
+---------+---------+
| srcuser | dstuser |
+---------+---------+
barb	barb
gene	tricia
phil	barb
tricia	gene
tricia	phil
+---------+---------+

Note that this query doesn’t print the count. The previous examples did so, to show that
the counts were being used properly, but you can refer to an aggregate value in a HAV
ING clause without including it in the output column list.

8.9. Grouping by Expression Results
Problem
You want to group rows into subgroups based on values calculated from an expression.

Solution
In the GROUP BY clause, use an expression that categorizes values.

292 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
GROUP BY, like ORDER BY, can refer to expressions. This means you can use calculations
as the basis for grouping. As with ORDER BY, you can write the grouping expression
directly in the GROUP BY clause, or use an alias for the expression (if it appears in the
output column list), and refer to the alias in the GROUP BY.

To find days of the year on which more than one state joined the Union, group by
statehood month and day, and then use HAVING and COUNT() to find the nonunique
combinations:

mysql> SELECT
 -> MONTHNAME(statehood) AS month,
 -> DAYOFMONTH(statehood) AS day,
 -> COUNT(*) AS count
 -> FROM states GROUP BY month, day HAVING count > 1;
+----------+------+-------+
| month | day | count |
+----------+------+-------+
February	14	2
June	1	2
March	1	2
May	29	2
November	2	2
+----------+------+-------+

8.10. Summarizing Noncategorical Data
Problem
You want to summarize a set of values that are not naturally categorical.

Solution
Use an expression to group the values into categories.

Discussion
Recipe 8.9 shows how to group rows by expression results. One important application
for this is to categorize values that are not categorical. This is useful because GROUP BY
works best for columns with repetitive values. For example, you might attempt to per‐
form a population analysis by grouping rows in the states table using values in the pop
column. That doesn’t work very well due to the high number of distinct values in the
column. In fact, they’re all distinct:

mysql> SELECT COUNT(pop), COUNT(DISTINCT pop) FROM states;

8.10. Summarizing Noncategorical Data | 293

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+---------------------+
| COUNT(pop) | COUNT(DISTINCT pop) |
+------------+---------------------+
| 50 | 50 |
+------------+---------------------+

In situations like this, in which values do not group nicely into a small number of sets,
use a transformation that forces them into categories. Begin by determining the range
of population values:

mysql> SELECT MIN(pop), MAX(pop) FROM states;
+----------+----------+
| MIN(pop) | MAX(pop) |
+----------+----------+
| 563626 | 37253956 |
+----------+----------+

You can see from that result that if you divide the pop values by five million, they’ll group
into eight categories—a reasonable number. (The category ranges will be 1 to 5,000,000,
5,000,001 to 10,000,000, and so forth.) To put each population value in the proper cat‐
egory, divide by five million, and use the integer result:

mysql> SELECT FLOOR(pop/5000000) AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
0	28
1	15
2	3
3	2
5	1
7	1
+---------------------------+------------------+

Hmm. That’s not quite right. The expression groups the population values into a small
number of categories, but doesn’t report the category values properly. Let’s try multi‐
plying the FLOOR() results by five:

mysql> SELECT FLOOR(pop/5000000)*5 AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
0	28
5	15
10	3
15	2
25	1

294 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

| 35 | 1 |
+---------------------------+------------------+

That still isn’t correct. The maximum state population was 35,893,799, which should go
into a category for 40 million, not one for 35 million. The problem here is that the
category-generating expression groups values toward the lower bound of each category.
To group values toward the upper bound instead, use the following technique. For
categories of size n, place a value x into the proper category using this expression:

FLOOR((x+(n-1))/n)

So the final form of our query looks like this:
mysql> SELECT FLOOR((pop+4999999)/5000000)*5 AS `max population (millions)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `max population (millions)`;
+---------------------------+------------------+
| max population (millions) | number of states |
+---------------------------+------------------+
5	28
10	15
15	3
20	2
30	1
40	1
+---------------------------+------------------+

The result shows clearly that the majority of US states have a population of five million
or less.

In some instances, it may be more appropriate to categorize groups on a logarithmic
scale. For example, treat the state population values that way as follows:

mysql> SELECT FLOOR(LOG10(pop)) AS `log10(population)`,
 -> COUNT(*) AS `number of states`
 -> FROM states GROUP BY `log10(population)`;
+-------------------+------------------+
| log10(population) | number of states |
+-------------------+------------------+
5	7
6	36
7	7
+-------------------+------------------+

The query shows the number of states that have populations measured in hundreds of
thousands, millions, and tens of millions, respectively.

You may have noticed that aliases in the preceding queries are written using backticks
(identifier quoting) rather than single quotes (string quoting). Quoted aliases in the
GROUP BY clause must use identifier quoting or the alias is treated as a constant string
expression and the grouping produces the wrong result. Identifier quoting clarifies to
MySQL that the alias refers to an output column. The aliases in the output column list

8.10. Summarizing Noncategorical Data | 295

www.it-ebooks.info

http://www.it-ebooks.info/

could have been written using string quoting; I used backticks there to avoid mixing
alias quoting styles within a given query.

How Repetitive Is a Set of Values?
To assess how much repetition is present in a set of values, use the ratio of COUNT(DIS
TINCT) and COUNT(). If all values are unique, both counts are the same and the ratio is
1. This is the case for the t values in the mail table and the pop values in the states
table:

mysql> SELECT COUNT(DISTINCT t) / COUNT(t) FROM mail;
+------------------------------+
| COUNT(DISTINCT t) / COUNT(t) |
+------------------------------+
| 1.0000 |
+------------------------------+
mysql> SELECT COUNT(DISTINCT pop) / COUNT(pop) FROM states;
+----------------------------------+
| COUNT(DISTINCT pop) / COUNT(pop) |
+----------------------------------+
| 1.0000 |
+----------------------------------+

For a more repetitive set of values, COUNT(DISTINCT) is less than COUNT(), and the ratio
is smaller:

mysql> SELECT COUNT(DISTINCT name) / COUNT(name) FROM driver_log;
+------------------------------------+
| COUNT(DISTINCT name) / COUNT(name) |
+------------------------------------+
| 0.3000 |
+------------------------------------+

What’s the practical use for this ratio? A result close to zero indicates a high degree of
repetition, which means the values will group into a small number of categories natu‐
rally. A result of 1 or close to it indicates many unique values, with the consequence that
GROUP BY won’t be very efficient for grouping the values into categories. (That is, there
will be a lot of categories, relative to the number of values.) This tells you that, to generate
a summary, you’ll probably find it necessary to impose an artificial categorization on
the values, using the techniques described in this recipe.

8.11. Finding Smallest or Largest Summary Values
Problem
You want to compute per-group summary values but display only the smallest or largest
of them.

296 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Add a LIMIT clause to the statement. Or use a user-defined variable or subquery to pick
the appropriate summary.

Discussion
MIN() and MAX() find the values at the endpoints of a set of values, but to find the
endpoints of a set of summary values, those functions won’t work. Their argument
cannot be another aggregate function. For example, you can easily find per-driver mile‐
age totals:

mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name;
+-------+------------+
| name | SUM(miles) |
+-------+------------+
Ben	362
Henry	911
Suzi	893
+-------+------------+

To select only the row for the driver with the most miles, the following doesn’t work:
mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name
 -> HAVING SUM(miles) = MAX(SUM(miles));
ERROR 1111 (HY000): Invalid use of group function

Instead, order the rows with the largest SUM() values first and use LIMIT to select the
first row:

mysql> SELECT name, SUM(miles)
 -> FROM driver_log
 -> GROUP BY name
 -> ORDER BY SUM(miles) DESC LIMIT 1;
+-------+------------+
| name | SUM(miles) |
+-------+------------+
| Henry | 911 |
+-------+------------+

However, if more than one row has the given summary value, a LIMIT 1 query won’t tell
you that. For example, you might attempt to ascertain the most common initial letter
for state names like this:

mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter ORDER BY COUNT(*) DESC LIMIT 1;
+--------+----------+
| letter | COUNT(*) |

8.11. Finding Smallest or Largest Summary Values | 297

www.it-ebooks.info

http://www.it-ebooks.info/

+--------+----------+
| N | 8 |
+--------+----------+

But eight state names also begin with N. To find all most-frequent values when there
may be more than one, use a user-defined variable or subquery to determine the max‐
imum count, then select those values with a count equal to the maximum:

mysql> SET @max = (SELECT COUNT(*) FROM states
 -> GROUP BY LEFT(name,1) ORDER BY COUNT(*) DESC LIMIT 1);
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter HAVING COUNT(*) = @max;
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
| N | 8 |
+--------+----------+
mysql> SELECT LEFT(name,1) AS letter, COUNT(*) FROM states
 -> GROUP BY letter HAVING COUNT(*) =
 -> (SELECT COUNT(*) FROM states
 -> GROUP BY LEFT(name,1) ORDER BY COUNT(*) DESC LIMIT 1);
+--------+----------+
| letter | COUNT(*) |
+--------+----------+
| M | 8 |
| N | 8 |
+--------+----------+

8.12. Date-Based Summaries
Problem
You want to produce a summary based on date or time values.

Solution
Use GROUP BY to place temporal values into categories of the appropriate duration. Often
this involves using expressions that extract the significant parts of dates or times.

Discussion
To sort rows temporally, use ORDER BY with a temporal column. To summarize rows
instead, based on groupings into time intervals, determine how to categorize rows into
the proper intervals and use GROUP BY to group them accordingly.

298 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

1. The result includes an entry only for dates actually represented in the table. To generate a summary with an
entry for the range of dates in the table, use a join to fill in the “missing” values. See Recipe 14.8.

For example, to determine how many drivers were on the road and how many miles
were driven each day, group the rows in the driver_log table by date:1

mysql> SELECT trav_date,
 -> COUNT(*) AS 'number of drivers', SUM(miles) As 'miles logged'
 -> FROM driver_log GROUP BY trav_date;
+------------+-------------------+--------------+
| trav_date | number of drivers | miles logged |
+------------+-------------------+--------------+
2014-07-26	1	115
2014-07-27	1	96
2014-07-29	3	822
2014-07-30	2	355
2014-08-01	1	197
2014-08-02	2	581
+------------+-------------------+--------------+

However, this per-day summary grows lengthier as you add more rows to the table.
Over time, the number of distinct dates will become so large that the summary fails to
be useful, and you’d probably decide to increase the category size. For example, this
query categorizes by month:

mysql> SELECT YEAR(trav_date) AS year, MONTH(trav_date) AS month,
 -> COUNT(*) AS 'number of drivers', SUM(miles) As 'miles logged'
 -> FROM driver_log GROUP BY year, month;
+------+-------+-------------------+--------------+
| year | month | number of drivers | miles logged |
+------+-------+-------------------+--------------+
| 2014 | 7 | 7 | 1388 |
| 2014 | 8 | 3 | 778 |
+------+-------+-------------------+--------------+

Now the number of summary rows grows much more slowly over time. Eventually, you
could summarize based only on year to collapse rows even more.

Uses for temporal categorizations are numerous:

• To produce daily summaries from DATETIME or TIMESTAMP columns that have the
potential to contain many unique values, strip the time-of-day part to collapse all
values occurring within a given day to the same value. Any of the following GROUP
BY clauses will do this, although the last one is likely to be slowest:

GROUP BY DATE(col_name)
GROUP BY FROM_DAYS(TO_DAYS(col_name))
GROUP BY YEAR(col_name), MONTH(col_name), DAYOFMONTH(col_name)
GROUP BY DATE_FORMAT(col_name,'%Y-%m-%e')

8.12. Date-Based Summaries | 299

www.it-ebooks.info

http://www.it-ebooks.info/

• To produce monthly or quarterly sales reports, group by MONTH(col_name) or QUAR
TER(col_name) to place dates into the correct part of the year.

• To summarize web server activity, store your server’s logs in MySQL and run state‐
ments that collapse the rows into different time categories. Recipe 20.14 discusses
how to do this for Apache.

8.13. Working with Per-Group and Overall Summary
Values Simultaneously
Problem
You want to produce a report that requires different levels of summary detail. Or you
want to compare per-group summary values to an overall summary value.

Solution
Use two statements that retrieve different levels of summary information. Or use a
subquery to retrieve one summary value and refer to it in the outer query that refers to
other summary values. For applications that only display multiple summary levels
(rather than perform additional calculations on them), WITH ROLLUP might be sufficient.

Discussion
Some reports involve multiple levels of summary information. The following report
displays the total number of miles per driver from the driver_log table, along with
each driver’s miles as a percentage of the total miles in the entire table:

+-------+--------------+------------------------+
| name | miles/driver | percent of total miles |
+-------+--------------+------------------------+
Ben	362	16.7128
Henry	911	42.0591
Suzi	893	41.2281
+-------+--------------+------------------------+

The percentages represent the ratio of each driver’s miles to the total miles for all drivers.
To perform the percentage calculation, you need a per-group summary to get each
driver’s miles and also an overall summary to get the total miles. First, run a query to
get the overall mileage total:

mysql> SELECT @total := SUM(miles) AS 'total miles' FROM driver_log;
+-------------+
| total miles |
+-------------+

300 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

| 2166 |
+-------------+

Then calculate the per-group values and use the overall total to compute the percentages:
mysql> SELECT name,
 -> SUM(miles) AS 'miles/driver',
 -> (SUM(miles)*100)/@total AS 'percent of total miles'
 -> FROM driver_log GROUP BY name;
+-------+--------------+------------------------+
| name | miles/driver | percent of total miles |
+-------+--------------+------------------------+
Ben	362	16.7128
Henry	911	42.0591
Suzi	893	41.2281
+-------+--------------+------------------------+

To combine the two statements into one, use a subquery that computes the total miles:
SELECT name,
SUM(miles) AS 'miles/driver',
(SUM(miles)*100)/(SELECT SUM(miles) FROM driver_log)
 AS 'percent of total miles'
FROM driver_log GROUP BY name;

A similar problem uses multiple summary levels to compare per-group summary values
with the corresponding overall summary value. Suppose that you want to display drivers
who had a lower average miles per day than the group average. Calculate the overall
average in a subquery, and then compare each driver’s average to the overall average
using a HAVING clause:

mysql> SELECT name, AVG(miles) AS driver_avg FROM driver_log
 -> GROUP BY name
 -> HAVING driver_avg < (SELECT AVG(miles) FROM driver_log);
+-------+------------+
| name | driver_avg |
+-------+------------+
| Ben | 120.6667 |
| Henry | 182.2000 |
+-------+------------+

To display different summary-level values (and not perform calculations involving one
summary level against another), add WITH ROLLUP to the GROUP BY clause:

mysql> SELECT name, SUM(miles) AS 'miles/driver'
 -> FROM driver_log GROUP BY name WITH ROLLUP;
+-------+--------------+
| name | miles/driver |
+-------+--------------+
Ben	362
Henry	911
Suzi	893
NULL	2166
+-------+--------------+

8.13. Working with Per-Group and Overall Summary Values Simultaneously | 301

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT name, AVG(miles) AS driver_avg FROM driver_log
 -> GROUP BY name WITH ROLLUP;
+-------+------------+
| name | driver_avg |
+-------+------------+
Ben	120.6667
Henry	182.2000
Suzi	446.5000
NULL	216.6000
+-------+------------+

In each case, the output row with NULL in the name column represents the overall sum
or average calculated over all drivers.

WITH ROLLUP produces multiple summary levels if you group by more than one column.
The following statement shows the number of mail messages sent between each pair of
users:

mysql> SELECT srcuser, dstuser, COUNT(*)
 -> FROM mail GROUP BY srcuser, dstuser;
+---------+---------+----------+
| srcuser | dstuser | COUNT(*) |
+---------+---------+----------+
barb	barb	1
barb	tricia	2
gene	barb	2
gene	gene	3
gene	tricia	1
phil	barb	1
phil	phil	2
phil	tricia	2
tricia	gene	1
tricia	phil	1
+---------+---------+----------+

Adding WITH ROLLUP causes the output to include an intermediate count for each srcus
er value (these are the lines with NULL in the dstuser column), plus an overall count at
the end:

mysql> SELECT srcuser, dstuser, COUNT(*)
 -> FROM mail GROUP BY srcuser, dstuser WITH ROLLUP;
+---------+---------+----------+
| srcuser | dstuser | COUNT(*) |
+---------+---------+----------+
barb	barb	1
barb	tricia	2
barb	NULL	3
gene	barb	2
gene	gene	3
gene	tricia	1
gene	NULL	6
phil	barb	1

302 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

phil	phil	2
phil	tricia	2
phil	NULL	5
tricia	gene	1
tricia	phil	1
tricia	NULL	2
NULL	NULL	16
+---------+---------+----------+

8.14. Generating a Report That Includes a Summary
and a List
Problem
You want to create a report that displays a summary, together with the list of rows
associated with each summary value.

Solution
Use two statements that retrieve different levels of summary information. Or use a
programming language to do some of the work so that you can use a single statement.

Discussion
Suppose that you want to produce a report that looks like this:

Name: Ben; days on road: 3; miles driven: 362
 date: 2014-07-29, trip length: 131
 date: 2014-07-30, trip length: 152
 date: 2014-08-02, trip length: 79
Name: Henry; days on road: 5; miles driven: 911
 date: 2014-07-26, trip length: 115
 date: 2014-07-27, trip length: 96
 date: 2014-07-29, trip length: 300
 date: 2014-07-30, trip length: 203
 date: 2014-08-01, trip length: 197
Name: Suzi; days on road: 2; miles driven: 893
 date: 2014-07-29, trip length: 391
 date: 2014-08-02, trip length: 502

For each driver in the driver_log table, the report shows the following information:

• A summary line showing the driver name, the number of days on the road, and the
number of miles driven.

• A list that details dates and mileages for the individual trips from which the sum‐
mary values are calculated.

8.14. Generating a Report That Includes a Summary and a List | 303

www.it-ebooks.info

http://www.it-ebooks.info/

This scenario is a variation on the “different levels of summary information” problem
discussed in Recipe 8.13. It may not seem like it at first because one of the types of
information is a list rather than a summary. But that’s really just a “level zero” summary.
This kind of problem appears in many other forms:

• You have a database that lists contributions to candidates in your political party.
The party chair requests a printout that shows, for each candidate, the number of
contributions and total amount contributed, as well as a list of contributor names
and addresses.

• You want to create a handout for a company presentation that summarizes total
sales per sales region with a list under each region showing the sales for each state
in the region.

Such problems have multiple solutions:

• Run separate statements to get the information for each level of detail that you
require. (A single query won’t produce per-group summary values and a list of each
group’s individual rows.)

• Fetch the rows that make up the lists and perform the summary calculations yourself
to eliminate the summary statement.

Let’s use each approach to produce the driver report shown at the beginning of this
section. The following implementation (in Python) generates the report using one query
to summarize the days and miles per driver, and another to fetch the individual trip
rows for each driver:

select total miles per driver and construct a dictionary that
maps each driver name to days on the road and miles driven
name_map = {}
cursor = conn.cursor()
cursor.execute('''
 SELECT name, COUNT(name), SUM(miles)
 FROM driver_log GROUP BY name
 ''')
for (name, days, miles) in cursor:
 name_map[name] = (days, miles)

select trips for each driver and print the report, displaying the
summary entry for each driver prior to the list of trips
cursor.execute('''
 SELECT name, trav_date, miles
 FROM driver_log ORDER BY name, trav_date
 ''')
cur_name = ""
for (name, trav_date, miles) in cursor:
 if cur_name != name: # new driver; print driver's summary info
 print("Name: %s; days on road: %d; miles driven: %d" %

304 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

 (name, name_map[name][0], name_map[name][1]))
 cur_name = name
 print(" date: %s, trip length: %d" % (trav_date, miles))
cursor.close()

An alternative implementation performs summary calculations within the program,
which reduces the number of queries required. If you iterate through the trip list and
calculate the per-driver day counts and mileage totals yourself, a single query suffices:

get list of trips for the drivers
cursor = conn.cursor()
cursor.execute('''
 SELECT name, trav_date, miles FROM driver_log
 ORDER BY name, trav_date
 ''')
fetch rows into data structure because we
must iterate through them multiple times
rows = cursor.fetchall()
cursor.close()

iterate through rows once to construct a dictionary that
maps each driver name to days on the road and miles driven
(the dictionary entries are lists rather than tuples because
we need mutable values that can be modified in the loop)
name_map = {}
for (name, trav_date, miles) in rows:
 if not name_map.has_key(name): # initialize entry if nonexistent
 name_map[name] = [0, 0]
 name_map[name][0] += 1 # count days
 name_map[name][1] += miles # sum miles

iterate through rows again to print the report, displaying the
summary entry for each driver prior to the list of trips
cur_name = ""
for (name, trav_date, miles) in rows:
 if cur_name != name: # new driver; print driver's summary info
 print("Name: %s; days on road: %d; miles driven: %d" %
 (name, name_map[name][0], name_map[name][1]))
 cur_name = name
 print(" date: %s, trip length: %d" % (trav_date, miles))

Should you require more levels of summary information, this type of problem gets more
difficult. For example, you might want to precede the report that shows driver summa‐
ries and trip logs with a line that shows the total miles for all drivers:

Total miles driven by all drivers combined: 2166

Name: Ben; days on road: 3; miles driven: 362
 date: 2014-07-29, trip length: 131
 date: 2014-07-30, trip length: 152
 date: 2014-08-02, trip length: 79
Name: Henry; days on road: 5; miles driven: 911
 date: 2014-07-26, trip length: 115

8.14. Generating a Report That Includes a Summary and a List | 305

www.it-ebooks.info

http://www.it-ebooks.info/

 date: 2014-07-27, trip length: 96
 date: 2014-07-29, trip length: 300
 date: 2014-07-30, trip length: 203
 date: 2014-08-01, trip length: 197
Name: Suzi; days on road: 2; miles driven: 893
 date: 2014-07-29, trip length: 391
 date: 2014-08-02, trip length: 502

In this case, you need either another query to produce the total mileage, or another
calculation in your program that computes the overall total.

306 | Chapter 8: Generating Summaries

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Using Stored Routines, Triggers, and
Scheduled Events

9.0. Introduction
This chapter discusses stored database objects, which come in several varieties:
Stored functions and procedures

A stored function or procedure object encapsulates the code for performing an
operation, enabling you to invoke the object easily by name rather than repeat all
its code each time it’s needed. A stored function performs a calculation and returns
a value that can be used in expressions just like a built-in function such as RAND(),
NOW(), or LEFT(). A stored procedure performs operations for which no return
value is needed. Procedures are invoked with the CALL statement, not used in ex‐
pressions. A procedure might update rows in a table or produce a result set that is
sent to the client program.

Triggers
A trigger is an object that activates when a table is modified by an INSERT, UPDATE,
or DELETE statement. For example, you can check values before they are inserted
into a table, or specify that any row deleted from a table should be logged to another
table that serves as a journal of data changes. Triggers automate these actions so
that you need not remember to do them yourself each time you modify a table.

Scheduled events
An event is an object that executes SQL statements at a scheduled time or times.
Think of a scheduled event as something like a Unix cron job that runs within
MySQL. For example, events can help you perform administrative tasks such as
deleting old table rows periodically or creating nightly summaries.

307

www.it-ebooks.info

http://www.it-ebooks.info/

In this book, the term “stored routine” refers collectively to stored
functions and procedures, and “stored program” refers collectively to
stored routines, triggers, and events.

Stored programs are database objects that are user-defined but stored on the server side
for later execution. This differs from sending an SQL statement from the client to the
server for immediate execution. Each object also has the property that it is defined in
terms of other SQL statements to be executed when the object is invoked. The object
body is a single SQL statement, but that statement can use compound-statement syntax
(a BEGIN … END block) that contains multiple statements. Thus, the body can range from
very simple to extremely complex. The following stored procedure is a trivial routine
that does nothing but display the current MySQL version, using a body that consists of
a single SELECT statement:

CREATE PROCEDURE show_version()
SELECT VERSION() AS 'MySQL Version';

More complex operations use a BEGIN … END compound statement:
CREATE PROCEDURE show_part_of_day()
BEGIN
 DECLARE cur_time, day_part TEXT;
 SET cur_time = CURTIME();
 IF cur_time < '12:00:00' THEN
 SET day_part = 'morning';
 ELSEIF cur_time = '12:00:00' THEN
 SET day_part = 'noon';
 ELSE
 SET day_part = 'afternoon or night';
 END IF;
 SELECT cur_time, day_part;
END;

Here, the BEGIN … END block contains multiple statements, but is itself considered to
constitute a single statement. Compound statements enable you to declare local vari‐
ables and to use conditional logic and looping constructs. These capabilities provide
considerably more flexibility for algorithmic expression than when you write inline
expressions in noncompound statements such as SELECT or UPDATE.

Each statement within a compound statement must be terminated by a ; character. That
requirement causes a problem if you use the mysql client to define an object that uses
compound statements because mysql itself interprets ; to determine statement bound‐
aries. The solution is to redefine mysql’s statement delimiter while you define a
compound-statement object. Recipe 9.1 covers how to do this; be sure to read that recipe
before proceeding to those that follow it.

308 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter illustrates stored routines, triggers, and events by example, but due to space
limitations does not otherwise go into much detail about their extensive syntax. For
complete syntax descriptions, see the MySQL Reference Manual.

Scripts for the examples shown in this chapter are located in the routines, triggers, and
events directories of the recipes distribution. Scripts to create example tables are located
in the tables directory.

In addition to the stored programs shown in this chapter, others can be found elsewhere
in this book. See, for example, Recipes 5.6, 6.3, 14.8, and 23.2.

Stored programs used here are created and invoked under the assumption that cook
book is the default database. To invoke a program from another database, qualify its
name with the database name:

CALL cookbook.show_version();

Alternatively, create a database specifically for your stored programs, create them in
that database, and always invoke them qualified with that name. Remember to grant
users who will use them the EXECUTE privilege for that database.

Privileges for Stored Programs
When you create a stored routine (function or procedure), the following privilege re‐
quirements must be satisfied or you will have problems:

• To create or execute the routine, you must have the CREATE ROUTINE or EXECUTE
privilege, respectively.

• If binary logging is enabled for your MySQL server, as is common practice, there
are additional requirements for creating stored functions (but not stored proce‐
dures). These requirements are necessary to ensure that if you use the binary log
for replication or for restoring backups, function invocations cause the same effect
when re-executed as they do when originally executed:
— You must have the SUPER privilege, and you must declare either that the function

is deterministic or does not modify data by using one of the DETERMINISTIC, NO
SQL, or READS SQL DATA characteristics. (It’s possible to create functions that are
not deterministic or that modify data, but they might not be safe for replication
or for use in backups.)

— Alternatively, if you enable the log_bin_trust_function_creators system
variable, the server waives both of the preceding requirements. You can do this
at server startup, or at runtime if you have the SUPER privilege.

To create a trigger, you must have the TRIGGER privilege for the table associated with the
trigger.

9.0. Introduction | 309

www.it-ebooks.info

http://www.it-ebooks.info/

To create a scheduled event, you must have the EVENT privilege for the database in which
the event is created.

For information about granting privileges, see Recipe 23.2.

9.1. Creating Compound-Statement Objects
Problem
You want to define a stored program, but its body contains instances of the ; statement
terminator. The mysql client program uses the same terminator by default, so mysql
misinterprets the definition and produces an error.

Solution
Redefine the mysql statement terminator with the delimiter command.

Discussion
Each stored program is an object with a body that must be a single SQL statement.
However, these objects often perform complex operations that require several state‐
ments. To handle this, write the statements within a BEGIN … END block that forms a
compound statement. That is, the block is itself a single statement but can contain mul‐
tiple statements, each terminated by a ; character. The BEGIN … END block can contain
statements such as SELECT or INSERT, but compound statements also permit conditional
statements such as IF or CASE, looping constructs such as WHILE or REPEAT, or other
BEGIN … END blocks.

Compound-statement syntax provides flexibility, but if you define compound-
statement objects within the mysql client, you quickly encounter a problem: each state‐
ment within a compound statement must be terminated by a ; character, but mysql itself
interprets ; to figure out where statements end so that it can send them one at a time
to the server to be executed. Consequently, mysql stops reading the compound statement
when it sees the first ; character, which is too early. To handle this, tell mysql to recognize
a different statement delimiter so that it ignores ; characters within the object body.
Terminate the object itself with the new delimiter, which mysql recognizes and then
sends the entire object definition to the server. You can restore the mysql delimiter to
its original value after defining the compound-statement object.

The following example uses a stored function to illustrate how to change the delimiter,
but the principles apply to defining any type of stored program.

310 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose that you want to create a stored function that calculates and returns the average
size in bytes of mail messages listed in the mail table. The function can be defined like
this, where the body consists of a single SQL statement:

CREATE FUNCTION avg_mail_size()
RETURNS FLOAT READS SQL DATA
RETURN (SELECT AVG(size) FROM mail);

The RETURNS FLOAT clause indicates the type of the function’s return value, and READS
SQL DATA indicates that the function reads but does not modify data. The function body
follows those clauses: a single RETURN statement that executes a subquery and returns
the resulting value to the caller. (Every stored function must have at least one RETURN
statement.)

In mysql, you can enter that statement as shown and there is no problem. The definition
requires just the single terminator at the end and none internally, so no ambiguity arises.
But suppose instead that you want the function to take an argument naming a user that
it interprets as follows:

• If the argument is NULL, the function returns the average size for all messages (as
before).

• If the argument is non-NULL, the function returns the average size for messages sent
by that user.

To accomplish this, the function has a more complex body that uses a BEGIN … END
block:

CREATE FUNCTION avg_mail_size(user VARCHAR(8))
RETURNS FLOAT READS SQL DATA
BEGIN
 DECLARE avg FLOAT;
 IF user IS NULL
 THEN # average message size over all users
 SET avg = (SELECT AVG(size) FROM mail);
 ELSE # average message size for given user
 SET avg = (SELECT AVG(size) FROM mail WHERE srcuser = user);
 END IF;
 RETURN avg;
END;

If you try to define the function within mysql by entering that definition as just shown,
mysql improperly interprets the first semicolon in the function body as ending the def‐
inition. Instead, use the delimiter command to change the mysql delimiter, then restore
the delimiter to its default value:

mysql> delimiter $$
mysql> CREATE FUNCTION avg_mail_size(user VARCHAR(8))
 -> RETURNS FLOAT READS SQL DATA
 -> BEGIN

9.1. Creating Compound-Statement Objects | 311

www.it-ebooks.info

http://www.it-ebooks.info/

 -> DECLARE avg FLOAT;
 -> IF user IS NULL
 -> THEN # average message size over all users
 -> SET avg = (SELECT AVG(size) FROM mail);
 -> ELSE # average message size for given user
 -> SET avg = (SELECT AVG(size) FROM mail WHERE srcuser = user);
 -> END IF;
 -> RETURN avg;
 -> END;
 -> $$
Query OK, 0 rows affected (0.02 sec)
mysql> delimiter ;

After defining the stored function, invoke it the same way as a built-in function:
mysql> SELECT avg_mail_size(NULL), avg_mail_size('barb');
+---------------------+-----------------------+
| avg_mail_size(NULL) | avg_mail_size('barb') |
+---------------------+-----------------------+
| 237386.5625 | 52232 |
+---------------------+-----------------------+

9.2. Using Stored Functions to Encapsulate Calculations
Problem
A particular calculation to produce a value must be performed frequently by different
applications, but you don’t want to write the expression for it each time it’s needed. Or
a calculation is difficult to perform inline within an expression because it requires con‐
ditional or looping logic.

Solution
Use a stored function to hide the ugly details and make the calculation easy to perform.

Discussion
Stored functions enable you to simplify your applications. Write the code that produces
a calculation result once in a function definition, then simply invoke the function
whenever you need to perform the calculation. Stored functions also enable you to use
more complex algorithmic constructs than are available when you write a calculation
inline within an expression. This section illustrates how stored functions can be useful
in these ways. (Granted, the example is not that complex, but the principles used here
apply to writing much more elaborate functions.)

Different states in the US charge different rates for sales tax. If you sell goods to people
from different states, you must charge tax using the rate appropriate for customer state

312 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

of residence. To handle tax computations, use a table that lists the sales tax rate for each
state, and a stored function that looks up the tax rate given a state.

To set up the sales_tax_rate table, use the sales_tax_rate.sql script in the tables di‐
rectory of the recipes distribution. The table has two columns: state (a two-letter
abbreviation), and tax_rate (a DECIMAL value rather than a FLOAT, to preserve accuracy).

Define the rate-lookup function, sales_tax_rate(), as follows:
CREATE FUNCTION sales_tax_rate(state_code CHAR(2))
RETURNS DECIMAL(3,2) READS SQL DATA
BEGIN
 DECLARE rate DECIMAL(3,2);
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET rate = 0;
 SELECT tax_rate INTO rate FROM sales_tax_rate WHERE state = state_code;
 RETURN rate;
END;

Suppose that the tax rates for Vermont and New York are 1 and 9 percent, respectively.
Try the function to check whether the tax rate is returned correctly:

mysql> SELECT sales_tax_rate('VT'), sales_tax_rate('NY');
+----------------------+----------------------+
| sales_tax_rate('VT') | sales_tax_rate('NY') |
+----------------------+----------------------+
| 0.01 | 0.09 |
+----------------------+----------------------+

If you take sales from a location not listed in the table, the function cannot determine
the rate for it. In this case, the function assumes a tax rate of 0 percent:

mysql> SELECT sales_tax_rate('ZZ');
+----------------------+
| sales_tax_rate('ZZ') |
+----------------------+
| 0.00 |
+----------------------+

The function handles states not listed using a CONTINUE handler for NOT FOUND, which
executes if a No Data condition occurs: if there is no row for the given state_param
value, the SELECT statement fails to find a sales tax rate, the CONTINUE handler sets the
rate to 0, and continues execution with the next statement after the SELECT. (This handler
is an example of stored routine logic not available in inline expressions. Recipe 9.10
discusses handlers further.)

To compute sales tax for a purchase, multiply the purchase price by the tax rate. For
example, for Vermont and New York, tax on a $150 purchase is:

mysql> SELECT 150*sales_tax_rate('VT'), 150*sales_tax_rate('NY');

9.2. Using Stored Functions to Encapsulate Calculations | 313

www.it-ebooks.info

http://www.it-ebooks.info/

+--------------------------+--------------------------+
| 150*sales_tax_rate('VT') | 150*sales_tax_rate('NY') |
+--------------------------+--------------------------+
| 1.50 | 13.50 |
+--------------------------+--------------------------+

Or write another function that computes the tax for you:
CREATE FUNCTION sales_tax(state_code CHAR(2), sales_amount DECIMAL(10,2))
RETURNS DECIMAL(10,2) READS SQL DATA
RETURN sales_amount * sales_tax_rate(state_code);

And use it like this:
mysql> SELECT sales_tax('VT',150), sales_tax('NY',150);
+---------------------+---------------------+
| sales_tax('VT',150) | sales_tax('NY',150) |
+---------------------+---------------------+
| 1.50 | 13.50 |
+---------------------+---------------------+

9.3. Using Stored Procedures to “Return” Multiple Values
Problem
An operation produces two or more values, but a stored function can return only a
single value.

Solution
Use a stored procedure that has OUT or INOUT parameters, and pass user-defined variables
for those parameters when you invoke the procedure. A procedure does not “return” a
value the way a function does, but it can assign values to those parameters so that the
user-defined variables have the desired values when the procedure returns.

Discussion
Unlike stored function parameters, which are input values only, a stored procedure
parameter can be any of three types:

• An IN parameter is for input only. This is the default if you specify no type.
• An INOUT parameter is used to pass a value in, and can also pass a value out.
• An OUT parameter is used to pass a value out.

Thus, to produce multiple values from an operation, you can use INOUT or OUT param‐
eters. The following example illustrates this, using an IN parameter for input, and pass‐
ing back three values via OUT parameters.

314 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 9.1 shows an avg_mail_size() function that returns the average mail message
size for a given sender. The function returns a single value. To produce additional in‐
formation, such as the number of messages and total message size, a function will not
work. You could write three separate functions, but that is cumbersome. Instead, use a
single procedure that retrieves multiple values about a given mail sender. The following
procedure, mail_sender_stats(), runs a query on the mail table to retrieve mail-
sending statistics about a given username, which is the input value. The procedure
determines how many messages that user sent, and the total and average sizes of the
messages in bytes, which it returns through three OUT parameters:

CREATE PROCEDURE mail_sender_stats(IN user VARCHAR(8),
 OUT messages INT,
 OUT total_size INT,
 OUT avg_size INT)
BEGIN
 # Use IFNULL() to return 0 for SUM() and AVG() in case there are
 # no rows for the user (those functions return NULL in that case).
 SELECT COUNT(*), IFNULL(SUM(size),0), IFNULL(AVG(size),0)
 INTO messages, total_size, avg_size
 FROM mail WHERE srcuser = user;
END;

To use the procedure, pass a string containing the username, and three user-defined
variables to receive the OUT values. After the procedure returns, access the variable val‐
ues:

mysql> CALL mail_sender_stats('barb',@messages,@total_size,@avg_size);
mysql> SELECT @messages, @total_size, @avg_size;
+-----------+-------------+-----------+
| @messages | @total_size | @avg_size |
+-----------+-------------+-----------+
| 3 | 156696 | 52232 |
+-----------+-------------+-----------+

This routine passes back calculation results. It’s also common to use OUT parameters for
diagnostic purposes such as status or error indicators.

If you call mail_sender_stats() from within a stored program, you can pass variables
to it using routine parameters or program local variables, not just user-defined variables.

9.4. Using Triggers to Implement Dynamic Default Column
Values
Problem
A table contains a column for which the initial value is not constant, but in most cases,
MySQL permits only constant default values.

9.4. Using Triggers to Implement Dynamic Default Column Values | 315

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use a BEFORE INSERT trigger. This enables you to initialize a column to the value of an
arbitrary expression. In other words, the trigger performs dynamic column initializa‐
tion by calculating the default value.

Discussion
Other than TIMESTAMP and DATETIME columns, which can be initialized to the current
date and time (see Recipe 6.7), default column values in MySQL must be constants. You
cannot define a column with a DEFAULT clause that refers to a function call or other
arbitrary expression, and you cannot define one column in terms of the value assigned
to another column. That means each of these column definitions is illegal:

d DATE DEFAULT NOW()
i INT DEFAULT (... some subquery ...)
hash_val CHAR(32) DEFAULT MD5(blob_col)

You can work around this limitation by setting up a suitable trigger, which enables you
to initialize a column however you want. In effect, the trigger implements a dynamic
(or calculated) default column value.

The appropriate type of trigger for this is BEFORE INSERT, which enables column values
to be set before they are inserted into the table. (An AFTER INSERT trigger can examine
column values for a new row, but by the time the trigger activates, it’s too late to change
the values.)

To see how this works, recall the scenario in Recipe 9.2 that created a sales_tax_rate()
lookup function to return a rate from the sales_tax_rate table given a customer state
of residence. Suppose that you anticipate a need to know at some later date the tax rate
from the time of sale. It’s not necessarily true that at that later date you could look up
the value from the sales_tax_rate table; rates change and the rate in effect then might
differ. To handle this, store the rate with the purchase invoice, initializing it automati‐
cally using a trigger.

A cust_invoice table for storing sales information might look like this:
CREATE TABLE cust_invoice
(
 id INT NOT NULL AUTO_INCREMENT,
 state CHAR(2), # customer state of residence
 amount DECIMAL(10,2), # sale amount
 tax_rate DECIMAL(3,2), # sales tax rate at time of purchase
 ... other columns ...
 PRIMARY KEY (id)
);

To initialize the sales tax column for inserts into the cust_invoice table, use a BEFORE
INSERT trigger that looks up the rate and stores it in the table:

316 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TRIGGER bi_cust_invoice BEFORE INSERT ON cust_invoice
FOR EACH ROW SET NEW.tax_rate = sales_tax_rate(NEW.state);

Within the trigger, NEW.col_name refers to the new value to be inserted into the given
column. By assigning a value to NEW.col_name within the trigger, you cause the column
to have that value in the new row.

This trigger is simple and its body contains only a single SQL statement. For a trigger
body that executes multiple statements, use BEGIN … END compound-statement syntax.
In that case, if you use mysql to create the trigger, change the statement delimiter while
you define the trigger, as discussed in Recipe 9.1.

To test the implementation, insert a row and check whether the trigger correctly initi‐
alizes the sales tax rate for the invoice:

mysql> INSERT INTO cust_invoice (state,amount) VALUES('NY',100);
mysql> SELECT * FROM cust_invoice WHERE id = LAST_INSERT_ID();
+----+-------+--------+----------+
| id | state | amount | tax_rate |
+----+-------+--------+----------+
| 1 | NY | 100.00 | 0.09 |
+----+-------+--------+----------+

The SELECT shows that the tax_rate column has the right value even though the IN
SERT provides no value for it.

9.5. Using Triggers to Simulate Function-Based Indexes
Problem
You need a function-based index, but MySQL doesn’t support that capability.

Solution
Use a secondary column and triggers to simulate a function-based index.

Discussion
Some types of information are more easily analyzed using not the original values, but
an expression computed from them. For example, if data values lie along an exponential
curve, applying a logarithmic transform to them yields a more linear scale. Queries
against a table that stores exponential values might therefore typically use expressions
that refer to the log values:

SELECT * FROM expdata WHERE LOG10(value) < 2;

A disadvantage of such expressions is that referring to the value column within a func‐
tion call prevents the optimizer from using any index on it. MySQL must retrieve the

9.5. Using Triggers to Simulate Function-Based Indexes | 317

www.it-ebooks.info

http://www.it-ebooks.info/

values to apply the function to them, and the function values are not indexed. The result
is diminished performance.

Some database systems permit an index to be defined on a function of a column, such
that you can index LOG10(value). MySQL does not support this capability, but there is
a workaround:

1. Define a secondary column to store the function values and index that column.
2. Define triggers that keep the secondary column up to date when the original column

is initialized or modified.
3. Refer directly to the secondary column in queries so that the optimizer can use the

index on it for efficient lookups.

The following example illustrates this technique, using a table designed to store values
that lie along an exponential curve:

CREATE TABLE expdata
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 value FLOAT, # original values
 log10_value FLOAT, # LOG10() function of original values
 INDEX (value), # index on original values
 INDEX (log10_value) # index on function-based values
);

The table includes value and log10_value columns to store the original data values
and those values transformed with LOG10(). The table also indexes both columns.

Create an INSERT trigger to initialize the log10_value value from value for new rows,
and an UPDATE trigger to keep log10_value up to date when value changes:

CREATE TRIGGER bi_expdata BEFORE INSERT ON expdata
FOR EACH ROW SET NEW.log10_value = LOG10(NEW.value);

CREATE TRIGGER bu_expdata BEFORE UPDATE ON expdata
FOR EACH ROW SET NEW.log10_value = LOG10(NEW.value);

To test the implementation, insert and modify some data and check the result of each
operation:

mysql> INSERT INTO expdata (value) VALUES (.01),(.1),(1),(10),(100);
mysql> SELECT * FROM expdata;
+----+-------+-------------+
| id | value | log10_value |
+----+-------+-------------+
1	0.01	-2
2	0.1	-1
3	1	0
4	10	1

318 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

| 5 | 100 | 2 |
+----+-------+-------------+

mysql> UPDATE expdata SET value = value * 10;
mysql> SELECT * FROM expdata;
+----+-------+-------------+
| id | value | log10_value |
+----+-------+-------------+
1	0.1	-1
2	1	0
3	10	1
4	100	2
5	1000	3
+----+-------+-------------+

With that implementation, using a log10_value column that stores the LOG10() values
of the value column, the SELECT query shown earlier can be rewritten:

SELECT * FROM expdata WHERE log10_value < 2;

The optimizer can use the index on log10_value, something not true of the original
query that referred to LOG10(value).

Using triggers this way to simulate a function-based index improves query performance
for SELECT queries, but you should also consider the disadvantages of the technique:

• It requires extra storage for the secondary column.
• It requires more processing for statements that modify the original column (to

activate the triggers that keep the secondary column and its index up to date).

The technique is therefore most useful if the workload for the table skews more toward
retrievals than updates. It is less beneficial for a workload that is mostly updates.

The preceding example uses a log10_value column that is useful for several types of
lookups, from single-row to range-based expressions. But functional indexes can be
useful even for situations in which most queries select only a single row. Suppose that
you want to store large data values such as PDF or XML documents in a table, but also
want to look them up quickly later (for example, to access other values stored in the
same row such as author or title). A TEXT or BLOB data type might be suitable for storing
the values, but is not very suitable for finding them. (Comparisons in a lookup operation
are slow for large values.) To work around this problem, use the following strategy:

1. Compute a hash value for each document and store it in the table along with the
document. For example, use the MD5() function, which returns a 32-byte string of
hexadecimal characters. That’s still long for a comparison value, but much shorter
than a full-column comparison based on contents of very long documents.

2. To look up the row containing a particular document, compute the document hash
value and search the table for that value. For best performance, index the hash

9.5. Using Triggers to Simulate Function-Based Indexes | 319

www.it-ebooks.info

http://www.it-ebooks.info/

column. Because the hash value is a function of the document, the index on it is, in
effect, a functional index.

The result is that lookups based on the hash-value column will perform much more
efficiently than lookups based on the original document values.

9.6. Simulating TIMESTAMP Properties for Other Date and
Time Types
Problem
The TIMESTAMP data type provides auto-initialization and auto-update properties. You
would like to use these properties for other temporal data types that permit only constant
values for initialization and don’t auto-update.

Solution
Use an INSERT trigger to provide the appropriate current date or time value at row-
creation time. Use an UPDATE trigger to update the column to the current date or time
when the row is changed.

Discussion
Recipe 6.7 describes the special TIMESTAMP and DATETIME initialization and update
properties enable you to record row-creation and row-modification times automati‐
cally. These properties are not available for other temporal types, although there are
reasons you might like them to be. For example, if you use separate DATE and TIME
columns to store row-modification times, you can index the DATE column to enable
efficient date-based lookups. (With TIMESTAMP or DATETIME, you cannot index just the
date part of the column.)

One way to simulate TIMESTAMP properties for other temporal data types is to use the
following strategy:

• When you create a row, initialize a DATE column to the current date and a TIME
column to the current time.

• When you update a row, set the DATE and TIME columns to the new date and time.

However, this strategy requires all applications that use the table to implement the same
strategy, and it fails if even one application neglects to do so. To place the burden of
remembering to set the columns properly on the MySQL server and not on application
writers, use triggers for the table. This is, in fact, a particular application of the general

320 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

strategy discussed in Recipe 9.4 that uses triggers to provide calculated values for ini‐
tializing (or updating) row columns.

The following example shows how to use triggers to simulate TIMESTAMP properties for
the DATE and TIME data types. (The same technique also serves to simulate TIMESTAMP
properties for DATETIME for versions of MySQL older than 5.6.5, before DATETIME was
given automatic properties.) Begin by creating the following table, which has a non‐
temporal column for storing data and columns for the DATE and TIME temporal types:

CREATE TABLE ts_emulate (data CHAR(10), d DATE, t TIME);

The intent here is that when applications insert or update values in the data column,
MySQL should set the temporal columns appropriately to reflect the time at which
modifications occur. To accomplish this, set up triggers that use the current date and
time to initialize the temporal columns for new rows, and to update them when existing
rows are changed. A BEFORE INSERT trigger handles row creation by invoking the CUR
DATE() and CURTIME() functions to get the current date and time and using those values
to set the temporal columns:

CREATE TRIGGER bi_ts_emulate BEFORE INSERT ON ts_emulate
FOR EACH ROW SET NEW.d = CURDATE(), NEW.t = CURTIME();

A BEFORE UPDATE trigger handles updates to the temporal columns when the data
column changes value. An IF statement is required here to emulate the TIMESTAMP
property that an update occurs only if the data value in the row actually changes from
its current value:

CREATE TRIGGER bu_ts_emulate BEFORE UPDATE ON ts_emulate
FOR EACH ROW # update temporal columns only if nontemporal column changes
IF NEW.data <> OLD.data THEN
 SET NEW.d = CURDATE(), NEW.t = CURTIME();
END IF;

To test the INSERT trigger, create a couple rows, but supply a value only for the data
column. Then verify that MySQL provides the proper default values for the temporal
columns:

mysql> INSERT INTO ts_emulate (data) VALUES('cat');
mysql> INSERT INTO ts_emulate (data) VALUES('dog');
mysql> SELECT * FROM ts_emulate;
+------+------------+----------+
| data | d | t |
+------+------------+----------+
| cat | 2014-04-07 | 13:53:32 |
| dog | 2014-04-07 | 13:53:37 |
+------+------------+----------+

Change the data value of one row to verify that the BEFORE UPDATE trigger updates the
temporal columns of the changed row:

9.6. Simulating TIMESTAMP Properties for Other Date and Time Types | 321

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> UPDATE ts_emulate SET data = 'axolotl' WHERE data = 'cat';
mysql> SELECT * FROM ts_emulate;
+---------+------------+----------+
| data | d | t |
+---------+------------+----------+
| axolotl | 2014-04-07 | 13:53:49 |
| dog | 2014-04-07 | 13:53:37 |
+---------+------------+----------+

Issue another UPDATE, but this time use one that does not change any data column
values. In this case, the BEFORE UPDATE trigger should notice that no value change oc‐
curred and leave the temporal columns unchanged:

mysql> UPDATE ts_emulate SET data = data;
mysql> SELECT * FROM ts_emulate;
+---------+------------+----------+
| data | d | t |
+---------+------------+----------+
| axolotl | 2014-04-07 | 13:53:49 |
| dog | 2014-04-07 | 13:53:37 |
+---------+------------+----------+

The preceding example shows how to simulate the auto-initialization and auto-update
properties offered by TIMESTAMP columns. To implement only one of those properties
and not the other, create only one trigger and omit the other.

9.7. Using Triggers to Log Changes to a Table
Problem
You have a table that maintains current values of items that you track (such as auctions
being bid on), but you’d also like to maintain a journal (history) of changes to the table.

Solution
Use triggers to “catch” table changes and write them to a separate log table.

Discussion
Suppose that you conduct online auctions, and that you maintain information about
each currently active auction in a table that looks like this:

CREATE TABLE auction
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 item VARCHAR(30) NOT NULL,
 bid DECIMAL(10,2) NOT NULL,

322 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

 PRIMARY KEY (id)
);

The auction table contains information about the currently active auctions (items being
bid on and the current bid for each auction). When an auction begins, insert a row into
the table. For each bid on an item, update its bid column so that as the auction proceeds,
the ts column updates to reflect the most recent bid time. When the auction ends, the
bid value is the final price and the row can be removed from the table.

To maintain a journal that shows all changes to auctions as they progress from creation
to removal, set up another table that serves to record a history of changes to the auctions.
This strategy can be implemented with triggers.

To maintain a history of how each auction progresses, use an auction_log table with
the following columns:

CREATE TABLE auction_log
(
 action ENUM('create','update','delete'),
 id INT UNSIGNED NOT NULL,
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 item VARCHAR(30) NOT NULL,
 bid DECIMAL(10,2) NOT NULL,
 INDEX (id)
);

The auction_log table differs from the auction table in two ways:

• It contains an action column to indicate for each row what kind of change was
made.

• The id column has a nonunique index (rather than a primary key, which requires
unique values). This permits multiple rows per id value because a given auction
can generate many rows in the log table.

To ensure that changes to the auction table are logged to the auction_log table, create
a set of triggers. The triggers write information to the auction_log table as follows:

• For inserts, log a row-creation operation showing the values in the new row.
• For updates, log a row-update operation showing the new values in the updated

row.
• For deletes, log a row-removal operation showing the values in the deleted row.

For this application, AFTER triggers are used because they activate only after successful
changes to the auction table. (BEFORE triggers might activate even if the row-change
operation fails for some reason.) The trigger definitions look like this:

CREATE TRIGGER ai_auction AFTER INSERT ON auction
FOR EACH ROW

9.7. Using Triggers to Log Changes to a Table | 323

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('create',NEW.id,NOW(),NEW.item,NEW.bid);

CREATE TRIGGER au_auction AFTER UPDATE ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('update',NEW.id,NOW(),NEW.item,NEW.bid);

CREATE TRIGGER ad_auction AFTER DELETE ON auction
FOR EACH ROW
INSERT INTO auction_log (action,id,ts,item,bid)
VALUES('delete',OLD.id,OLD.ts,OLD.item,OLD.bid);

The INSERT and UPDATE triggers use NEW.col_name to access the new values being stored
in rows. The DELETE trigger uses OLD.col_name to access the existing values from the
deleted row. The INSERT and UPDATE triggers use NOW() to get the row-modification
times; the ts column is initialized automatically to the current date and time, but NEW.ts
will not contain that value.

Suppose that an auction is created with an initial bid of five dollars:
mysql> INSERT INTO auction (item,bid) VALUES('chintz pillows',5.00);
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 792 |
+------------------+

The SELECT statement fetches the auction ID value to use for subsequent actions on the
auction. Then the item receives three more bids before the auction ends and is removed:

mysql> UPDATE auction SET bid = 7.50 WHERE id = 792;
... time passes ...
mysql> UPDATE auction SET bid = 9.00 WHERE id = 792;
... time passes ...
mysql> UPDATE auction SET bid = 10.00 WHERE id = 792;
... time passes ...
mysql> DELETE FROM auction WHERE id = 792;

At this point, no trace of the auction remains in the auction table, but the auc
tion_log table contains a complete history of what occurred:

mysql> SELECT * FROM auction_log WHERE id = 792 ORDER BY ts;
+--------+-----+---------------------+----------------+-------+
| action | id | ts | item | bid |
+--------+-----+---------------------+----------------+-------+
create	792	2014-01-09 14:57:41	chintz pillows	5.00
update	792	2014-01-09 14:57:50	chintz pillows	7.50
update	792	2014-01-09 14:57:57	chintz pillows	9.00
update	792	2014-01-09 14:58:03	chintz pillows	10.00
delete	792	2014-01-09 14:58:03	chintz pillows	10.00
+--------+-----+---------------------+----------------+-------+

324 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

With the strategy just outlined, the auction table remains relatively small, and you can
always find information about auction histories as necessary by looking in the auc
tion_log table.

9.8. Using Events to Schedule Database Actions
Problem
You want to set up a database operation that runs periodically without user intervention.

Solution
Create an event that executes according to a schedule.

Discussion
MySQL provides an event scheduler that enables you to set up database operations that
run at times that you define. This section describes what you must do to use events,
beginning with a simple event that writes a row to a table at regular intervals. Why bother
creating such an event? One reason is that the rows serve as a log of continuous server
operation, similar to the MARK line that some Unix syslogd servers write to the system
log periodically so that you know they’re alive.

Begin with a table to hold the mark rows. It contains a TIMESTAMP column (which MySQL
will initialize automatically) and a column to store a message:

CREATE TABLE mark_log
(
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
 message VARCHAR(100)
);

Our logging event will write a string to a new row. To set it up, use a CREATE EVENT
statement:

CREATE EVENT mark_insert
ON SCHEDULE EVERY 5 MINUTE
DO INSERT INTO mark_log (message) VALUES('-- MARK --');

The mark_insert event causes the message '-- MARK --' to be logged to the mark_log
table every five minutes. Use a different interval for more or less frequent logging.

This event is simple and its body contains only a single SQL statement. For an event
body that executes multiple statements, use BEGIN … END compound-statement syntax.
In that case, if you use mysql to create the event, change the statement delimiter while
you define the event, as discussed in Recipe 9.1.

9.8. Using Events to Schedule Database Actions | 325

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, you should wait a few minutes and then select the contents of the mark_log
table to verify that new rows are being written on schedule. However, if this is the first
event that you’ve set up, you might find that the table remains empty no matter how
long you wait:

mysql> SELECT * FROM mark_log;
Empty set (0.00 sec)

If that’s the case, very likely the event scheduler isn’t running (which is its default state
until you enable it). Check the scheduler status by examining the value of the
event_scheduler system variable:

mysql> SHOW VARIABLES LIKE 'event_scheduler';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| event_scheduler | OFF |
+-----------------+-------+

To enable the scheduler interactively if it’s not running, execute the following statement
(which requires the SUPER privilege):

SET GLOBAL event_scheduler = 1;

That statement enables the scheduler, but only until the server shuts down. To start the
scheduler each time the server starts, enable the system variable in your my.cnf option
file:

[mysqld]
event_scheduler=1

When the event scheduler is enabled, the mark_insert event eventually creates many
rows in the table. There are several ways that you can affect event execution to prevent
the table from growing forever:

• Drop the event:
DROP EVENT mark_insert;

This is the simplest way to stop an event from occurring. But if you want it to resume
later, you must re-create it.

• Disable event execution:
ALTER EVENT mark_insert DISABLE;

That leaves the event in place but causes it not to run until you reactivate it:
ALTER EVENT mark_insert ENABLE;

• Let the event continue to run, but set up another event that “expires” old mark_log
rows. This second event need not run so frequently (perhaps once a day). Its body
should remove rows older than a given threshold. The following definition creates
an event that deletes rows that are more than two days old:

326 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE EVENT mark_expire
ON SCHEDULE EVERY 1 DAY
DO DELETE FROM mark_log WHERE ts < NOW() - INTERVAL 2 DAY;

If you adopt this strategy, you have cooperating events: one event that adds rows to
the mark_log table, and another that removes them. They act together to maintain
a log that contains recent rows but does not become too large.

9.9. Writing Helper Routines for Executing Dynamic SQL
Problem
Prepared SQL statements enable you to construct and execute SQL statements on the
fly, but the supporting mechanism can be tedious to use.

Solution
Write a helper procedure that handles the drudgery.

Discussion
Using a prepared SQL statement involves three steps: preparation, execution, and deal‐
location. For example, if the @tbl_name and @val variables hold a table name and a value
to insert into the table, you can create the table and insert the value like this:

SET @stmt = CONCAT('CREATE TABLE ',@tbl_name,' (i INT)');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
SET @stmt = CONCAT('INSERT INTO ',@tbl_name,' (i) VALUES(',@val,')');
PREPARE stmt FROM @stmt;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

To ease the burden of going through those steps for each dynamically created statement,
use a helper routine that, given a statement string, prepares, executes, and deallocates
it:

CREATE PROCEDURE exec_stmt(stmt_str TEXT)
BEGIN
 SET @_stmt_str = stmt_str;
 PREPARE stmt FROM @_stmt_str;
 EXECUTE stmt;
 DEALLOCATE PREPARE stmt;
END;

The exec_stmt() routine enables the same statements to be executed much more
simply:

9.9. Writing Helper Routines for Executing Dynamic SQL | 327

www.it-ebooks.info

http://www.it-ebooks.info/

CALL exec_stmt(CONCAT('CREATE TABLE ',@tbl_name,' (i INT)'));
CALL exec_stmt(CONCAT('INSERT INTO ',@tbl_name,' (i) VALUES(',@val,')'));

exec_stmt() uses an intermediary user-defined variable, @_exec_stmt, because PRE
PARE accepts a statement only when specified using either a literal string or a user-
defined variable. A statement stored in a routine parameter does not work. (Avoid using
@_exec_stmt for your own purposes, at least if you expect its value to persist across
exec_stmt() invocations.)

Now, how about making it safer to construct statement strings that incorporate values
that might come from external sources, such as web-form input or command-line ar‐
guments? Such information cannot be trusted and should be treated as a potential SQL
injection attack vector:

• The QUOTE() function is available for quoting data values.
• There is no corresponding function for identifiers, but it’s easy to write one that

doubles internal backticks and adds a backtick at the beginning and end:
CREATE FUNCTION quote_identifier(id TEXT)
RETURNS TEXT DETERMINISTIC
RETURN CONCAT('`',REPLACE(id,'`','``'),'`');

Revising the preceding example to ensure the safety of data values and identifiers, we
have:

SET @tbl_name = quote_identifier(@tbl_name);
SET @val = QUOTE(@val);
CALL exec_stmt(CONCAT('CREATE TABLE ',@tbl_name,' (i INT)'));
CALL exec_stmt(CONCAT('INSERT INTO ',@tbl_name,' (i) VALUES(',@val,')'));

A constraint on use of exec_stmt() is that not all SQL statements are eligible for exe‐
cution as prepared statements. See the MySQL Reference Manual for the limitations.

9.10. Handling Errors Within Stored Programs
Within stored programs, you can catch errors or exceptional conditions using condition
handlers. A handler activates under specific circumstances, causing the code associated
with it to execute. The code takes suitable action such as performing cleanup processing
or setting a variable that can be tested elsewhere in the program to determine whether
the condition occurred. A handler might even ignore an error if it occurs under certain
permitted conditions and you want to catch it rather than have it terminate your pro‐
gram.

Stored programs can also produce their own errors or warnings to signal that something
has gone wrong.

328 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

The following examples illustrate these techniques. For complete lists of available con‐
dition names, SQLSTATE values, and error codes, consult the MySQL Reference Man‐
ual.

Detecting End-of-Data Conditions
One common use of condition handlers is to detect “no more rows” conditions. To
process a query result one row at a time, use a cursor-based fetch loop in conjunction
with a condition handler that catches the end-of-data condition. The technique has
these essential elements:

• A cursor associated with a SELECT statement that reads rows. Open the cursor to
start reading, and close it to stop.

• A condition handler that activates when the cursor reaches the end of the result set
and raises an end-of-data condition (NOT FOUND). We used a similar handler in
Recipe 9.2.

• A variable that indicates loop termination. Initialize the variable to FALSE, then set
it to TRUE within the condition handler when the end-of-data condition occurs.

• A loop that uses the cursor to fetch each row and exits when the loop-termination
variable becomes TRUE.

The following example implements a fetch loop that processes the states table row by
row to calculate the total US population:

CREATE PROCEDURE us_population()
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE state_pop, total_pop BIGINT DEFAULT 0;
 DECLARE cur CURSOR FOR SELECT pop FROM states;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur;
 fetch_loop: LOOP
 FETCH cur INTO state_pop;
 IF done THEN
 LEAVE fetch_loop;
 END IF;
 SET total_pop = total_pop + state_pop;
 END LOOP;
 CLOSE cur;
 SELECT total_pop AS 'Total U.S. Population';
END;

Clearly, that example is purely for illustration because in any real application you’d use
an aggregate function to calculate the total. But that also gives us an independent check
on whether the fetch loop calculates the correct value:

9.10. Handling Errors Within Stored Programs | 329

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> CALL us_population();
+-----------------------+
| Total U.S. Population |
+-----------------------+
| 308143815 |
+-----------------------+
mysql> SELECT SUM(pop) AS 'Total U.S. Population' FROM states;
+-----------------------+
| Total U.S. Population |
+-----------------------+
| 308143815 |
+-----------------------+

NOT FOUND handlers are also useful for checking whether SELECT … INTO var_name
statements return any results. Recipe 9.2 shows an example.

Catching and Ignoring Errors
If you consider an error benign, you can use a handler to ignore it. For example, many
DROP statements in MySQL have an IF EXISTS clause to suppress errors if objects to be
dropped do not exist. But some DROP statements have no such clause and thus no way
to suppress errors. DROP USER is one of these:

mysql> DROP USER 'bad-user'@'localhost';
ERROR 1396 (HY000): Operation DROP USER failed for 'bad-user'@'localhost'

To prevent errors from occurring for nonexistent users, invoke DROP USER within a stored
procedure that catches code 1396 and ignores it:

CREATE PROCEDURE drop_user(user TEXT, host TEXT)
BEGIN
 DECLARE account TEXT;
 DECLARE CONTINUE HANDLER FOR 1396
 SELECT CONCAT('Unknown user: ', account) AS Message;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 CALL exec_stmt(CONCAT('DROP USER ',account));
END;

If the user does not exist, drop_user() writes a message within the condition handler,
but no error occurs:

mysql> CALL drop_user('bad-user','localhost');
+--------------------------------------+
| Message |
+--------------------------------------+
| Unknown user: 'bad-user'@'localhost' |
+--------------------------------------+

To ignore the error completely, write the handler using an empty BEGIN … END block:
DECLARE CONTINUE HANDLER FOR 1396 BEGIN END;

Another approach is to generate a warning, as demonstrated in the next section.

330 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

Raising Errors and Warnings
To produce your own errors within a stored program when you detect something awry,
use the SIGNAL statement. This section shows some examples, and Recipe 9.11 demon‐
strates use of SIGNAL within a trigger to reject bad data.

Suppose that an application performs a division operation for which you expect that
the divisor will never be zero, and that you want to produce an error otherwise. You
might expect that you could set the SQL mode properly to produce a divide-by-zero
error (this requires ERROR_FOR_DIVISION_BY_ZERO plus strict mode, or just strict mode
as of MySQL 5.7.4). But that works only within the context of data-modification oper‐
ations such as INSERT. In other contexts, division by zero produces only a warning:

mysql> SET sql_mode = 'ERROR_FOR_DIVISION_BY_ZERO,STRICT_ALL_TABLES';
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+---------------+
| Level | Code | Message |
+---------+------+---------------+
| Warning | 1365 | Division by 0 |
+---------+------+---------------+

To ensure a divide-by-zero error in any context, write a function that performs the
division but checks the divisor first and uses SIGNAL to raise an error if the “can’t hap‐
pen” condition occurs:

CREATE FUNCTION divide(numerator FLOAT, divisor FLOAT)
RETURNS FLOAT DETERMINISTIC
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012'
 SET MYSQL_ERRNO = 1365, MESSAGE_TEXT = 'unexpected 0 divisor';
 END IF;
 RETURN numerator / divisor;
END;

Test the function in a nonmodification context to verify that it produces an error:
mysql> SELECT divide(1,0);
ERROR 1365 (22012): unexpected 0 divisor

The SIGNAL statement specifies a SQLSTATE value plus an optional SET clause you can
use to assign values to error attributes. MYSQL_ERRNO corresponds to the MySQL-specific
error code, and MESSAGE_TEXT is a string of your choice.

9.10. Handling Errors Within Stored Programs | 331

www.it-ebooks.info

http://www.it-ebooks.info/

SIGNAL can also raise warning conditions, not just errors. The following routine,
drop_user_warn(), is similar to the drop_user() routine shown earlier, but instead of
printing a message for nonexistent users, it generates a warning that can be displayed
with SHOW WARNINGS. SQLSTATE value 01000 and error 1642 indicate a user-defined
unhandled exception, which the routine signals along with an appropriate message:

CREATE PROCEDURE drop_user_warn(user TEXT, host TEXT)
BEGIN
 DECLARE account TEXT;
 DECLARE CONTINUE HANDLER FOR 1396
 BEGIN
 DECLARE msg TEXT;
 SET msg = CONCAT('Unknown user: ', account);
 SIGNAL SQLSTATE '01000' SET MYSQL_ERRNO = 1642, MESSAGE_TEXT = msg;
 END;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 CALL exec_stmt(CONCAT('DROP USER ',account));
END;

Give it a test:
mysql> CALL drop_user_warn('bad-user','localhost');
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+---------+------+--------------------------------------+
| Level | Code | Message |
+---------+------+--------------------------------------+
| Warning | 1642 | Unknown user: 'bad-user'@'localhost' |
+---------+------+--------------------------------------+

9.11. Using Triggers to Preprocess or Reject Data
Problem
There are conditions you want to check for data entered into a table, but you don’t want
to write the validation logic for every INSERT.

Solution
Centralize the input-testing logic into a BEFORE INSERT trigger.

Discussion
You can use triggers to perform several types of input checks:

• Reject bad data by raising a signal. This gives you access to stored program logic
for more latitude in checking values than is possible with static constraints such as
NOT NULL.

332 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

• Preprocess values and modify them, if you won’t want to reject them outright. For
example, map out-of-range values to be in range or sanitize values to put them in
canonical form, if you permit entry of close variants.

Suppose that you have a table of contact information such as name, state of residence,
email address, and website URL:

CREATE TABLE contact_info
(
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(30), # state of residence
 state CHAR(2), # state of residence
 email VARCHAR(50), # email address
 url VARCHAR(255), # web address
 PRIMARY KEY (id)
);

For entry of new rows, you want to enforce constraints or perform preprocessing as
follows:

• State of residence values are two-letter US state codes, valid only if present in the
states table. (In this case, you could declare the column as an ENUM with 50 mem‐
bers, so it’s more likely you’d use this lookup-table technique with columns for
which the set of valid values is arbitrarily large or changes over time.)

• Email address values must contain an @ character to be valid.
• For website URLs, strip any leading http:// to save space.

To handle these requirements, create a BEFORE INSERT trigger:
CREATE TRIGGER bi_contact_info BEFORE INSERT ON contact_info
FOR EACH ROW
BEGIN
 IF (SELECT COUNT(*) FROM states WHERE abbrev = NEW.state) = 0 THEN
 SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525, MESSAGE_TEXT = 'invalid state code';
 END IF;
 IF INSTR(NEW.email,'@') = 0 THEN
 SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525, MESSAGE_TEXT = 'invalid email address';
 END IF;
 SET NEW.url = TRIM(LEADING 'http://' FROM NEW.url);
END;

To also handle updates, define a BEFORE UPDATE trigger with the same body as bi_con
tact_info.

9.11. Using Triggers to Preprocess or Reject Data | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Test the trigger by executing some INSERT statements to verify that it accepts valid values,
rejects bad ones, and trims URLs:

mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','NY','jen@example.com','http://www.example.com');
mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','XX','jen@example.com','http://www.example.com');
ERROR 1525 (HY000): invalid state code
mysql> INSERT INTO contact_info (name,state,email,url)
 -> VALUES('Jen','NY','jen','http://www.example.com');
ERROR 1525 (HY000): invalid email address
mysql> SELECT * FROM contact_info;
+----+------+-------+-----------------+-----------------+
| id | name | state | email | url |
+----+------+-------+-----------------+-----------------+
| 1 | Jen | NY | jen@example.com | www.example.com |
+----+------+-------+-----------------+-----------------+

334 | Chapter 9: Using Stored Routines, Triggers, and Scheduled Events

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Working with Metadata

10.0. Introduction
Most of the SQL statements used so far have been written to work with the data stored
in the database. That is, after all, what the database is designed to hold. But sometimes
you need more than just data values. You need information that characterizes or de‐
scribes those values—that is, the statement metadata. Metadata is used most often to
process result sets, but also applies to other aspects of your interaction with MySQL.
This chapter describes how to obtain and use several types of metadata:
Information about statement results

For statements that delete or update rows, you can determine how many rows were
changed. For a SELECT statement, you can obtain the number of columns in the
result set, as well as information about each column in the result set, such as the
column name and its display width. For example, to format a tabular display, you
can determine how wide to make each column and whether to justify values to the
left or right.

Information about databases and tables
A MySQL server can be queried to determine which databases and tables it manages,
which is useful for existence tests or producing lists. For example, an application
might present a display enabling the user to select one of the available databases.
Table metadata can be examined to determine column definitions; for example, to
determine the legal values for ENUM or SET columns to generate web form elements
corresponding to the available choices.

Information about the MySQL server
The database server provides information about itself and about the status of your
current session with it. Knowing the server version can be useful for determining
whether it supports a given feature, which helps you build adaptive applications.

335

www.it-ebooks.info

http://www.it-ebooks.info/

Metadata is closely tied to the implementation of the database system, so it tends to be
database system−dependent. This means that if an application uses techniques shown
in this chapter, it might need some modification if you port it to other database systems.
For example, lists of tables and databases in MySQL are available by executing SHOW
statements. However, SHOW is a MySQL-specific extension to SQL, so even for APIs like
Perl or Ruby DBI, PDO, DB API, and JDBC that give you a database-independent way
of executing statements, the SQL itself is MySQL-specific and must be changed to work
with other database systems.

A more portable source of metadata is INFORMATION_SCHEMA, a database that contains
information about databases, tables, columns, character sets, and so forth. INFORMA
TION_SCHEMA has some advantages over SHOW:

• Other database systems support INFORMATION_SCHEMA, so applications that use it
are likely to be more portable than those that use SHOW statements.

• INFORMATION_SCHEMA is used with standard SELECT syntax, so it’s more similar to
other data-retrieval operations than SHOW statements.

Because of those advantages, recipes in this chapter use INFORMATION_SCHEMA rather
than SHOW in most cases.

A disadvantage of INFORMATION_SCHEMA is that statements to access it are more verbose
than the corresponding SHOW statements. That doesn’t matter so much when you’re
writing programs, but for interactive use, SHOW statements can be more attractive because
they require less typing. The following table lists SHOW statements that provide infor‐
mation similar to the contents of certain INFORMATION_SCHEMA tables:

INFORMATION_SCHEMA table SHOW statement

SCHEMATA SHOW DATABASES

TABLES SHOW TABLES

COLUMNS SHOW COLUMNS

The results retrieved from INFORMATION_SCHEMA or SHOW depend on
your privileges. You’ll see information only for those databases or
tables for which you have some privileges. Thus, an existence test for
an object returns false if it exists but you have no privileges for ac‐
cessing it.

Scripts that create tables used in this chapter are located in the tables directory of the
recipes distribution. Scripts containing code for the examples are located in the meta
data directory. (Some of them use utility functions located in the lib directory.) The
distribution often provides implementations in languages other than those shown.

336 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

10.1. Determining the Number of Rows Affected by a
Statement
Problem
You want to know how many rows an SQL statement changed.

Solution
Sometimes the row count is the return value of the function that executes the statement.
Other times the count is returned by a separate function that you call after executing
the statement.

Discussion
For statements that affect rows (UPDATE, DELETE, INSERT, REPLACE), each API provides
a way to determine the number of rows involved. For MySQL, the default meaning of
“affected by” is “changed by,” not “matched by.” That is, rows not changed by a statement
are not counted, even if they match the conditions specified in the statement. For ex‐
ample, the following UPDATE statement results in an “affected by” value of zero because
it changes no columns from their current values, no matter how many rows the WHERE
clause matches:

UPDATE profile SET cats = 0 WHERE cats = 0;

The MySQL server permits a client to set a connect-time flag to indicate that it wants
rows-matched counts, not rows-changed counts. In this case, the row count for the
preceding statement would be equal to the number of rows with an arms value of 0, even
though the statement results in no net change to the table. However, not all MySQL
APIs expose this flag. The following discussion indicates which APIs enable you to select
the type of count you want and which use the rows-matched count by default rather
than the rows-changed count.

Perl

In Perl DBI scripts, do() returns the row count for statements that modify rows:
my $count = $dbh->do ($stmt);
report 0 rows if an error occurred
printf "Number of rows affected: %d\n", (defined ($count) ? $count : 0);

If you prepare a statement first and then execute it, execute() returns the row count:
my $sth = $dbh->prepare ($stmt);
my $count = $sth->execute ();
printf "Number of rows affected: %d\n", (defined ($count) ? $count : 0);

10.1. Determining the Number of Rows Affected by a Statement | 337

www.it-ebooks.info

http://www.it-ebooks.info/

To tell MySQL whether to return rows-changed or rows-matched counts, specify
mysql_client_found_rows in the options part of the data source name (DSN) argument
of the connect() call when you connect to the MySQL server. Set the option to 0 for
rows-changed counts and 1 for rows-matched counts. Here’s an example:

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dsn = "DBI:mysql:cookbook:localhost;mysql_client_found_rows=1";
my $dbh = DBI->connect ($dsn, "cbuser", "cbpass", $conn_attrs);

mysql_client_found_rows changes the row-reporting behavior for the duration of the
session.

Although the default behavior for MySQL itself is to return rows-changed counts, cur‐
rent versions of the Perl DBI driver for MySQL automatically request rows-matched
counts unless you specify otherwise. For applications that depend on a particular be‐
havior, it’s best to explicitly set the mysql_client_found_rows option in the DSN to the
appropriate value.

Ruby

In Ruby DBI scripts, the do method returns the row count for statements that modify
rows:

count = dbh.do(stmt)
puts "Number of rows affected: #{count}"

If you use execute to execute a statement, use the statement handle rows method to get
the count afterward:

sth = dbh.execute(stmt)
puts "Number of rows affected: #{sth.rows}"

The Ruby DBI driver for MySQL returns rows-changed counts by default, but the driver
supports a mysql_client_found_rows option that enables you to control whether the
server returns rows-changed or rows-matched counts. Its use is analogous to Perl DBI.
For example, to request rows-matched counts, do this:

dsn = "DBI:Mysql:database=cookbook;host=localhost;mysql_client_found_rows=1"
dbh = DBI.connect(dsn, "cbuser", "cbpass")

PHP

In PDO, the database handle exec() method returns the rows-affected count:
$count = $dbh->exec ($stmt);
printf ("Number of rows updated: %d\n", $count);

If you use prepare() plus execute() instead, the rows-affected count is available from
the statement handle rowCount() method:

338 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

$sth = $dbh->prepare ($stmt);
$sth->execute ();
printf ("Number of rows updated: %d\n", $sth->rowCount ());

The PDO driver for MySQL returns rows-changed counts by default, but the driver
supports a PDO::MYSQL_ATTR_FOUND_ROWS attribute that you can specify at connect time
to control whether the server returns rows-changed or rows-matched counts. The new
PDO class constructor takes an optional key/value array following the password argu‐
ment. Pass PDO::MYSQL_ATTR_FOUND_ROWS => 1 in this array to request rows-matched
counts:

$dsn = "mysql:host=localhost;dbname=cookbook";
$dbh = new PDO ($dsn, "cbuser", "cbpass",
 array (PDO::MYSQL_ATTR_FOUND_ROWS => 1));

Python

Python’s DB API makes the rows-changed count available as the value of the statement
cursor’s rowcount attribute:

cursor = conn.cursor()
cursor.execute(stmt)
print("Number of rows affected: %d" % cursor.rowcount)
cursor.close()

To obtain rows-matched counts instead, import the Connector/Python client-flag con‐
stants and pass the FOUND_ROWS flag in the client_flags parameter of the connect()
method:

from mysql.connector.constants import ClientFlag

conn = mysql.connector.connect(
 database="cookbook",
 host="localhost",
 user="cbuser",
 password="cbpass",
 client_flags=[ClientFlag.FOUND_ROWS]
)

Java

For statements that modify rows, the Connector/J driver provides rows-matched counts
rather than rows-changed counts, for conformance with the Java JDBC specification.

The JDBC interface provides row counts two different ways, depending on the method
you invoke to execute the statement. If you use executeUpdate(), the row count is its
return value:

Statement s = conn.createStatement ();
int count = s.executeUpdate (stmt);
s.close ();
System.out.println ("Number of rows affected: " + count);

10.1. Determining the Number of Rows Affected by a Statement | 339

www.it-ebooks.info

http://www.it-ebooks.info/

If you use execute(), that method returns true or false to indicate whether the statement
produces a result set. For statements such as UPDATE or DELETE that return no result set,
execute() returns false and the row count is available by calling the getUpdate
Count() method:

Statement s = conn.createStatement ();
if (!s.execute (stmt))
{
 // there is no result set, print the row count
 System.out.println ("Number of rows affected: " + s.getUpdateCount ());
}
s.close ();

10.2. Obtaining Result Set Metadata
Problem
You already know how to retrieve the rows of a result set (see Recipe 2.4). Now you want
to know things about the result set, such as the column names and data types, or how
many rows and columns there are.

Solution
Use the capabilities provided by your API.

Discussion
Statements such as SELECT that generate a result set produce several types of metadata.
This section discusses the information available through each API, using programs that
show how to display the result set metadata available after executing a sample statement
(SELECT name, birth FROM profile). The example programs illustrate one of the sim‐
plest uses for this information: when you retrieve a row from a result set and you want
to process the column values in a loop, the column count stored in the metadata serves
as the upper bound on the loop iterator.

Perl

The scope of result set metadata available from Perl DBI depends on how you process
queries:

• Using a statement handle
In this case, invoke prepare() to get the statement handle. This handle has an
execute() method. Invoke it to generate the result set, then fetch the rows in a loop.
With this approach, access to the metadata is available while the result set is active
—that is, after the call to execute() and until the end of the result set is reached.

340 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

When the row-fetching method finds that there are no more rows, it invokes fin
ish() implicitly, which causes the metadata to become unavailable. (That also hap‐
pens if you explicitly call finish() yourself.) Thus, normally it’s best to access the
metadata immediately after calling execute(), making a copy of any values that
you’ll need to use beyond the end of the fetch loop.

• Using a database-handle method that returns the result set in a single operation
With this approach, any metadata generated while processing the statement will
have been disposed of by the time the method returns. You can still determine the
number of rows and columns from the size of the result set.

When you use a statement handle to process a query, DBI makes result set metadata
available after you invoke the handle’s execute() method. This information is available
primarily in the form of references to arrays. For each such type of metadata, the array
has one element per column in the result set. Access these array references as attributes
of the statement handle. For example, $sth->{NAME} points to the column name array,
with individual column names available as elements of this array:

$name = $sth->{NAME}->[$i];

Or access the entire array like this:
@names = @{$sth->{NAME}};

The following table lists the attribute names through which you access array-based
metadata and the meaning of values in each array. Names that begin with uppercase are
standard DBI attributes and should be available for most database engines. Attribute
names that begin with mysql_ are MySQL-specific and nonportable:

Attribute name Array element meaning

NAME Column name

NAME_lc Column name in lowercase

NAME_uc Column name in uppercase

NULLABLE 0 or empty string = column values cannot be NULL

 1 = column values can be NULL

 2 = unknown

PRECISION Column width

SCALE Number of decimal places (for numeric columns)

TYPE Data type (numeric DBI code)

mysql_is_blob True if column has a BLOB (or TEXT) type

mysql_is_key True if column is part of a key

mysql_is_num True if column has a numeric type

mysql_is_pri_key True if column is part of a primary key

mysql_max_length Actual maximum length of column values in result set

10.2. Obtaining Result Set Metadata | 341

www.it-ebooks.info

http://www.it-ebooks.info/

Attribute name Array element meaning

mysql_table Name of table the column is part of

mysql_type Data type (numeric internal MySQL code)

mysql_type_name Data type name

Some types of metadata, listed in the following table, are accessed as references to hashes
rather than arrays. These hashes have one element per column value. The element key
is the column name and its value is the position of the column within the result set. For
example:

$col_pos = $sth->{NAME_hash}->{col_name};

Attribute name Hash element meaning

NAME_hash Column name

NAME_hash_lc Column name in lowercase

NAME_hash_uc Column name in uppercase

The number of columns in a result set is available as a scalar value:
$num_cols = $sth->{NUM_OF_FIELDS};

This example code shows how to execute a statement and display result set metadata:
my $stmt = "SELECT name, birth FROM profile";
printf "Statement: %s\n", $stmt;
my $sth = $dbh->prepare ($stmt);
$sth->execute();
metadata information becomes available at this point ...
printf "NUM_OF_FIELDS: %d\n", $sth->{NUM_OF_FIELDS};
print "Note: statement has no result set\n" if $sth->{NUM_OF_FIELDS} == 0;
for my $i (0 .. $sth->{NUM_OF_FIELDS}-1)
{
 printf "--- Column %d (%s) ---\n", $i, $sth->{NAME}->[$i];
 printf "NAME_lc: %s\n", $sth->{NAME_lc}->[$i];
 printf "NAME_uc: %s\n", $sth->{NAME_uc}->[$i];
 printf "NULLABLE: %s\n", $sth->{NULLABLE}->[$i];
 printf "PRECISION: %d\n", $sth->{PRECISION}->[$i];
 printf "SCALE: %d\n", $sth->{SCALE}->[$i];
 printf "TYPE: %d\n", $sth->{TYPE}->[$i];
 printf "mysql_is_blob: %s\n", $sth->{mysql_is_blob}->[$i];
 printf "mysql_is_key: %s\n", $sth->{mysql_is_key}->[$i];
 printf "mysql_is_num: %s\n", $sth->{mysql_is_num}->[$i];
 printf "mysql_is_pri_key: %s\n", $sth->{mysql_is_pri_key}->[$i];
 printf "mysql_max_length: %d\n", $sth->{mysql_max_length}->[$i];
 printf "mysql_table: %s\n", $sth->{mysql_table}->[$i];
 printf "mysql_type: %d\n", $sth->{mysql_type}->[$i];
 printf "mysql_type_name: %s\n", $sth->{mysql_type_name}->[$i];
}
$sth->finish (); # release result set because we didn't fetch its rows

342 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

The program produces this output:
Statement: SELECT name, birth FROM profile
NUM_OF_FIELDS: 2
--- Column 0 (name) ---
NAME_lc: name
NAME_uc: NAME
NULLABLE:
PRECISION: 20
SCALE: 0
TYPE: 12
mysql_is_blob:
mysql_is_key:
mysql_is_num: 0
mysql_is_pri_key:
mysql_max_length: 7
mysql_table: profile
mysql_type: 253
mysql_type_name: varchar
--- Column 1 (birth) ---
NAME_lc: birth
NAME_uc: BIRTH
NULLABLE: 1
PRECISION: 10
SCALE: 0
TYPE: 9
mysql_is_blob:
mysql_is_key:
mysql_is_num: 0
mysql_is_pri_key:
mysql_max_length: 10
mysql_table: profile
mysql_type: 10
mysql_type_name: date

To get a row count from a result set generated by calling execute(), fetch the rows and
count them yourself. Using $sth->rows() to get a count for SELECT statements is ex‐
pressly deprecated in the DBI documentation.

You can also obtain a result set by calling one of the DBI methods that uses a database
handle rather than a statement handle, such as selectall_arrayref() or selec
tall_hashref(). These methods provide no access to column metadata. That infor‐
mation already will have been disposed of by the time the method returns, and is un‐
available to your scripts. However, you can derive column and row counts by examining
the result set itself. Recipe 2.4 discusses the result set structures produced by several
methods and how to use them to obtain row and column counts.

Ruby

Ruby DBI provides result set metadata after you execute a statement with execute, and
access to metadata is possible until you invoke the statement handle finish method.

10.2. Obtaining Result Set Metadata | 343

www.it-ebooks.info

http://www.it-ebooks.info/

The column_names method returns an array of column names (which is empty if there
is no result set). If there is a result set, the column_info method returns an array of
ColumnInfo objects, one for each column. A ColumnInfo object is similar to a hash and
has the elements shown in the following table. Element names that begin with mysql_
are MySQL-specific and nonportable:

Element name Element meaning

name Column name

sql_type XOPEN type number

type_name XOPEN type name

precision Column width

scale Number of decimal places (for numeric columns)

nullable True if column permits NULL values

indexed True if column is indexed

primary True if column is part of a primary key

unique True if column is part of a unique index

mysql_type Data type (numeric internal MySQL code)

mysql_type_name Data type name

mysql_length Column width

mysql_max_length Actual maximum length of column values in result set

mysql_flags Data type flags

This example code shows how to execute a statement and display result set metadata:
stmt = "SELECT name, birth FROM profile"
puts "Statement: #{stmt}"
sth = dbh.execute(stmt)
metadata information becomes available at this point ...
puts "Number of columns: #{sth.column_names.size}"
puts "Note: statement has no result set" if sth.column_names.size == 0
sth.column_info.each_with_index do |info, i|
 puts "--- Column #{i} (#{info['name']}) ---"
 puts "sql_type: #{info['sql_type']}"
 puts "type_name: #{info['type_name']}"
 puts "precision: #{info['precision']}"
 puts "scale: #{info['scale']}"
 puts "nullable: #{info['nullable']}"
 puts "indexed: #{info['indexed']}"
 puts "primary: #{info['primary']}"
 puts "unique: #{info['unique']}"
 puts "mysql_type: #{info['mysql_type']}"
 puts "mysql_type_name: #{info['mysql_type_name']}"
 puts "mysql_length: #{info['mysql_length']}"
 puts "mysql_max_length: #{info['mysql_max_length']}"
 puts "mysql_flags: #{info['mysql_flags']}"

344 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

end
sth.finish

The program produces this output:
Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 0 (name) ---
sql_type: 12
type_name: VARCHAR
precision: 20
scale: 0
nullable: false
indexed: false
primary: false
unique: false
mysql_type: 253
mysql_type_name: VARCHAR
mysql_length: 20
mysql_max_length: 7
mysql_flags: 4097
--- Column 1 (birth) ---
sql_type: 9
type_name: DATE
precision: 10
scale: 0
nullable: true
indexed: false
primary: false
unique: false
mysql_type: 10
mysql_type_name: DATE
mysql_length: 10
mysql_max_length: 10
mysql_flags: 128

To get a row count from a result set generated by calling execute, fetch the rows and
count them yourself. The sth.rows method is not guaranteed to work for result sets.

You can also obtain a result set by calling one of the DBI methods that uses a database
handle rather than a statement handle, such as select_one or select_all. These
methods provide no access to column metadata. That information already will have
been disposed of by the time the method returns, and is unavailable to your scripts.
However, you can derive column and row counts by examining the result set itself.

PHP

In PHP, metadata for SELECT statements is available from PDO after a successful call to
query(). If you execute a statement using prepare() plus execute() instead (which
can be used for SELECT or non-SELECT statements), metadata becomes available after
execute().

10.2. Obtaining Result Set Metadata | 345

www.it-ebooks.info

http://www.it-ebooks.info/

To determine metadata availability, check whether the statement handle colum
nCount() method returns a value greater than zero. If so, the handle’s getColumnMe
ta() method returns an associative array containing metadata for a single column. The
following table shows the elements of this array. (The format of the flags value might
differ for other database systems.)

Name Value

pdo_type Column type (corresponds to a PDO::PARAM_XXX value)

native_type PHP native type for the column value

name Column name

len Column length

precision Column precision

flags Array of flags describing the column attributes

table Name of table the column is part of

This example code shows how to execute a statement and display result set metadata:
$stmt = "SELECT name, birth FROM profile";
print ("Statement: $stmt\n");
$sth = $dbh->prepare ($stmt);
$sth->execute ();
metadata information becomes available at this point ...
$ncols = $sth->columnCount ();
print ("Number of columns: $ncols\n");
if ($ncols == 0)
 print ("Note: statement has no result set\n");
for ($i = 0; $i < $ncols; $i++)
{
 $col_info = $sth->getColumnMeta ($i);
 $flags = implode (",", array_values ($col_info["flags"]));
 printf ("--- Column %d (%s) ---\n", $i, $col_info["name"]);
 printf ("pdo_type: %d\n", $col_info["pdo_type"]);
 printf ("native_type: %s\n", $col_info["native_type"]);
 printf ("len: %d\n", $col_info["len"]);
 printf ("precision: %d\n", $col_info["precision"]);
 printf ("flags: %s\n", $flags);
 printf ("table: %s\n", $col_info["table"]);
}

The program produces this output:
Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 0 (name) ---
PDO type: 2
native type: VAR_STRING
len: 20
precision: 0
flags: not_null

346 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

table: profile
--- Column 1 (birth) ---
PDO type: 2
native type: DATE
len: 10
precision: 0
flags:
table: profile

To get a row count from a statement that returns rows, fetch the rows and count them
yourself. The rowCount() method is not guaranteed to work for result sets.

Python

For statements that produce a result set, Python’s DB API makes row and column counts
available, as well as a few information items about individual columns.

To get the row count for a result set, access the cursor’s rowcount attribute. This requires
that the cursor be buffered so that it fetches query results immediately; otherwise, you
must count the rows as you fetch them. The column count is not available directly, but
after calling fetchone() or fetchall(), you can determine the count as the length of
any result set row tuple. It’s also possible to determine the column count without fetching
any rows by using cursor.description. This is a tuple containing one element per
column in the result set, so its length tells you how many columns are in the set. (If the
statement generates no result set, such as for UPDATE, the value of description is
None.) Each element of the description tuple is another tuple that represents the met‐
adata for the corresponding column of the result. For Connector/Python, only a few
description values are meaningful. The following code shows how to access them:

stmt = "SELECT name, birth FROM profile"
print("Statement: %s" % stmt)
buffer cursor so that rowcount has usable value
cursor = conn.cursor(buffered=True)
cursor.execute(stmt)
metadata information becomes available at this point ...
print("Number of rows: %d" % cursor.rowcount)
if cursor.description is None: # no result set
 ncols = 0
else:
 ncols = len(cursor.description)
print("Number of columns: %d" % ncols)
if ncols == 0:
 print("Note: statement has no result set")
for i, col_info in enumerate(cursor.description):
 # print name, then other information
 name, type, _, _, _, _, nullable, flags = col_info
 print("--- Column %d (%s) ---" % (i, name))
 print("Type: %d (%s)" % (type, FieldType.get_info(type)))
 print("Nullable: %d" % (nullable))

10.2. Obtaining Result Set Metadata | 347

www.it-ebooks.info

http://www.it-ebooks.info/

 print("Flags: %d" % (flags))
cursor.close()

The code uses the FieldType class, imported as follows:
from mysql.connector import FieldType

The program produces this output:
Statement: SELECT name, birth FROM profile
Number of rows: 10
Number of columns: 2
--- Column 0 (name) ---
Type: 253 (VAR_STRING)
Nullable: 0
Flags: 4097
--- Column 1 (birth) ---
Type: 10 (DATE)
Nullable: 1
Flags: 128

Java

JDBC makes result set metadata available through a ResultSetMetaData object, ob‐
tained by calling the getMetaData() method of your ResultSet object. The metadata
object provides access to several kinds of information. Its getColumnCount() method
returns the number of columns in the result set. Other types of metadata, illustrated by
the following code, provide information about individual columns and take a column
index as their argument. For JDBC, column indexes begin at 1 rather than 0, unlike our
other APIs:

String stmt = "SELECT name, birth FROM profile";
System.out.println ("Statement: " + stmt);
Statement s = conn.createStatement ();
s.executeQuery (stmt);
ResultSet rs = s.getResultSet ();
ResultSetMetaData md = rs.getMetaData ();
// metadata information becomes available at this point ...
int ncols = md.getColumnCount ();
System.out.println ("Number of columns: " + ncols);
if (ncols == 0)
 System.out.println ("Note: statement has no result set");
for (int i = 1; i <= ncols; i++) // column index values are 1-based
{
 System.out.println ("--- Column " + i
 + " (" + md.getColumnName (i) + ") ---");
 System.out.println ("getColumnDisplaySize: " + md.getColumnDisplaySize (i));
 System.out.println ("getColumnLabel: " + md.getColumnLabel (i));
 System.out.println ("getColumnType: " + md.getColumnType (i));
 System.out.println ("getColumnTypeName: " + md.getColumnTypeName (i));
 System.out.println ("getPrecision: " + md.getPrecision (i));
 System.out.println ("getScale: " + md.getScale (i));

348 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

 System.out.println ("getTableName: " + md.getTableName (i));
 System.out.println ("isAutoIncrement: " + md.isAutoIncrement (i));
 System.out.println ("isNullable: " + md.isNullable (i));
 System.out.println ("isCaseSensitive: " + md.isCaseSensitive (i));
 System.out.println ("isSigned: " + md.isSigned (i));
}
rs.close ();
s.close ();

The program produces this output:
Statement: SELECT name, birth FROM profile
Number of columns: 2
--- Column 1 (name) ---
getColumnDisplaySize: 20
getColumnLabel: name
getColumnType: 12
getColumnTypeName: VARCHAR
getPrecision: 20
getScale: 0
getTableName: profile
isAutoIncrement: false
isNullable: 0
isCaseSensitive: false
isSigned: false
--- Column 2 (birth) ---
getColumnDisplaySize: 10
getColumnLabel: birth
getColumnType: 91
getColumnTypeName: DATE
getPrecision: 10
getScale: 0
getTableName: profile
isAutoIncrement: false
isNullable: 1
isCaseSensitive: false
isSigned: false

The row count of the result set is not available directly; you must fetch the rows and
count them.

JDBC has several other result set metadata calls, but many of them provide no useful
information for MySQL. To try them, get a JDBC reference to see what the calls are and
modify the program to see what, if anything, they return.

10.2. Obtaining Result Set Metadata | 349

www.it-ebooks.info

http://www.it-ebooks.info/

10.3. Determining Whether a Statement Produced a
Result Set
Problem
You just executed an SQL statement, but you’re not sure whether it produced a result
set.

Solution
Check the column count in the metadata. There is no result set if the count is zero.

Discussion
If you write an application that accepts statement strings from an external source such
as a file or a user entering text at the keyboard, you may not necessarily know whether
it’s a statement such as SELECT that produces a result set or a statement such as UP
DATE that does not. That’s an important distinction because you process statements that
produce a result set differently from those that do not. Assuming that no error occurred,
one way to tell the difference is to check the metadata value that indicates the column
count after executing the statement (as shown in Recipe 10.2). A column count of zero
indicates that the statement was an INSERT, UPDATE, or some other statement that returns
no result set. A nonzero value indicates the presence of a result set, and you can go ahead
and fetch the rows. This technique distinguishes SELECT from non-SELECT statements,
even for SELECT statements that return an empty result set. (An empty result is different
from no result. The former returns no rows, but the column count is still correct; the
latter has no columns at all.)

Some APIs provide ways to distinguish statement types other than checking the column
count:

• In Python, the value of cursor.description is None for statements that produce
no result set.

• In JDBC, you can issue arbitrary statements using the execute() method, which
returns true or false to indicate whether there is a result set.

10.4. Using Metadata to Format Query Output
Problem
You want to display a result set, nicely formatted.

350 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Let the result set metadata help you. It provides important information about the struc‐
ture and content of the results.

Discussion
Metadata is valuable for formatting query results because it tells you several important
things about the columns, such as the names and display widths. For example, you can
write a general-purpose function that displays a result set in tabular format, even without
knowing what the query was. The following Java code shows one way to do this. It takes
a result set object and uses it to get the metadata for the result. Then it uses both objects
in tandem to retrieve and format the values in the result. The output is similar to that
produced by mysql: a row of column headers followed by the rows of the result, with
columns nicely boxed and lined up vertically. Here’s a sample of function output, given
the result set generated by the query SELECT id, name, birth FROM profile:

+----------+--------------------+----------+
|id |name |birth |
+----------+--------------------+----------+
1	Sybil	1970-04-13
2	Nancy	1969-09-30
3	Ralph	1973-11-02
4	Lothair	1963-07-04
5	Henry	1965-02-14
6	Aaron	1968-09-17
7	Joanna	1952-08-20
8	Stephen	1960-05-01
9	Amabel	NULL
+----------+--------------------+----------+
Number of rows selected: 9

The primary problem an application like this must solve is to determine the proper
display width of each column. The getColumnDisplaySize() method returns the col‐
umn width, but we must also factor in other pieces of information:

• The column name might be longer than the column width.
• We’ll print the word “NULL” for NULL values, so if the column can contain NULL

values, the display width must be at least four.

The following Java function, displayResultSet(), formats a result set, taking those
factors into account. It also counts rows as it fetches them to determine the row count,
because JDBC doesn’t provide that value in the metadata:

public static void displayResultSet (ResultSet rs) throws SQLException
{
 ResultSetMetaData md = rs.getMetaData ();
 int ncols = md.getColumnCount ();

10.4. Using Metadata to Format Query Output | 351

www.it-ebooks.info

http://www.it-ebooks.info/

 int nrows = 0;
 int[] width = new int[ncols + 1]; // array to store column widths
 StringBuffer b = new StringBuffer (); // buffer to hold bar line

 // calculate column widths
 for (int i = 1; i <= ncols; i++)
 {
 // some drivers return -1 for getColumnDisplaySize();
 // if so, we'll override that with the column name length
 width[i] = md.getColumnDisplaySize (i);
 if (width[i] < md.getColumnName (i).length ())
 width[i] = md.getColumnName (i).length ();
 // isNullable() returns 1/0, not true/false
 if (width[i] < 4 && md.isNullable (i) != 0)
 width[i] = 4;
 }

 // construct +---+---...+ line
 b.append ("+");
 for (int i = 1; i <= ncols; i++)
 {
 for (int j = 0; j < width[i]; j++)
 b.append ("-");
 b.append ("+");
 }

 // print bar line, column headers, bar line
 System.out.println (b.toString ());
 System.out.print ("|");
 for (int i = 1; i <= ncols; i++)
 {
 System.out.print (md.getColumnName (i));
 for (int j = md.getColumnName (i).length (); j < width[i]; j++)
 System.out.print (" ");
 System.out.print ("|");
 }
 System.out.println ();
 System.out.println (b.toString ());

 // print contents of result set
 while (rs.next ())
 {
 ++nrows;
 System.out.print ("|");
 for (int i = 1; i <= ncols; i++)
 {
 String s = rs.getString (i);
 if (rs.wasNull ())
 s = "NULL";
 System.out.print (s);
 for (int j = s.length (); j < width[i]; j++)
 System.out.print (" ");

352 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

 System.out.print ("|");
 }
 System.out.println ();
 }
 // print bar line, and row count
 System.out.println (b.toString ());
 System.out.println ("Number of rows selected: " + nrows);
}

To be more elaborate, test whether a column contains numeric values and format it as
right-justified if so. In Perl DBI scripts, this is easy to check because you can access the
mysql_is_num metadata attribute. For other APIs, it is not so easy unless there is some
equivalent “column is numeric” metadata value available. If not, you must check wheth‐
er the data-type indicator is one of the several possible numeric types.

The displayResultSet() function prints columns using the width of the column as
specified in the table definition, not the maximum width of the values actually present
in the result set. The latter value is often smaller. You can see this in the sample output
that precedes the listing for displayResultSet(). The id and name columns are 10 and
20 characters wide, even though the widest values are only two and seven characters
long, respectively. In Perl and Ruby, you can get the maximum width of the values
present in the result set. To determine these widths in JDBC, you must iterate through
the result set and check the column value lengths yourself. This requires a JDBC 2.0
driver that provides scrollable result sets. If you have such a driver (Connector/J is one),
the column-width calculation code in the displayResultSet() function can be modi‐
fied as follows:

// calculate column widths
for (int i = 1; i <= ncols; i++)
{
 width[i] = md.getColumnName (i).length ();
 // isNullable() returns 1/0, not true/false
 if (width[i] < 4 && md.isNullable (i) != 0)
 width[i] = 4;
}
// scroll through result set and adjust display widths as necessary
while (rs.next ())
{
 for (int i = 1; i <= ncols; i++)
 {
 byte[] bytes = rs.getBytes (i);
 if (!rs.wasNull ())
 {
 int len = bytes.length;
 if (width[i] < len)
 width[i] = len;
 }
 }
}
rs.beforeFirst (); // rewind result set before displaying it

10.4. Using Metadata to Format Query Output | 353

www.it-ebooks.info

http://www.it-ebooks.info/

With that change, the result is a more compact query result display:
+--+-------+----------+
|id|name |birth |
+--+-------+----------+
1	Sybil	1970-04-13
2	Nancy	1969-09-30
3	Ralph	1973-11-02
4	Lothair	1963-07-04
5	Henry	1965-02-14
6	Aaron	1968-09-17
7	Joanna	1952-08-20
8	Stephen	1960-05-01
9	Amabel	NULL
+--+-------+----------+
Number of rows selected: 9

Before writing your own function, check whether your API already provides one. For
example, the Ruby DBI::Utils::TableFormatter module has an ascii method that pro‐
duces a formatted display much like that just described. Use it like this:

dbh.execute(stmt) do |sth|
 DBI::Utils::TableFormatter.ascii(sth.column_names, sth.fetch_all)
end

10.5. Listing or Checking Existence of Databases or Tables
Problem
You want to list the databases hosted by the MySQL server or the tables in a database.
Or you want to check whether a particular database or table exists.

Solution
Use INFORMATION_SCHEMA to get this information. The SCHEMATA table contains a row
for each database, and the TABLES table contains a row for each table in each database.

Discussion
To retrieve the list of databases hosted by the server, use this statement:

SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA;

To sort the result, add an ORDER BY SCHEMA_NAME clause.

To check whether a specific database exists, use a WHERE clause with a condition that
names the database. If you get a row back, the database exists. The following Ruby
method shows how to perform an existence test for a database:

354 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

def database_exists(dbh, db_name)
 return !dbh.select_one("SELECT SCHEMA_NAME
 FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME = ?", db_name).nil?
end

To obtain the list of tables in a database, name the database in the WHERE clause of a
statement that selects from the TABLES table:

SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = 'cookbook';

To sort the result, add an ORDER BY TABLE_NAME clause.

To obtain a list of tables in the default database, use this statement instead:
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_SCHEMA = DATABASE();

If no database has been selected, DATABASE() returns NULL and no rows match, which
is the correct result.

To check whether a specific table exists, use a WHERE clause with a condition that names
the table. Here’s a Ruby method that performs an existence test for a table in a given
database:

def table_exists(dbh, db_name, tbl_name)
 return !dbh.select_one("SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?",
 db_name, tbl_name).nil?
end

Some APIs provide a database-independent way to get database or table lists. In Perl
DBI, the database handle tables() method returns a list of tables in the default database:

@tables = $dbh->tables ();

The Ruby method is similar:
tables = dbh.tables

For Java, there are JDBC methods designed to return lists of databases or tables. For
each method, invoke your connection object’s getMetaData() method and use the
resulting DatabaseMetaData object to retrieve the information you want. Here’s how to
produce a list of databases:

// get list of databases
DatabaseMetaData md = conn.getMetaData ();
ResultSet rs = md.getCatalogs ();
while (rs.next ())
 System.out.println (rs.getString (1)); // column 1 = database name
rs.close ();

To list the tables in a database, do this:

10.5. Listing or Checking Existence of Databases or Tables | 355

www.it-ebooks.info

http://www.it-ebooks.info/

// get list of tables in database named by dbName; if
// dbName is the empty string, the default database is used
DatabaseMetaData md = conn.getMetaData ();
ResultSet rs = md.getTables (dbName, "", "%", null);
while (rs.next ())
 System.out.println (rs.getString (3)); // column 3 = table name
rs.close ();

10.6. Accessing Table Column Definitions
Problem
You want to find out what columns a table has and how they are defined.

Solution
There are several ways to do this. You can obtain column definitions from INFORMA
TION_SCHEMA, from SHOW statements, or from mysqldump.

Discussion
Information about the structure of tables enables you to answer questions such as “What
columns does a table contain and what are their types?” or “What are the legal values
for an ENUM or SET column?” Here are some applications for that kind of information:
Displaying column lists

A simple use of table information is presenting a list of the table’s columns. This is
common in web-based or GUI applications that enable users to construct state‐
ments interactively by selecting a table column from a list and entering a value
against which to compare column values.

Interactive record editing
Knowledge of a table’s structure can be very useful for interactive record-editing
applications. Suppose that an application retrieves a record from the database, dis‐
plays a form containing the record’s content so a user can edit it, and then updates
the record in the database after the user modifies the form and submits it. You can
use table structure information for validating column values. If a column is an
ENUM, you can find out the valid enumeration values and check the value submitted
by the user against them to determine whether it’s legal. If the column is an integer
type, check the submitted value to make sure that it consists entirely of digits, pos‐
sibly preceded by a + or − sign character. If the column contains dates, look for a
legal date format.

But what if the user leaves a field empty? If the field corresponds to, say, a CHAR
column in the table, do you set the column value to NULL or to the empty string?
This too is a question that can be answered by checking the table’s structure.

356 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

Determine whether the column can contain NULL values. If it can, set the column
to NULL; otherwise, set it to the empty string.

Mapping column definitions onto web page elements
Some data types such as ENUM and SET correspond naturally to elements of web
forms:

• An ENUM has a fixed set of values from which you choose a single value. This is
analogous to a group of radio buttons, a pop-up menu, or a single-pick scrolling
list.

• A SET column is similar, except that you can select multiple values; this corre‐
sponds to a group of checkboxes or a multiple-pick scrolling list.

By using table metadata to access definitions for these types of columns, you can
easily determine a column’s legal values and map them onto an appropriate form
element. This enables you to present users with a list of applicable values from which
they can make a selection easily with no typing. Recipe 10.7 discusses how to get
definitions for these types of columns. The methods developed there are used in
Chapter 20, which discusses form generation in more detail.

MySQL provides several ways to find out about a table’s structure:

• Retrieve the information from INFORMATION_SCHEMA. The COLUMNS table contains
the column definitions.

• Use a SHOW COLUMNS statement.
• Use the SHOW CREATE TABLE statement or the mysqldump command-line program

to obtain a CREATE TABLE statement that displays the table’s structure.

The following discussion shows how to ask MySQL for table information using each
method. To try the examples, create an item table that lists item IDs, names, and colors
in which each item is available:

CREATE TABLE item
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(20),
 colors ENUM('chartreuse','mauve','lime green','puce') DEFAULT 'puce',
 PRIMARY KEY (id)
);

Using INFORMATION_SCHEMA to get table structure

To obtain information about a single column in a table by checking INFORMATION_SCHE
MA, use a statement of the following form:

mysql> SELECT * FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'item'

10.6. Accessing Table Column Definitions | 357

www.it-ebooks.info

http://www.it-ebooks.info/

 -> AND COLUMN_NAME = 'colors'\G
*************************** 1. row ***************************
 TABLE_CATALOG: def
 TABLE_SCHEMA: cookbook
 TABLE_NAME: item
 COLUMN_NAME: colors
 ORDINAL_POSITION: 3
 COLUMN_DEFAULT: puce
 IS_NULLABLE: YES
 DATA_TYPE: enum
CHARACTER_MAXIMUM_LENGTH: 10
 CHARACTER_OCTET_LENGTH: 10
 NUMERIC_PRECISION: NULL
 NUMERIC_SCALE: NULL
 DATETIME_PRECISION: NULL
 CHARACTER_SET_NAME: latin1
 COLLATION_NAME: latin1_swedish_ci
 COLUMN_TYPE: enum('chartreuse','mauve','lime green','puce')
 COLUMN_KEY:
 EXTRA:
 PRIVILEGES: select,insert,update,references
 COLUMN_COMMENT:

To obtain information about all columns, omit the COLUMN_NAME condition from the
WHERE clause.

To retrieve only certain types of information, replace SELECT * with the columns of
interest:

mysql> SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'item';
+-------------+-----------+-------------+
| COLUMN_NAME | DATA_TYPE | IS_NULLABLE |
+-------------+-----------+-------------+
id	int	NO
name	char	YES
colors	enum	YES
+-------------+-----------+-------------+

Here are some COLUMNS table columns likely to be of most use:

• COLUMN_NAME: The column name.
• ORDINAL_POSITION: The position of the column within the table definition.
• COLUMN_DEFAULT: The column’s default value.
• IS_NULLABLE: YES or NO to indicate whether the column can contain NULL values.
• DATA_TYPE, COLUMN_TYPE: Data type information. DATA_TYPE is the data-type key‐

word and COLUMN_TYPE contains additional information such as type attributes.

358 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

• CHARACTER_SET_NAME, COLLATION_NAME: The character set and collation for string
columns. They are NULL for nonstring columns.

• COLUMN_KEY: Information about whether the column is indexed.

INFORMATION_SCHEMA content is easy to use from within programs. Here’s a PHP func‐
tion that illustrates this process. It takes database and table name arguments, selects
from INFORMATION_SCHEMA to obtain a list of the table’s column names, and returns the
names as an array. The ORDER BY ORDINAL_POSITION clause ensures that names in the
array are returned in table-definition order:

function get_column_names ($dbh, $db_name, $tbl_name)
{
 $stmt = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?
 ORDER BY ORDINAL_POSITION";
 $sth = $dbh->prepare ($stmt);
 $sth->execute (array ($db_name, $tbl_name));
 return ($sth->fetchAll (PDO::FETCH_COLUMN, 0));
}

get_column_names() returns an array containing only column names. If you require
additional column information, it’s possible to write a more general get_column_in
fo() routine that returns an array of column information structures. For implementa‐
tions of both routines in PHP as well as other languages, check the library files in the
lib directory of the recipes distribution.

Using SHOW COLUMNS to get table structure

The SHOW COLUMNS statement produces one row of output for each column in the table,
with each row providing various pieces of information about the corresponding col‐
umn. The following example demonstrates SHOW COLUMNS output for the item table
colors column:

mysql> SHOW COLUMNS FROM item LIKE 'colors'\G
*************************** 1. row ***************************
 Field: colors
 Type: enum('chartreuse','mauve','lime green','puce')
 Null: YES
 Key:
Default: puce
 Extra:

SHOW COLUMNS displays information for all columns having a name that matches the LIKE
pattern. To obtain information about all columns, omit the LIKE clause.

The values displayed by SHOW COLUMNS correspond to these columns of the INFORMA
TION_SCHEMA COLUMNS table: COLUMN_NAME, COLUMN_TYPE, COLUMN_KEY, IS_NULLABLE,
COLUMN_DEFAULT, EXTRA.

10.6. Accessing Table Column Definitions | 359

www.it-ebooks.info

http://www.it-ebooks.info/

SHOW FULL COLUMNS displays additional Collation, Privileges, and Comment fields for
each column. These correspond to the COLUMNS table COLLATION_NAME, PRIVILEGES, and
COLUMN_COMMENT columns.

SHOW interprets the pattern the same way as for the LIKE operator in the WHERE clause of
a SELECT statement. (For information about pattern matching, see Recipe 5.8.) If you
specify a literal column name, the string matches only that name and SHOW COLUMNS
displays information only for that column. However, a trap awaits the unwary here. If
your column name contains SQL pattern characters (% or _) that you want to match
literally, you must escape them with a backslash in the pattern string to avoid matching
other names as well.

The need to escape % and _ characters to match a LIKE pattern literally also applies to
other SHOW statements that permit a name pattern in the LIKE clause, such as SHOW TABLES
and SHOW DATABASES.

Within a program, you can use your API language’s pattern-matching capabilities to
escape SQL pattern characters before putting the column name into a SHOW statement.
In Perl, Ruby, and PHP, use the following expressions.

Perl:
$name =~ s/([%_])/\\$1/g;

Ruby:
name.gsub!(/([%_])/, '\\\\\1')

PHP:
$name = preg_replace ('/([%_])/', '\\\\$1', $name);

For Python, import the re module, and use its sub() method:
name = re.sub(r'([%_])', r'\\\1', name)

For Java, use methods from the java.util.regex package:
import java.util.regex.*;

Pattern p = Pattern.compile("([_%])");
Matcher m = p.matcher(name);
name = m.replaceAll ("\\\\$1");

If these expressions appear to have too many backslashes, remember that the API lan‐
guage processor itself interprets backslashes and strips off a level before performing the
pattern match. To get a literal backslash into the result, it must be doubled in the pattern.
Another level on top of that is needed if the pattern processor strips a set.

360 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

Using CREATE TABLE to get table structure

Another way to obtain table structure information from MySQL is from the CREATE
TABLE statement that defines the table. To get this information, use the SHOW CREATE
TABLE statement:

mysql> SHOW CREATE TABLE item\G
*************************** 1. row ***************************
 Table: item
Create Table: CREATE TABLE `item` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `name` char(20) DEFAULT NULL,
 `colors` enum('chartreuse','mauve','lime green','puce') DEFAULT 'puce',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

From the command line, the same CREATE TABLE information is available from mysql‐
dump if you use the --no-data option, which tells mysqldump to dump only the struc‐
ture of the table and not its data.

CREATE TABLE format is highly informative and easy to read because it shows column
information in a format similar to the one you used to create the table in the first place.
It also shows the index structure clearly, whereas the other methods do not. However,
you’ll probably find this method of checking table structure more useful interactively
than within programs. The information isn’t provided in regular row-and-column for‐
mat, so it’s more difficult to parse. Also, the format is subject to change whenever the
CREATE TABLE statement is enhanced, which happens from time to time as MySQL’s
capabilities are extended.

10.7. Getting ENUM and SET Column Information
Problem
You want to know the members of an ENUM or SET column.

Solution
This problem is a subset of getting table structure metadata. Obtain the column defi‐
nition from the table metadata, then extract the member list from the definition.

Discussion
It’s often useful to know the list of legal values for an ENUM or SET column. Suppose that
you want to present a web form containing a pop-up menu that has options corre‐
sponding to each legal value of an ENUM column, such as the sizes in which a garment
can be ordered, or the available shipping methods for delivering a package. You could
hardwire the choices into the script that generates the form, but if you alter the column

10.7. Getting ENUM and SET Column Information | 361

www.it-ebooks.info

http://www.it-ebooks.info/

later (for example, to add a new enumeration value), you introduce a discrepancy be‐
tween the column and the script that uses it. If instead you look up the legal values using
the table metadata, the script can always produce a pop-up that contains the proper set
of values. A similar approach applies to SET columns.

To determine the permitted values for an ENUM or SET column, get its definition using
one of the techniques described in Recipe 10.6. For example, if you select from the
INFORMATION_SCHEMA COLUMNS table, the COLUMN_TYPE value for the colors column of
the item table looks like this:

enum('chartreuse','mauve','lime green','puce')

SET columns are similar, except that they say set rather than enum. For either data type,
extract the permitted values by stripping the initial word and the parentheses, splitting
at the commas, and removing the enclosing quotes from the individual values. Let’s
write a get_enumorset_info() routine to break out these values from the data-type
definition. While we’re at it, we can have the routine return the column’s type, its default
value, and whether values can be NULL. Then the routine can be used by scripts that may
need more than just the list of values. Here is a version in Ruby. Its arguments are a
database handle, a database name, a table name, and a column name. It returns a hash
with entries corresponding to the various aspects of the column definition (or nil if the
column does not exist):

def get_enumorset_info(dbh, db_name, tbl_name, col_name)
 row = dbh.select_one(
 "SELECT COLUMN_NAME, COLUMN_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ? AND COLUMN_NAME = ?",
 db_name, tbl_name, col_name)
 return nil if row.nil? # no such column
 info = {}
 info["name"] = row[0]
 return nil unless row[1] =~ /^(ENUM|SET)\((.*)\)$/i # not ENUM or SET
 info["type"] = $1
 # split value list on commas, trim quotes from end of each word
 info["values"] = $2.split(",").collect { |val| val.sub(/^'(.*)'$/, "\\1") }
 # determine whether column can contain NULL values
 info["nullable"] = (row[2].upcase == "YES")
 # get default value (nil represents NULL)
 info["default"] = row[3]
 return info
end

The routine uses case-insensitive matching when checking the data type and nullable
attributes. This guards against future lettercase changes in metadata results.

The following example shows how to access and display each element of the hash re‐
turned by get_enumorset_info():

362 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

info = get_enumorset_info(dbh, db_name, tbl_name, col_name)
puts "Information for #{db_name}.#{tbl_name}.#{col_name}:"
if info.nil?
 puts "No information available (not an ENUM or SET column?)"
else
 puts "Name: " + info["name"]
 puts "Type: " + info["type"]
 puts "Legal values: " + info["values"].join(",")
 puts "Nullable: " + (info["nullable"] ? "yes" : "no")
 puts "Default value: " + (info["default"].nil? ? "NULL" : info["default"])
end

That code produces the following output for the item table colors column:
Information for cookbook.item.colors:
Name: colors
Type: enum
Legal values: chartreuse,mauve,lime green,puce
Nullable: yes
Default value: puce

Equivalent routines for other APIs are similar. You can find implementations in the lib
directory of the recipes distribution. Such routines are useful for validation of input
values (see Recipe 12.8), and are especially handy for generating list elements in web
forms (see Recipes 20.2 and 20.3).

10.8. Getting Server Metadata
Problem
You want the MySQL server to tell you about itself.

Solution
Several SQL functions and SHOW statements return information about the server.

Discussion
MySQL has several SQL functions and statements that provide you with information
about the server itself and about your current client session. The following table shows
a few that you may find useful. Both SHOW statements permit a GLOBAL or SESSION
keyword to select global server values or values specific to your session, and a LIKE
'pattern' clause for limiting the results to variable names matching the pattern:

Statement Information produced by statement

SELECT VERSION() Server version string

SELECT DATABASE() Default database name (NULL if none)

10.8. Getting Server Metadata | 363

www.it-ebooks.info

http://www.it-ebooks.info/

Statement Information produced by statement

SELECT USER() Current user as given by client when connecting

SELECT CURRENT_USER() User used for checking client privileges

SHOW [GLOBAL|SESSION] STATUS Server global or session status indicators

SHOW [GLOBAL|SESSION] VARIABLES Server global or status configuration variables

To obtain the information provided by any statement in the table, execute it and process
its result set. For example, SELECT DATABASE() returns the name of the default database
or NULL if no database has been selected. The following Ruby code uses the statement
to present a status display containing information about the current session:

db = dbh.select_one("SELECT DATABASE()")[0]
puts "Default database: " + (db.nil? ? "(no database selected)" : db)

A given API might provide alternatives to executing SQL statements to access these
types of information. For example, JDBC has several database-independent methods
for obtaining server metadata. Use your connection object to obtain the database met‐
adata, then invoke the appropriate methods to get the information in which you’re
interested. Consult a JDBC reference for a complete list, but here are a few representative
examples:

DatabaseMetaData md = conn.getMetaData ();
// can also get this with SELECT VERSION()
System.out.println ("Product version: " + md.getDatabaseProductVersion ());
// this is similar to SELECT USER() but doesn't include the hostname
System.out.println ("Username: " + md.getUserName ());

See Also
For more discussion about the use of SHOW (and INFORMATION_SCHEMA) in the context
of server monitoring, see Recipe 22.6.

10.9. Writing Applications That Adapt to the MySQL
Server Version
Problem
You want to use a given feature that is available only as of a particular version of MySQL.

Solution
Ask the server for its version number. If the server is too old to support a given feature,
maybe you can fall back to a workaround, if one exists.

364 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Over the course of MySQL development, new versions add features. If you’re writing
an application that requires certain features, check the server version to determine
whether they are present; if not, you must perform some sort of workaround (assuming
there is one).

To get the server version, invoke the VERSION() function. The result is a string that looks
something like 5.5.25a or 5.7.4-m14. In other words, it returns a string consisting of
major, minor, and “teeny” version numbers, possibly some nondigits at the end of the
“teeny” version, and possibly some suffix. The version string can be used as is for pre‐
sentation purposes, but for comparisons, it’s simpler to work with a number—in par‐
ticular, a five-digit number in Mmmtt format, in which M, mm, tt are the major, minor, and
teeny version numbers. Perform the conversion by splitting the string at the periods,
stripping from the third piece the suffix that begins with the first nonnumeric character,
and joining the pieces. For example, 5.5.25a becomes 50525, and 5.7.4-m14 becomes
50704.

Here’s a Perl DBI function that takes a database-handle argument and returns a two-
element list that contains both the string and numeric forms of the server version. The
code assumes that the minor and teeny version parts are less than 100 and thus no more
than two digits each. That should be a valid assumption because the source code for
MySQL itself uses the same format:

sub get_server_version
{
my $dbh = shift;
my ($ver_str, $ver_num);
my ($major, $minor, $teeny);

 # fetch result into scalar string
 $ver_str = $dbh->selectrow_array ("SELECT VERSION()");
 return undef unless defined ($ver_str);
 ($major, $minor, $teeny) = split (/\./, $ver_str);
 $teeny =~ s/\D.*$//; # strip nonnumeric suffix if present
 $ver_num = $major*10000 + $minor*100 + $teeny;
 return ($ver_str, $ver_num);
}

To get both forms of the version information at once, call the function like this:
my ($ver_str, $ver_num) = get_server_version ($dbh);

To get just one of the values, call it as follows:
my $ver_str = (get_server_version ($dbh))[0]; # string form
my $ver_num = (get_server_version ($dbh))[1]; # numeric form

The following examples demonstrate how to use the numeric version value to check
whether the server supports certain features:

10.9. Writing Applications That Adapt to the MySQL Server Version | 365

www.it-ebooks.info

http://www.it-ebooks.info/

my $ver_num = (get_server_version ($dbh))[1];
printf "Event scheduler: %s\n", ($ver_num >= 50106 ? "yes" : "no");
printf "4-byte Unicode: %s\n", ($ver_num >= 50503 ? "yes" : "no");
printf "Fractional seconds: %s\n", ($ver_num >= 50604 ? "yes" : "no");
printf "SHA-256 passwords: %s\n", ($ver_num >= 50606 ? "yes" : "no");
printf "ALTER USER: %s\n", ($ver_num >= 50607 ? "yes" : "no");
printf "INSERT DELAYED: %s\n", ($ver_num >= 50700 ? "no" : "yes");

The recipes distribution metadata directory contains get_server_version() imple‐
mentations in other API languages, and the routines directory contains a server_ver
sion() stored function for use in SQL statements. The latter function returns only the
numeric value because VERSION() already produces the string value. The following ex‐
ample shows how to use it to implement a stored procedure that expires an account
password if the server is recent enough to support the ALTER USER statement (MySQL
5.6.7 or later):

CREATE PROCEDURE expire_password(user TEXT, host TEXT)
BEGIN
 DECLARE account TEXT;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 IF server_version() >= 50607 AND user <> '' THEN
 CALL exec_stmt(CONCAT('ALTER USER ',account,' PASSWORD EXPIRE'));
 END IF;
END;

expire_password() requires the exec_stmt() helper routine (see Recipe 9.9). Both are
available in the routines directory. For more information about password expiration,
see Recipe 23.5.

366 | Chapter 10: Working with Metadata

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Importing and Exporting Data

11.0. Introduction
Suppose that a file named somedata.csv contains 12 data columns in comma-separated
values (CSV) format. From this file you want to extract only columns 2, 11, 5, and 9,
and use them to create database rows in a MySQL table that contains name, birth,
height, and weight columns. You must make sure that the height and weight are positive
integers, and convert the birth dates from MM/DD/YY format to CCYY-MM-DD format. How
can you do this?

In one sense, that problem is very specialized. But it’s not at all atypical because data
transfer problems with specific requirements occur frequently when you transfer data
into MySQL. Datafiles are not always nicely formatted and ready to load into MySQL
with no preparation. As a result, it’s often necessary to preprocess information to put it
into a format acceptable for MySQL. The reverse also is true; data exported from MySQL
may need massaging to be useful for other programs.

Although some data preparation operations are so difficult that they require a great deal
of hand checking and reformatting, in most cases you can do at least part of the job
automatically. Virtually all such problems involve at least some elements of a common
set of conversion issues. This chapter and the next discuss what these issues are, how to
deal with them by taking advantage of the existing tools at your disposal, and how to
write your own tools when necessary. The idea is not to cover all possible situations (an
impossible task), but to show representative techniques and utilities. Use them as is or
adapt them for problems that they don’t handle. (There are commercial data-handling
tools, but my purpose here is to enable you to do things yourself.) With respect to the
problem posed at the beginning of this Introduction, see Recipe 12.15 for the solution
we arrive at.

The discussion begins with native MySQL facilities for importing data (the LOAD DATA
statement and the mysqlimport command-line program), and for exporting data (the

367

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT … INTO OUTFILE statement). For situations where the native facilities do not
suffice, we move on to cover techniques for using external supporting utilities (such as
sed and tr) and for writing your own. There are two broad sets of issues to consider:

• How to manipulate the structure of datafiles. When a file is in a format not suitable
for import, you must convert it to a different format. This may involve issues such
as changing the column delimiters or line-ending sequences, or removing or rear‐
ranging columns in the file. This chapter covers such techniques.

• How to manipulate the content of datafiles. If you don’t know whether the values
contained in a file are legal, you may want to preprocess it to check or reformat
them. Numeric values may need verification as lying within a specific range, dates
may need conversion to or from ISO format, and so forth. Chapter 12 covers those
techniques.

Source code for program fragments and scripts discussed in this chapter is located in
the transfer directory of the recipes distribution.

General Import and Export Issues
Incompatible datafile formats and differing rules for interpreting various kinds of values
cause headaches when transferring data between programs. Nevertheless, certain issues
recur frequently. Be aware of them and you can identify more easily what must be done
to solve particular import or export problems.

In its most basic form, an input stream is just a set of bytes with no particular meaning.
Successful import into MySQL requires recognizing which bytes represent structural
information and which represent the data values framed by that structure. Because such
recognition is key to decomposing the input into appropriate units, the most funda‐
mental import issues are these:

• What is the record separator? Knowing this enables you to partition the input
stream into records.

• What is the field delimiter? Knowing this enables you to partition each record into
field values. Identifying the data values also might include stripping quotes from
around the values or recognizing escape sequences within them.

The ability to break the input into records and fields is important for extracting the data
values from it. If the values are still not in a form that can be used directly, you may need
to consider other issues:

• Do the order and number of columns match the structure of the database table?
Mismatches require rearranging or skipping columns.

368 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

• How should NULL or empty values be handled? Are they permitted? Can NULL values
even be detected? (Some systems export NULL values as empty strings, making it
impossible to distinguish them.)

• Do data values require validation or reformatting? If the values are in a format that
matches MySQL’s expectations, no further processing is necessary. Otherwise, they
must be checked and possibly rewritten.

For export from MySQL, the issues are somewhat the reverse. You can assume that
values stored in the database are valid, but it’s necessary to add column and record
delimiters to form an output stream that has a structure other programs can recognize,
and values may require reformatting for use by other programs.

File Formats
Datafiles come in many formats, two of which appear frequently in this chapter:
Tab-delimited or tab-separated values (TSV) format

This is one of the simplest file structures; lines contain values separated by tab
characters. A short tab-delimited file might look like this, where the whitespace
between column values represents single tab characters:

a b c
a,b,c d e f

Comma-separated values (CSV) format
Files written in CSV format vary somewhat; there is apparently no formal standard
describing the format. However, the general idea is that lines consist of values sep‐
arated by commas, and values containing internal commas are enclosed within
quotes to prevent the commas from being interpreted as value delimiters. It’s also
common for values containing spaces to be quoted as well. In this example, each
line contains three values:

a,b,c
"a,b,c","d e",f

It’s trickier to process CSV files than tab-delimited files because characters like
quotes and commas have a dual meaning: they may represent file structure or be
included in the content of data values.

Another important datafile characteristic is the line-ending sequence. The most com‐
mon sequences are carriage return, linefeed, and carriage return/linefeed pair, some‐
times referred to here by the abbreviations CR, LF, and CRLF.

Datafiles often begin with a row of column labels. For some import operations, the row
of labels must be discarded to avoid having it be loaded into your table as data. In other
cases, the labels are quite useful:

11.0. Introduction | 369

www.it-ebooks.info

http://www.it-ebooks.info/

• For import into existing tables, the labels help you match datafile columns with the
table columns if they are not necessarily in the same order.

• The labels can be used for column names when creating a new table automatically
or semiautomatically from a datafile. For example, Recipe 11.11 discusses a utility
that examines a datafile and guesses the CREATE TABLE statement to use to create a
table from the file. If a label row is present, the utility uses the labels for column
names.

Tab-Delimited, Linefeed-Terminated Format
Although datafiles may be written in many formats, it’s unwieldy to include machinery
for reading multiple formats within each file-processing utility you write. For that rea‐
son, many of the utilities described in this chapter assume for simplicity that their input
is in tab-delimited, linefeed-terminated format. (This is also the default format for
MySQL’s LOAD DATA statement.) By making this assumption, it becomes easier to write
programs that read files.

On the other hand, something has to be able to read data in other formats. To handle
that problem, we’ll develop a cvt_file.pl script that can read several types of files (see
Recipe 11.6). The script is based on the Perl Text::CSV_XS module, which despite its
name is useful for much more than just CSV data. cvt_file.pl can convert between many
file types, making it possible for other programs that require tab-delimited lines to be
used with files not originally written in that format. In other words, you can use cvt_file.pl
to convert a file to tab-delimited, linefeed-terminated format, and then any program
that expects that format can process the file.

Notes on Invoking Shell Commands
This chapter shows a number of programs that you invoke from the command line
using a shell like bash or tcsh under Unix or cmd.exe (“the command prompt”) under
Windows. Many of the example commands for these programs use quotes around op‐
tion values, and sometimes an option value is itself a quote character. Quoting conven‐
tions vary from one shell to another, but the following rules seem to work with most of
them (including cmd.exe under Windows):

• For an argument that contains spaces, enclose it within double quotes to prevent
the shell from interpreting it as multiple separate arguments. The shell strips the
quotes and passes the argument to the command intact.

• To include a double-quote character in the argument itself, precede it with a
backslash.

370 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Some shell commands in this chapter are so long that they’re shown as you would enter
them using several lines, with a backslash character as the line-continuation character:

% prog_name \
 argument1 \
 argument2 ...

That works for Unix. On Windows, the continuation character is ̂ (or ̀ for PowerShell).
Alternatively, on any platform, enter the entire command on one line:

C:\> prog_name argument1 argument2 ...

11.1. Importing Data with LOAD DATA and mysqlimport
Problem
You want to load a datafile into a table using MySQL’s built-in import capabilities.

Solution
Use the LOAD DATA statement or the mysqlimport command-line program.

Discussion
MySQL provides a LOAD DATA statement that acts as a bulk data loader. Here’s an example
statement that reads a file mytbl.txt from your current directory and loads it into the
table mytbl in the default database:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl;

At some MySQL installations, the LOCAL loading capability may have been disabled for
security reasons. If that is true at your site, omit LOCAL from the statement and specify
the full pathname to the file, which must be readable by the server. Local versus nonlocal
data loading is discussed shortly.

The MySQL utility program mysqlimport acts as a wrapper around LOAD DATA so that
you can load input files directly from the command line. The mysqlimport command
that is equivalent to the preceding LOAD DATA statement looks like this, assuming that
mytbl is in the cookbook database:

% mysqlimport --local cookbook mytbl.txt

For mysqlimport, as with other MySQL programs, you may need to specify connection
parameter options such as --user or --host (see Recipe 1.4).

The following list describes LOAD DATA’s general characteristics and capabilities; mysq‐
limport shares most of these behaviors. We’ll note some differences as we go along, but
for the most, what can be done with LOAD DATA can be done with mysqlimport as well.

11.1. Importing Data with LOAD DATA and mysqlimport | 371

www.it-ebooks.info

http://www.it-ebooks.info/

LOAD DATA provides options to address many of the import issues mentioned in the
chapter introduction, such as the line-ending sequence for recognizing how to break
input into records, the column value delimiter that permits records to be broken into
separate values, the quoting character that may enclose column values, quoting and
escaping conventions within values, and NULL value representation:

• By default, LOAD DATA expects the datafile to have the same number of columns as
the table into which you load it, with the columns present in the same order as in
the table. If the file column number or order differ from the table, you can specify
which columns are present and their order. If the datafile contains fewer columns
than the table, MySQL assigns default values for the missing columns.

• LOAD DATA assumes that data values are separated by tab characters and that lines
end with linefeeds (newlines). If a file doesn’t conform to these conventions, you
can specify its format explicitly.

• You can indicate that data values may have quotes around them that should be
stripped, and you can specify the quote character.

• Several special escape sequences are recognized and converted during input pro‐
cessing. The default escape character is backslash (\), but you can change it. The
\N sequence is interpreted as a NULL value. The \b, \n, \r, \t, \\, and \0 sequences
are interpreted as backspace, linefeed, carriage return, tab, backslash, and ASCII
NUL characters. (NUL is a zero-valued byte; it differs from the SQL NULL value.)

• LOAD DATA provides diagnostic information about which input values cause prob‐
lems. To display this information, execute a SHOW WARNINGS statement after the LOAD
DATA statement.

The remainder of this section describes how to handle these issues using LOAD DATA or
mysqlimport. It’s lengthy because there’s a lot to cover.

Specifying the datafile location

You can load files located either on the server host, or on the client host from which you
issue the LOAD DATA statement. Telling MySQL where to find your datafile is a matter of
knowing the rules that determine where it looks for the file (particularly important for
files not in your current directory).

By default, the MySQL server assumes that the datafile is located on the server host. You
can load local files that are located on the client host using LOAD DATA LOCAL rather than
LOAD DATA, unless LOCAL capability is disabled by default. You might be able to enable it
using the --local-infile option for mysql. If that doesn’t work, your server has been
configured to prohibit LOAD DATA LOCAL.

372 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the examples in this chapter assume that LOCAL can be used.
If that’s not true for your system, adapt the examples: omit LOCAL from
the statement, make sure that the file is located on the MySQL serv‐
er host and readable to the server, and specify the file pathname using
the following rules. For example, specify the full pathname.

If the LOAD DATA statement includes no LOCAL keyword, the MySQL server looks for the
file on the server host using the following rules:

• Your MySQL account must have the FILE privilege, and the file to be loaded must
be either located in the data directory for the default database or world readable.

• An absolute pathname fully specifies the location of the file in the filesystem and
the server reads it from the given location.

• A relative pathname is interpreted two ways, depending on whether it has a single
component or multiple components. For a single-component filename such as
mytbl.txt, the server looks for the file in the database directory for the default da‐
tabase. (The operation fails if you have not selected a default database.) For a
multiple-component filename such as xyz/mytbl.txt, the server looks for the file
beginning in the MySQL data directory. That is, it expects to find mytbl.txt in a
directory named xyz.

Database directories are located directly under the server’s data directory, so these two
statements are equivalent if the default database is cookbook:

mysql> LOAD DATA INFILE 'mytbl.txt' INTO TABLE mytbl;
mysql> LOAD DATA INFILE 'cookbook/mytbl.txt' INTO TABLE mytbl;

If the LOAD DATA statement includes the LOCAL keyword, your client program reads the
file on the client host and sends its contents to the server. The client interprets the
pathname like this:

• An absolute pathname fully specifies the location of the file in the filesystem.
• A relative pathname specifies the file location relative to your current directory.

If your file is located on the client host, but you forget to indicate that it’s local, an error
occurs:

mysql> LOAD DATA 'mytbl.txt' INTO TABLE mytbl;
ERROR 1045 (28000): Access denied for user: 'user_name@host_name'
(Using password: YES)

That Access denied message can be confusing: if you’re able to connect to the server
and issue the LOAD DATA statement, it would seem that you’ve already gained access to
MySQL, right? The error message means the server (not the client) tried to open
mytbl.txt on the server host and could not access it.

11.1. Importing Data with LOAD DATA and mysqlimport | 373

www.it-ebooks.info

http://www.it-ebooks.info/

If your MySQL server runs on the host from which you issue the LOAD DATA statement,
“remote” and “local” refer to the same host. But the rules just discussed for locating
datafiles still apply. Without LOCAL, the server reads the datafile directly. With LOCAL,
the client program reads the file and sends its contents to the server.

mysqlimport uses the same rules for finding files as LOAD DATA. By default, it assumes
that the datafile is located on the server host. To indicate that the file is local to the client
host, specify the --local (or -L) option on the command line.

LOAD DATA assumes that the table is located in the default database. To load a file into a
specific database, qualify the table name with the database name. The following state‐
ment indicates that the mytbl table is located in the other_db database:

mysql> LOAD DATA LOCAL 'mytbl.txt' INTO TABLE other_db.mytbl;

mysqlimport always requires a database argument:
% mysqlimport --local cookbook mytbl.txt

LOAD DATA assumes no relationship between the name of the datafile and the name of
the table into which you load the file’s contents. mysqlimport assumes a fixed relationship
between the datafile name and the table name. Specifically, it uses the last component
of the filename to determine the table name. For example, mysqlimport interprets mytbl,
mytbl.dat, /home/paul/mytbl.csv, and C:\projects\mytbl.txt all as files containing data
for the mytbl table.

Naming Datafiles Under Windows
Windows systems use \ as the pathname separator in filenames. That’s a bit of a problem
because MySQL interprets backslash as the escape character in string values. To specify
a Windows pathname, use either doubled backslashes or forward slashes. These two
statements show two ways of referring to the same Windows file:

mysql> LOAD DATA LOCAL INFILE 'C:\\projects\\mydata.txt' INTO mytbl;
mysql> LOAD DATA LOCAL INFILE 'C:/projects/mydata.txt' INTO mytbl;

If the NO_BACKSLASH_ESCAPES SQL mode is enabled, backslash is not special, and you
do not double it:

mysql> SET sql_mode = 'NO_BACKSLASH_ESCAPES';
mysql> LOAD DATA LOCAL INFILE 'C:\projects\mydata.txt' INTO mytbl;

Specifying column and line delimiters

By default, LOAD DATA assumes that datafile lines are terminated by linefeed (newline)
characters and that values within a line are separated by tab characters. To provide
explicit information about datafile format, use a FIELDS clause to describe the charac‐
teristics of fields within a line, and a LINES clause to specify the line-ending sequence.

374 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

The following LOAD DATA statement indicates that the input file contains data values
separated by colons and lines terminated by carriage returns:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> FIELDS TERMINATED BY ':' LINES TERMINATED BY '\r';

Each clause follows the table name. If both are present, FIELDS must precede LINES. The
line and field termination indicators can contain multiple characters. For example, \r
\n indicates that lines are terminated by carriage return/linefeed pairs.

The LINES clause also has a STARTING BY subclause. It specifies the sequence to be strip‐
ped from each input record. (Everything up to the given sequence is stripped. If you
specify STARTING BY 'X' and a record begins with abcX, all four leading characters are
stripped.) Like TERMINATED BY, the sequence can have multiple characters. If TERMINAT
ED BY and STARTING BY both are present in the LINES clause, they can appear in any
order.

For mysqlimport, command options provide the format specifiers. Commands that
correspond to the preceding two LOAD DATA statements look like this:

% mysqlimport --local cookbook mytbl.txt
% mysqlimport --local --fields-terminated-by=":" --lines-terminated-by="\r" \
 cookbook mytbl.txt

Option order doesn’t matter for mysqlimport.

The FIELDS and LINES clauses understand hex notation to specify arbitrary format
characters, which is useful for loading datafiles that use binary format codes. Suppose
that a datafile has lines with Ctrl-A between fields and Ctrl-B at the end of lines. The
ASCII values for Ctrl-A and Ctrl-B are 1 and 2, so you represent them as 0x01 and 0x02:

FIELDS TERMINATED BY 0x01 LINES TERMINATED BY 0x02

mysqlimport also understands hex constants for format specifiers. You may find this
capability helpful if you don’t like remembering how to type escape sequences on the
command line or when it’s necessary to use quotes around them. Tab is 0x09, linefeed
is 0x0a, and carriage return is 0x0d. This command indicates that the datafile contains
tab-delimited lines terminated by CRLF pairs:

% mysqlimport --local --fields-terminated-by=0x09 \
 --lines-terminated-by=0x0d0a cookbook mytbl.txt

When you import datafiles, don’t assume that LOAD DATA (or mysqlimport) knows more
than it does. Some LOAD DATA frustrations occur because people expect MySQL to know
more than it possibly can. Keep in mind that LOAD DATA has no idea at all about the
format of your datafile. It makes certain assumptions about the input structure, repre‐
sented as the default settings for the line and field terminators, and for the quote and
escape character settings. If your input differs from those assumptions, you must tell
MySQL so.

11.1. Importing Data with LOAD DATA and mysqlimport | 375

www.it-ebooks.info

http://www.it-ebooks.info/

The line-ending sequence used in a datafile typically is determined by the system from
which the file originated. Unix files normally have lines terminated by linefeeds, which
you indicate like this:

LINES TERMINATED BY '\n'

Because \n happens to be the default line terminator, you need not specify that clause
in this case unless you want to indicate the line-ending sequence explicitly. If files on
your system don’t use the Unix default (linefeed), you must specify the line terminator
explicitly. For files that have lines ending in carriage returns or carriage return/linefeed
pairs, respectively, use the appropriate LINES TERMINATED BY clause:

LINES TERMINATED BY '\r'
LINES TERMINATED BY '\r\n'

For example, to load a Windows file that contains tab-delimited fields and lines ending
with CRLF pairs, use this LOAD DATA statement:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> LINES TERMINATED BY '\r\n';

The corresponding mysqlimport command is:
% mysqlimport --local --lines-terminated-by="\r\n" cookbook mytbl.txt

If the file has been transferred from one machine to another, its contents may have been
changed in subtle ways of which you’re not aware. For example, an FTP transfer between
machines running different operating systems typically translates line endings to those
that are appropriate for the destination machine if the transfer is performed in text mode
rather than in binary (image) mode.

When in doubt, check the contents of your datafile using a hex dump program or other
utility that displays a visible representation of whitespace characters like tab, carriage
return, and linefeed. Under Unix, programs such as od or hexdump can display file
contents in a variety of formats. If you don’t have these or some comparable utility, the
transfer directory of the recipes distribution contains hex dumpers written in Perl,
Ruby, and Python (hexdump.pl, hexdump.rb, and hexdump.py), as well as programs that
display printable representations of all characters of a file (see.pl, see.rb, and see.py). You
may find them useful for examining files to see what they really contain.

Dealing with quotes and special characters

If your datafile contains quoted values or escaped characters, tell LOAD DATA to be aware
of them so that it doesn’t load uninterpreted data values into the database.

The FIELDS clause can specify other format options besides TERMINATED BY. By default,
LOAD DATA assumes that values are unquoted, and it interprets the backslash (\) as an
escape character for special characters. To indicate the value-quoting character explic‐

376 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

itly, use ENCLOSED BY; MySQL will strip that character from the ends of data values during
input processing. To change the default escape character, use ESCAPED BY.

The three subclauses of the FIELDS clause (ENCLOSED BY, ESCAPED BY, and TERMINATED
BY) may be present in any order if you specify more than one of them. For example,
these FIELDS clauses are equivalent:

FIELDS TERMINATED BY ',' ENCLOSED BY '"'
FIELDS ENCLOSED BY '"' TERMINATED BY ','

The TERMINATED BY value can consist of multiple characters. If data values are separated
within input lines by *@*, sequences, indicate that like this:

FIELDS TERMINATED BY '*@*'

To disable escape processing entirely, specify an empty escape sequence:
FIELDS ESCAPED BY ''

When you specify ENCLOSED BY to indicate which quote character should be stripped
from data values, it’s possible to include the quote character literally within data values
by doubling it or by preceding it with the escape character. For example, if the quote
and escape characters are " and \, the input value "a""b\"c" is interpreted as a"b"c.

For mysqlimport, the corresponding command options for specifying quote and escape
values are --fields-enclosed-by and --fields-escaped-by. (When using mysqlim‐
port options that include quotes or backslashes or other characters that are special to
your command interpreter, you may need to quote or escape the quote or escape char‐
acters.)

Handling duplicate key values

By default, an error occurs if an input record duplicates an existing row in the column
or columns that form a PRIMARY KEY or UNIQUE index. To control this behavior, specify
IGNORE or REPLACE after the filename to tell MySQL to either ignore duplicate rows or
replace old rows with the new ones.

Suppose that you periodically receive meteorological data about current weather con‐
ditions from various monitoring stations, and that you store various measurements
from these stations in a table that looks like this:

CREATE TABLE weatherdata
(
 station INT UNSIGNED NOT NULL,
 type ENUM('precip','temp','cloudiness','humidity','barometer') NOT NULL,
 value FLOAT,
 PRIMARY KEY (station, type)
);

The table includes a primary key on the combination of station ID and measurement
type, to ensure that it contains only one row per station per type of measurement. The

11.1. Importing Data with LOAD DATA and mysqlimport | 377

www.it-ebooks.info

http://www.it-ebooks.info/

table is intended to hold only current conditions, so when new measurements for a
given station are loaded into the table, they should kick out the station’s previous meas‐
urements. To accomplish this, use the REPLACE keyword:

mysql> LOAD DATA LOCAL INFILE 'data.txt' REPLACE INTO TABLE weatherdata;

mysqlimport has --ignore and --replace options that correspond to the IGNORE and
REPLACE keywords for LOAD DATA.

Obtaining diagnostics about bad input data

LOAD DATA displays an information line to indicate whether there are any problematic
input values. If so, use SHOW WARNINGS to find where they are and what the problems are.

When a LOAD DATA statement finishes, it returns a line of information that tells you how
many errors or data conversion problems occurred. For example:

Records: 134 Deleted: 0 Skipped: 2 Warnings: 13

These values provide general information about the import operation:

• Records indicates the number of records found in the file.
• Deleted and Skipped are related to treatment of input records that duplicate ex‐

isting table rows on unique index values. Deleted indicates how many rows were
deleted from the table and replaced by input records, and Skipped indicates how
many input records were ignored in favor of existing rows.

• Warnings is something of a catchall that indicates the number of problems found
while loading data values into columns. Either a value stores into a column properly,
or it doesn’t. In the latter case, the value ends up in MySQL as something different,
and MySQL counts it as a warning. (Storing a string abc into a numeric column
results in a stored value of 0, for example.)

What do these values tell you? The Records value normally should match the number
of lines in the input file. If it doesn’t, that’s a sign that MySQL interprets the file as having
a different format than it actually has. In this case, you’ll likely also see a high Warn
ings value, which indicates that many values had to be converted because they didn’t
match the expected data type. The solution to this problem often is to specify the proper
FIELDS and LINES clauses.

Assuming that your FIELDS and LINES format specifiers are correct, a nonzero Warn
ings count indicates the presence of bad input values. You can’t tell from the numbers
in the LOAD DATA information line which input records had problems or which columns
were bad. To get that information, issue a SHOW WARNINGS statement.

Suppose that a table t has this structure:
CREATE TABLE t
(

378 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

 i INT,
 c CHAR(3),
 d DATE
);

And suppose that a datafile data.txt looks like this:

1 1 1
abc abc abc
2010-10-10 2010-10-10 2010-10-10

Loading the file into the table causes a number, a string, and a date to be loaded into
each of the three columns. Doing so results in several data conversions and warnings,
which you can see using SHOW WARNINGS immediately following LOAD DATA:

mysql> LOAD DATA LOCAL INFILE 'data.txt' INTO TABLE t;
Query OK, 3 rows affected, 5 warnings (0.01 sec)
Records: 3 Deleted: 0 Skipped: 0 Warnings: 5
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
Warning	1265	Data truncated for column 'd' at row 1
Warning	1366	Incorrect integer value: 'abc' for column 'i' at row 2
Warning	1265	Data truncated for column 'd' at row 2
Warning	1265	Data truncated for column 'i' at row 3
Warning	1265	Data truncated for column 'c' at row 3
+---------+------+--+
5 rows in set (0.00 sec)

The SHOW WARNINGS output helps you determine which values were converted and why.
The resulting table looks like this:

mysql> SELECT * FROM t;
+------+------+------------+
| i | c | d |
+------+------+------------+
1	1	0000-00-00
0	abc	0000-00-00
2010	201	2010-10-10
+------+------+------------+

Skipping datafile lines

To skip the first n lines of a datafile, add an IGNORE n LINES clause to the LOAD DATA
statement. For example, a file might include an initial line of column labels. You can
skip it like this:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> IGNORE 1 LINES;

mysqlimport supports an --ignore-lines=n option that corresponds to IGNORE n
LINES.

11.1. Importing Data with LOAD DATA and mysqlimport | 379

www.it-ebooks.info

http://www.it-ebooks.info/

Specifying input column order

LOAD DATA assumes that columns in the datafile have the same order as the columns in
the table. If that’s not true, specify a list to indicate the table columns into which to load
the datafile columns. Suppose that your table has columns a, b, and c, but successive
columns in the datafile correspond to columns b, c, and a. Load the file like this:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl (b,c,a);

mysqlimport has a corresponding --columns option to specify the column list:
% mysqlimport --local --columns=b,c,a cookbook mytbl.txt

Preprocessing input values before inserting them

LOAD DATA can perform limited preprocessing of input values before inserting them,
which sometimes enables you to map input data onto more appropriate values before
loading them into your table. This is useful when values are not in a format suitable for
loading into a table (for example, they are in the wrong units, or two input fields must
be combined and inserted into a single column).

The previous section shows how to specify a column list for LOAD DATA to indicate how
input fields correspond to table columns. The column list also can name user-defined
variables, such that for each input record, the input fields are assigned to the variables.
You can then perform calculations with those variables before inserting the result into
the table. Specify these calculations in a SET clause that names one or more col_name =
expr assignments, separated by commas.

Suppose that a datafile has the following columns, with the first line providing column
labels:

Date Time Name Weight State
2006-09-01 12:00:00 Bill Wills 200 Nevada
2006-09-02 09:00:00 Jeff Deft 150 Oklahoma
2006-09-04 03:00:00 Bob Hobbs 225 Utah
2006-09-07 08:00:00 Hank Banks 175 Texas

Suppose also that the file is to be loaded into a table that has these columns:
CREATE TABLE t
(
 dt DATETIME,
 last_name CHAR(10),
 first_name CHAR(10),
 weight_kg FLOAT,
 st_abbrev CHAR(2)
);

To import the file, you must address several mismatches between its fields and the table
columns:

380 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

• The file contains separate date and time fields that must be combined into date-
and-time values for insertion into the DATETIME column.

• The file contains a name field, which must be split into separate first and last name
values for insertion into the first_name and last_name columns.

• The file contains a weight in pounds, which must be converted to kilograms for
insertion into the weight_kg column. (1 lb. equals .454 kg.)

• The file contains state names, but the table contains two-letter abbreviations. The
name can be mapped to the abbreviation by performing a lookup in the states
table.

To handle these conversions, skip the first line that contains the column labels, assign
each input column to a user-defined variable, and write a SET clause to perform the
calculations:

mysql> LOAD DATA LOCAL INFILE 'data.txt' INTO TABLE t
 -> IGNORE 1 LINES
 -> (@date,@time,@name,@weight_lb,@state)
 -> SET dt = CONCAT(@date,' ',@time),
 -> first_name = SUBSTRING_INDEX(@name,' ',1),
 -> last_name = SUBSTRING_INDEX(@name,' ',-1),
 -> weight_kg = @weight_lb * .454,
 -> st_abbrev = (SELECT abbrev FROM states WHERE name = @state);

After the import operation, the table contains these rows:
mysql> SELECT * FROM t;
+---------------------+-----------+------------+-----------+-----------+
| dt | last_name | first_name | weight_kg | st_abbrev |
+---------------------+-----------+------------+-----------+-----------+
2006-09-01 12:00:00	Wills	Bill	90.8	NV
2006-09-02 09:00:00	Deft	Jeff	68.1	OK
2006-09-04 03:00:00	Hobbs	Bob	102.15	UT
2006-09-07 08:00:00	Banks	Hank	79.45	TX
+---------------------+-----------+------------+-----------+-----------+

LOAD DATA can perform data value reformatting, as just shown. Other examples showing
uses for this capability occur elsewhere. (For example, Recipe 11.4 uses it to map NULL
values, and Recipe 12.13 rewrites non-ISO dates to ISO format during data import.)
However, although LOAD DATA can map input values to other values, it cannot outright
reject an input record that is found to contain unsuitable values. To do that, either
preprocess the input file to remove these records or issue a DELETE statement after
loading the file.

11.1. Importing Data with LOAD DATA and mysqlimport | 381

www.it-ebooks.info

http://www.it-ebooks.info/

Ignoring datafile columns

Extra columns at the end of input lines are easy to handle. If a line contains more
columns than are in the table, LOAD DATA just ignores them (although it might produce
a nonzero warning count).

Skipping columns in the middle of lines is a bit more involved. To handle this, use a
column list with LOAD DATA that assigns the columns to be ignored to a dummy user-
defined variable. Suppose that you want to load information from a Unix password
file /etc/passwd, which contains lines in the following format:

account:password:UID:GID:GECOS:directory:shell

Suppose also that you don’t want to load the password and directory columns. A table
to hold the information in the remaining columns looks like this:

CREATE TABLE passwd
(
 account CHAR(8), # login name
 uid INT, # user ID
 gid INT, # group ID
 gecos CHAR(60), # name, phone, office, etc.
 shell CHAR(60) # command interpreter
);

To load the file, specify that the column delimiter is a colon. Also, tell LOAD DATA to skip
the second and sixth fields that contain the password and directory. To do this, add a
column list in the statement. The list should include the name of each column to load
into the table, and a dummy user-defined variable for columns to be ignored (you can
use the same variable for all of them). The resulting statement looks like this:

mysql> LOAD DATA LOCAL INFILE '/etc/passwd' INTO TABLE passwd
 -> FIELDS TERMINATED BY ':'
 -> (account,@dummy,uid,gid,gecos,@dummy,shell);

The corresponding mysqlimport command includes a --columns option:
% mysqlimport --local \
 --columns="account,@dummy,uid,gid,gecos,@dummy,shell" \
 --fields-terminated-by=":" cookbook /etc/passwd

See Also
Another approach to ignoring columns is to preprocess the input file to remove col‐
umns. Recipe 11.7 discusses a yank_col.pl utility that can extract and display datafile
columns in any order.

382 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

11.2. Importing CSV Files
Problem
You want to load a file that is in CSV format.

Solution
Use the appropriate format specifiers with LOAD DATA or mysqlimport.

Discussion
Datafiles in CSV format contain values that are delimited by commas rather than tabs
and that may be quoted with double-quote characters. A CSV file mytbl.txt containing
lines that end with carriage return/linefeed pairs can be loaded into mytbl using LOAD
DATA:

mysql> LOAD DATA LOCAL INFILE 'mytbl.txt' INTO TABLE mytbl
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

Or like this using mysqlimport:
% mysqlimport --local --lines-terminated-by="\r\n" \
 --fields-terminated-by="," --fields-enclosed-by="\"" \
 cookbook mytbl.txt

11.3. Exporting Query Results from MySQL
Problem
You want to export the result of a query from MySQL into a file or another program.

Solution
Use the SELECT … INTO OUTFILE statement, or redirect the output of the mysql program.

Discussion
The SELECT … INTO OUTFILE statement exports a query result directly into a file on the
server host. To capture the result on the client host instead, redirect the output of the
mysql program. These methods have different strengths and weaknesses; get to know
them both and apply whichever one best suits a given situation.

11.2. Importing CSV Files | 383

www.it-ebooks.info

http://www.it-ebooks.info/

Exporting using the SELECT ... INTO OUTFILE statement

The syntax for this statement combines a regular SELECT with INTO OUTFILE
file_name. The default output format is the same as for LOAD DATA, so the following
statement exports the passwd table into /tmp/passwd.txt as a tab-delimited, linefeed-
terminated file:

mysql> SELECT * FROM passwd INTO OUTFILE '/tmp/passwd.txt';

To change the output format, use options similar to those used with LOAD DATA that
indicate how to quote and delimit columns and records. For example, to export the
passwd table (created earlier in Recipe 11.1) in CSV format with CRLF-terminated lines,
use this statement:

mysql> SELECT * FROM passwd INTO OUTFILE '/tmp/passwd.txt'
 -> FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

SELECT … INTO OUTFILE has these properties:

• The output file is created directly by the MySQL server, so the filename should
indicate where to write the file on the server host. The file location is determined
using the same rules as for LOAD DATA without LOCAL, as described in Recipe 11.1.
(There is no LOCAL version of the statement analogous to the LOCAL version of LOAD
DATA.)

• You must have the MySQL FILE privilege to execute the SELECT … INTO OUTFILE
statement.

• The output file must not already exist. (This prevents MySQL from overwriting
files that may be important.)

• You should have a login account on the server host or some way to access files on
that host. SELECT … INTO OUTFILE is of no value to you if you cannot retrieve the
output file.

• Under Unix, the file is created world readable and is owned by the account used for
running the MySQL server. This means that although you can read the file, you
may not be able to delete it unless you can log in using that account.

Exporting using the mysql client program

Because SELECT … INTO OUTFILE writes the datafile on the server host, you cannot use
it unless your MySQL account has the FILE privilege. To export data into a local file
owned by yourself, use another strategy. If all you require is tab-delimited output, do a
“poor-man’s export” by executing a SELECT statement with the mysql program and re‐
directing the output to a file. That way you can write query results into a file on your
local host without the FILE privilege. Here’s an example that exports the login name and
command interpreter columns from the passwd table:

384 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

% mysql -e "SELECT account, shell FROM passwd" --skip-column-names \
 cookbook > shells.txt

The -e option specifies the statement to execute (see Recipe 1.5), and --skip-column-
names tells MySQL not to write the row of column names that normally precedes state‐
ment output (see Recipe 1.7).

Note that MySQL writes NULL values as the string “NULL”. Some postprocessing to
convert them may be needed, depending on what you want to do with the output file.

It’s possible to produce output in formats other than tab-delimited by sending the query
result into a postprocessing filter that converts tabs to something else. For example, to
use hash marks as delimiters, convert all tabs to # characters (TAB indicates where you
type a tab character in the command):

% mysql --skip-column-names -e "your statement here" db_name \
 | sed -e "s/TAB/#/g" > output_file

You can also use tr for this purpose, although the syntax varies for different implemen‐
tations of this utility. For Mac OS X or Linux, the command looks like this:

% mysql --skip-column-names -e "your statement here" db_name \
 | tr "\t" "#" > output_file

The mysql commands just shown use --skip-column-names to suppress column labels
from appearing in the output. Under some circumstances, it may be useful to include
the labels. (For example, if they will useful when importing the file later.) In that case,
omit the --skip-column-names option from the command. In this respect, exporting
query results with mysql is more flexible than SELECT … INTO OUTFILE because the latter
cannot produce output that includes column labels.

See Also
Another way to export query results to a file on the client host is to use the
mysql_to_text.pl utility described in Recipe 11.5. That program has options that enable
you to specify the output format explicitly. To export a query result as an Excel spread‐
sheet or XML document, see Recipes 11.8 and 11.9.

11.4. Importing and Exporting NULL Values
Problem
You need to represent NULL values in a datafile.

11.4. Importing and Exporting NULL Values | 385

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use a value not otherwise present, so that you can distinguish NULL from all other le‐
gitimate non-NULL values. When you import the file, convert instances of that value to
NULL.

Discussion
There’s no standard for representing NULL values in datafiles, which makes them prob‐
lematic for import and export operations. The difficulty arises from the fact that NULL
indicates the absence of a value, and that’s not easy to represent literally in a datafile.
Using an empty column value is the most obvious thing to do, but that’s ambiguous for
string-valued columns because there is no way to distinguish a NULL represented that
way from a true empty string. Empty values can be a problem for other data types as
well. For example, if you load an empty value with LOAD DATA into a numeric column,
it is stored as 0 rather than as NULL and thus becomes indistinguishable from a true 0 in
the input.

The usual solution to this problem is to represent NULL using a value not otherwise
present in the data. This is how LOAD DATA and mysqlimport handle the issue: they un‐
derstand the value of \N by convention to mean NULL. (\N is interpreted as NULL only
when it occurs by itself, not as part of a larger value such as x\N or \Nx.) For example,
if you load the following datafile with LOAD DATA, it treats the instances of \N as NULL:

str1 13 1997-10-14
str2 \N 2009-05-07
\N 15 \N
\N \N 1973-07-14

But you might want to interpret values other than \N as signifying NULL, and you might
have different conventions in different columns. Consider the following datafile:

str1 13 1997-10-14
str2 -1 2009-05-07
Unknown 15
Unknown -1 1973-07-15

The first column contains strings, and Unknown signifies NULL. The second column con‐
tains integers, and -1 signifies NULL. The third column contains dates, and an empty
value signifies NULL. What to do?

To handle situations like this, use LOAD DATA’s input preprocessing capability: specify a
column list that assigns input values to user-defined variables and use a SET clause that
maps the special values to true NULL values. If the datafile is named has_nulls.txt, the
following LOAD DATA statement properly interprets its contents:

mysql> LOAD DATA LOCAL INFILE 'has_nulls.txt'
 -> INTO TABLE t (@c1,@c2,@c3)
 -> SET c1 = IF(@c1='Unknown',NULL,@c1),

386 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

 -> c2 = IF(@c2=-1,NULL,@c2),
 -> c3 = IF(@c3='',NULL,@c3);

The resulting data after import looks like this:
+------+------+------------+
| c1 | c2 | c3 |
+------+------+------------+
str1	13	1997-10-14
str2	NULL	2009-05-07
NULL	15	NULL
NULL	NULL	1973-07-15
+------+------+------------+

The preceding discussion pertains to interpreting NULL values for import into MySQL,
but it’s also necessary to think about NULL values when transferring data in the other
direction—from MySQL into other programs. Here are some examples:

• SELECT … INTO OUTFILE writes NULL values as \N. Will another program understand
that convention? If not, convert \N to something the program understands. For
example, the SELECT statement can export the column using an expression like this:

IFNULL(col_name,'Unknown')

• You can use mysql in batch mode as an easy way to produce tab-delimited output
(see Recipe 11.3), but then NULL values appear in the output as instances of the word
“NULL”. If that word occurs nowhere else in the output, you may be able to post‐
process it to convert instances of it to something more appropriate. For example,
you can use a one-line sed command:

% sed -e "s/NULL/\\N/g" data.txt > tmp

If the word “NULL” appears where it represents something other than a NULL value,
it’s ambiguous and you should probably export your data differently. For example,
use IFNULL() to map NULL values to something else.

11.5. Writing Your Own Data Export Programs
Problem
MySQL’s built-in export capabilities don’t suffice.

Solution
Write your own utilities.

11.5. Writing Your Own Data Export Programs | 387

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
When existing export software doesn’t do what you want, write your own programs.
This section describes a Perl script, mysql_to_text.pl, that executes an arbitrary state‐
ment and exports it in the format you specify. It writes output to the client host and can
include a row of column labels (two things that SELECT … INTO OUTFILE cannot do). It
produces multiple output formats more easily than by using mysql with a postprocessor,
and it writes to the client host, unlike mysqldump, which can write only SQL-format
output to the client. You can find mysql_to_text.pl in the transfer directory of the rec
ipes distribution.

mysql_to_text.pl is based on the Text::CSV_XS module, which you must install on your
system if it hasn’t been already. To read its documentation, use this command:

% perldoc Text::CSV_XS

This module is convenient because it makes conversion of query output to CSV format
relatively trivial. Your script need only provide an array of values, and the module pack‐
ages them into a properly formatted output line. This makes it relatively trivial to convert
query output to CSV format. But the real benefit of Text::CSV_XS is that it’s configu‐
rable; you can tell it what delimiter and quote characters to use. This means that although
the module produces CSV format by default, you can configure it to write a variety of
output formats. For example, if you set the delimiter to tab and the quote character to
undef, Text::CSV_XS generates tab-delimited output. We’ll take advantage of that flex‐
ibility in this section for writing mysql_to_text.pl, and in Recipe 11.6 to write
cvt_file.pl, a utility that converts files from one format to another.

mysql_to_text.pl accepts several command-line options. Some are used for specifying
MySQL connection parameters (such as --user, --password, and --host). You’re al‐
ready familiar with these because they’re used by the standard MySQL clients like
mysql. The script also can obtain connection parameters from an option file, if you
specify a [client] group in the file. In addition, mysql_to_text.pl accepts the following
options:
--execute=query, -e query

Execute query and export its output.

--table=tbl_name, -t tbl_name
Export the contents of the named table. This is equivalent to using --execute to
specify a query value of SELECT * FROM tbl_name.

--labels

Include an initial row of column labels in the output

--delim=str

Set the column delimiter to str. The option value can consist of one or more char‐
acters. The default is to use tabs.

388 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

--quote=c

Set the column value quote character to c. The default is to not quote anything.

--eol=str

Set the end-of-line sequence to str. The option value can consist of one or more
characters. The default is to use linefeeds.

The defaults for the --delim, --quote, and --eol options correspond to those used by
LOAD DATA and SELECT … INTO OUTFILE.

The final argument on the command line should be the database name, unless it’s im‐
plicit in the statement. For example, these two commands are equivalent; each exports
the passwd table from the cookbook database in colon-delimited format:

% mysql_to_text.pl --delim=":" --table=passwd cookbook
% mysql_to_text.pl --delim=":" --table=cookbook.passwd

To generate CSV output with CRLF line terminators instead, use a command like this:
% mysql_to_text.pl --delim="," --quote="\"" --eol="\r\n" \
 --table=cookbook.passwd

That’s a general description of how you use mysql_to_text.pl. Now let’s discuss how it
works. The initial part of the mysql_to_text.pl script declares a few variables, then pro‐
cesses the command-line arguments. As it happens, most of the code in the script is
devoted to processing the command-line arguments and preparing to run the query.
Very little of it involves interaction with MySQL:

#!/usr/bin/perl
mysql_to_text.pl: Export MySQL query output in user-specified text format.

Usage: mysql_to_text.pl [options] [db_name] > text_file

use strict;
use warnings;
use DBI;
use Text::CSV_XS;
use Getopt::Long;
$Getopt::Long::ignorecase = 0; # options are case sensitive
$Getopt::Long::bundling = 1; # permit short options to be bundled

... construct usage message variable $usage (not shown) ...

Variables for command line options - all undefined initially
except for options that control output structure, which is set
to be tab-delimited, linefeed-terminated.
my $help;
my ($host_name, $password, $port_num, $socket_name, $user_name, $db_name);
my ($stmt, $tbl_name);
my $labels;
my $delim = "\t";
my $quote;

11.5. Writing Your Own Data Export Programs | 389

www.it-ebooks.info

http://www.it-ebooks.info/

my $eol = "\n";

GetOptions (
 # =i means an integer value is required after the option
 # =s means a string value is required after the option
 "help" => \$help, # print help message
 "host|h=s" => \$host_name, # server host
 "password|p=s" => \$password, # password
 "port|P=i" => \$port_num, # port number
 "socket|S=s" => \$socket_name, # socket name
 "user|u=s" => \$user_name, # username
 "execute|e=s" => \$stmt, # statement to execute
 "table|t=s" => \$tbl_name, # table to export
 "labels|l" => \$labels, # generate row of column labels
 "delim=s" => \$delim, # column delimiter
 "quote=s" => \$quote, # column quoting character
 "eol=s" => \$eol # end-of-line (record) delimiter
) or die "$usage\n";

die "$usage\n" if defined ($help);

$db_name = shift (@ARGV) if @ARGV;

One of --execute or --table must be specified, but not both
die "You must specify a query or a table name\n\n$usage\n"
 unless defined ($stmt) || defined ($tbl_name);
die "You cannot specify both a query and a table name\n\n$usage\n"
 if defined ($stmt) && defined ($tbl_name);

interpret special chars in the file structure options
$quote = interpret_option ($quote);
$delim = interpret_option ($delim);
$eol = interpret_option ($eol);

The interpret_option() function (not shown) processes escape and hex sequences
for the --delim, --quote, and --eol options. It interprets \n, \r, \t, and \0 as linefeed,
carriage return, tab, and the ASCII NUL character. It also interprets hex values, which
can be given in 0xnn form (for example, 0x0d indicates a carriage return).

After processing the command-line options, mysql_to_text.pl constructs the data source
name (DSN) and connects to the MySQL server:

my $dsn = "DBI:mysql:";
$dsn .= ";database=$db_name" if $db_name;
$dsn .= ";host=$host_name" if $host_name;
$dsn .= ";port=$port_num" if $port_num;
$dsn .= ";mysql_socket=$socket_name" if $socket_name;
read [client] group parameters from standard option files
$dsn .= ";mysql_read_default_group=client";

my $conn_attrs = {PrintError => 0, RaiseError => 1, AutoCommit => 1};
my $dbh = DBI->connect ($dsn, $user_name, $password, $conn_attrs);

390 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

The database name comes from the command line. Connection parameters can come
from the command line or an option file. (Recipe 2.8 covers these option-processing
techniques.)

After establishing a connection to MySQL, the script is ready to execute the query and
produce output. This is where the Text::CSV_XS module comes into play. First, create
a CSV object by calling new(), which takes an optional hash of options that control how
the object handles data lines. The script prepares and executes the query, prints a row
of column labels (if the --labels option was specified), and writes the rows of the result
set:

my $csv = Text::CSV_XS->new ({
 sep_char => $delim,
 quote_char => $quote,
 escape_char => $quote,
 eol => $eol,
 binary => 1
});

If table name was given, use it to create query that selects entire table.
Split on dots in case it's a qualified name, to quote parts separately.
$stmt = "SELECT * FROM " . $dbh->quote_identifier (split (/\./, $tbl_name))
 if defined ($tbl_name);

warn "$stmt\n";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
if ($labels) # write row of column labels
{
 $csv->combine (@{$sth->{NAME}}) or die "cannot process column labels\n";
 print $csv->string ();
}

my $count = 0;
while (my @val = $sth->fetchrow_array ())
{
 ++$count;
 $csv->combine (@val) or die "cannot process column values, row $count\n";
 print $csv->string ();
}

The sep_char and quote_char options in the new() call set the column delimiter and
quoting character. The escape_char option is set to the same value as quote_char so
that instances of the quote character occurring within data values are doubled in the
output. The eol option indicates the line-termination sequence. Normally,
Text::CSV_XS leaves it to you to print the terminator for output lines. By passing a non-
undef eol value to new(), the module adds that value to every output line automatically.
The binary option is useful for processing data values that contain binary characters.

11.5. Writing Your Own Data Export Programs | 391

www.it-ebooks.info

http://www.it-ebooks.info/

After invoking execute(), the column labels are available in $sth->{NAME} (see
Recipe 10.2). To produce each line of output, use combine() and string(). The com
bine() method takes an array of values and converts them to a properly formatted
string. string() returns the string so we can print it.

11.6. Converting Datafiles from One Format to Another
Problem
You want to convert a file to a different format to make it easier to work with, or so that
another program can understand it.

Solution
Use the cvt_file.pl conversion script described here.

Discussion
The mysql_to_text.pl script discussed in Recipe 11.5 uses MySQL as a data source and
produces output in the format you specify via the --delim, --quote, and --eol options.
This section describes cvt_file.pl, a utility that provides similar formatting options, but
for both input and output. It reads data from a file rather than from MySQL, and converts
it from one format to another. This enables the script to serve as a bridge between
operations that use different formats. For example, invoke cvt_file.pl as follows to read
a tab-delimited file data.txt, convert it to colon-delimited format, and write the result
to tmp.txt:

% cvt_file.pl --idelim="\t" --odelim=":" data.txt > tmp.txt

The cvt_file.pl script has separate options for input and output. Thus, whereas
mysql_to_text.pl has just a --delim option for specifying the column delimiter,
cvt_file.pl has separate --idelim and --odelim options to set the input and output line
column delimiters. But as a shortcut, --delim is also supported to set the delimiter for
both input and output. The full set of options that cvt_file.pl understands is as follows:
--idelim=str, --odelim=str, --delim=str

Set the column delimiter for input, output, or both. The option value can consist
of one or more characters.

--iquote=c, --oquote=c, --quote=c
Set the column quote character for input, output, or both.

--ieol=str, --oeol=str, --eol=str
Set the end-of-line sequence for input, output, or both. The option value can consist
of one or more characters.

392 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

--iformat=format, --oformat=format, --format=format
Specify an input format, an output format, or both. This option is shorthand for
setting the quote and delimiter values. --iformat=csv sets the input quote and
delimiter characters to double quote and comma. --iformat=tab sets them to “no
quotes” and tab.

--ilabels, --olabels, --labels
Expect an initial line of column labels for input, write an initial line of labels for
output, or both. If you request labels for the output but do not read labels from the
input, cvt_file.pl uses column labels of c1, c2, and so forth.

cvt_file.pl assumes the same default file format as LOAD DATA and SELECT INTO … OUT
FILE, that is, tab-delimited lines terminated by linefeeds.

cvt_file.pl is located in the transfer directory of the recipes distribution. If you expect
to use it regularly, install it in some directory that’s listed in your search path so that you
can invoke it from anywhere. Much of the source for the script is similar to
mysql_to_text.pl, so rather than showing the code and discussing how it works, I’ll just
give some examples that illustrate how to use it:

• Read a file in CSV format with CRLF line termination, and write tab-delimited
output with linefeed termination:

% cvt_file.pl --iformat=csv --ieol="\r\n" --oformat=tab --oeol="\n" \
 data.txt > tmp.txt

• Read and write CSV format, converting CRLF line terminators to carriage returns:
% cvt_file.pl --format=csv --ieol="\r\n" --oeol="\r" data.txt > tmp.txt

• Produce a tab-delimited file from the colon-delimited /etc/passwd file:
% cvt_file.pl --idelim=":" /etc/passwd > tmp.txt

• Convert tab-delimited query output from mysql into CSV format:
% mysql -e "SELECT * FROM profile" cookbook \
 | cvt_file.pl --oformat=csv > profile.csv

11.7. Extracting and Rearranging Datafile Columns
Problem
You want to pull out only some columns from a datafile or rearrange them into a different
order.

Solution
Use a utility that can produce columns from a file on demand.

11.7. Extracting and Rearranging Datafile Columns | 393

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
cvt_file.pl (see Recipe 11.6) serves as a tool that converts entire files from one format to
another. Another common datafile operation is to manipulate columns. This is neces‐
sary, for example, when importing a file into a program that doesn’t understand how to
extract or rearrange input columns for itself. To work around this problem, rearrange
the datafile instead.

Recall that this chapter began with a description of a scenario involving a 12-column
CSV file somedata.csv from which only columns 2, 11, 5, and 9 were needed. To convert
the file to tab-delimited format, do this:

% cvt_file.pl --iformat=csv somedata.csv > somedata.txt

But then what? If you just want to knock out a short script to extract those specific four
columns, that’s fairly easy: write a loop that reads input lines and writes only the desired
columns, in the proper order. But that would be a special-purpose script, useful only
within a highly limited context. With just a little more effort, it’s possible to write a more
general utility yank_col.pl that enables you to extract any set of columns. With such a
tool, you specify the column list on the command line like this:

% yank_col.pl --columns=2,11,5,9 somedata.txt > tmp.txt

Because the script doesn’t use a hardcoded column list, it can be used to extract an
arbitrary set of columns in any order. Columns can be specified as a comma-separated
list of column numbers or column ranges. (For example, --columns=1,10,4-7 means
columns 1, 10, 4, 5, 6, and 7.) yank_col.pl looks like this:

#!/usr/bin/perl
yank_col.pl: Extract columns from input.

Example: yank_col.pl --columns=2,11,5,9 filename

Assumes tab-delimited, linefeed-terminated input lines.

... process command-line options (not shown) ...
... to get column list into @col_list array ...

while (<>) # read input
{
 chomp;
 my @val = split (/\t/, $_, 10000); # split, preserving all fields
 # extract desired columns, mapping undef to empty string (can
 # occur if an index exceeds number of columns present in line)
 @val = map { defined ($_) ? $_ : "" } @val[@col_list];
 print join ("\t", @val) . "\n";
}

The input processing loop converts each line to an array of values, then pulls out from
the array the values corresponding to the requested columns. To avoid looping through

394 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

the array, it uses Perl’s notation that permits a list of subscripts to be specified all at once
to request multiple array elements. For example, if @col_list contains the values 2, 6,
and 3, these two expressions are equivalent:

($val[2] , $val[6], $val[3])
@val[@col_list]

What if you want to extract columns from a file that’s not in tab-delimited format, or
produce output in another format? In that case, combine yank_col.pl with the cvt_file.pl
script. Suppose that you want to pull out all but the password column from the colon-
delimited /etc/passwd file and write the result in CSV format. Use cvt_file.pl both to
preprocess /etc/passwd into tab-delimited format for yank_col.pl and to postprocess the
extracted columns into CSV format:

% cvt_file.pl --idelim=":" /etc/passwd \
 | yank_col.pl --columns=1,3-7 \
 | cvt_file.pl --oformat=csv > passwd.csv

To avoid typing all of that as one long command, use temporary files for the intermediate
steps:

% cvt_file.pl --idelim=":" /etc/passwd > tmp1.txt
% yank_col.pl --columns=1,3-7 tmp1.txt > tmp2.txt
% cvt_file.pl --oformat=csv tmp2.txt > passwd.csv
% rm tmp1.txt tmp2.txt

Forcing split() to Return Every Field
The Perl split() function is extremely useful, but normally omits trailing empty fields.
This means that if you write only as many fields as split() returns, output lines may
not have the same number of fields as input lines. To avoid this problem, pass a third
argument to indicate the maximum number of fields to return. This forces split() to
return as many fields as are actually present on the line or the number requested,
whichever is smaller. If the value of the third argument is large enough, the practical
effect is to cause all fields to be returned, empty or not. Scripts shown in this chapter
use a field count value of 10,000:

split line at tabs, preserving all fields
my @val = split (/\t/, $_, 10000);

In the (unlikely?) event that an input line has more fields than that, it is truncated. If
you think that will be a problem, bump up the number even higher.

11.7. Extracting and Rearranging Datafile Columns | 395

www.it-ebooks.info

http://www.it-ebooks.info/

11.8. Exchanging Data Between MySQL and Microsoft
Excel
Problem
You want to exchange information between MySQL and Excel.

Solution
Your programming language might provide library routines to make this task easier.
For example, you can use Perl modules that read and write Excel spreadsheet files to
construct data transfer utilities.

Discussion
If you need to transfer Excel files into MySQL, check around for modules that let you
do this from your chosen programming language. For example, the following modules
enable reading and writing Excel spreadsheets in Perl scripts:

• Spreadsheet::ParseExcel::Simple provides an easy-to-use interface for reading Excel
spreadsheets. (Because Microsoft occasionally revises spreadsheet formats, you
might need to save a spreadsheet in an older format so that this module can read
it.)

• Excel::Writer::XLSX enables you to create files in Excel spreadsheet format.

These Excel modules are available from the Perl CPAN. (They’re actually frontends to
other modules, which you must also install as prerequisites.) After installing the mod‐
ules, use these commands to read their documentation:

% perldoc Spreadsheet::ParseExcel::Simple
% perldoc Excel::Writer::XLSX

These modules make it relatively easy to write short scripts for converting spreadsheets
to and from tab-delimited file format. Combined with techniques for importing and
exporting data to and from MySQL, these scripts can help you move spreadsheet con‐
tents to MySQL tables and vice versa. Use them as is, or adapt them to suit your own
purposes.

The following script, from_excel.pl, reads an Excel spreadsheet and converts it to tab-
delimited format:

#!/usr/bin/perl
from_excel.pl: Read Excel spreadsheet, write tab-delimited,
linefeed-terminated output to the standard output.

use strict;

396 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

use warnings;
use Spreadsheet::ParseExcel::Simple;

@ARGV or die "Usage: $0 excel-file\n";

my $xls = Spreadsheet::ParseExcel::Simple->read ($ARGV[0]);
foreach my $sheet ($xls->sheets ())
{
 while ($sheet->has_data ())
 {
 my @data = $sheet->next_row ();
 print join ("\t", @data) . "\n";
 }
}

The to_excel.pl script performs the converse operation of reading a tab-delimited file
and writing it in Excel format:

#!/usr/bin/perl
to_excel.pl: Read tab-delimited, linefeed-terminated input, write
Excel-format output to the standard output.

use strict;
use warnings;
use Excel::Writer::XLSX;

binmode (STDOUT);
my $ss = Excel::Writer::XLSX->new (*STDOUT);
my $ws = $ss->add_worksheet ();
my $row = 0;

while (<>) # read each row of input
{
 chomp;
 my @data = split (/\t/, $_, 10000); # split, preserving all fields
 my $col = 0;
 foreach my $val (@data) # write row to the worksheet
 {
 $ws->write ($row, $col, $val);
 $col++;
 }
 $row++;
}

to_excel.pl assumes input in tab-delimited, linefeed-terminated format. Use it in con‐
junction with cvt_file.pl (see Recipe 11.6) to work with files not in that format.

Another Excel-related Perl module, Spreadsheet::WriteExcel::FromDB, reads data from
a table using a DBI connection and writes it in Excel format. Here’s a script that exports
a MySQL table as an Excel spreadsheet:

#!/usr/bin/perl
mysql_to_excel.pl: Given a database and table name,

11.8. Exchanging Data Between MySQL and Microsoft Excel | 397

www.it-ebooks.info

http://www.it-ebooks.info/

dump the table to the standard output in Excel format.

use strict;
use warnings;
use DBI;
use Spreadsheet::ParseExcel::Simple;
use Spreadsheet::WriteExcel::FromDB;

... process command-line options (not shown) ...
... to get $db_name, $tbl_name ...
... connect to database (not shown) ...

my $ss = Spreadsheet::WriteExcel::FromDB->read ($dbh, $tbl_name);
binmode (STDOUT);
print $ss->as_xls ();

Each utility writes to its standard output, which you can redirect to capture the results
in a file:

% from_excel.pl data.xls > data.txt
% to_excel.pl data.txt > data.xlsx
% mysql_to_excel.pl cookbook profile > profile.xls

Note that from_excel.pl and mysql_to_excel.pl read and write .xls files, whereas to_ex‐
cel.pl writes .xlsx files.

See Also
On Windows, MySQL for Excel is an add-in that enables access to MySQL databases
directly from Excel. For information, visit the “Download MySQL for Excel” page on
the MySQL website.

11.9. Exporting Query Results as XML
Problem
You want to export the result of a query as an XML document.

Solution
mysql can do that, or you can write your own exporter.

Discussion
The mysql client can produce XML-format output from a query result (see Recipe 1.7).
You can also write your own XML-export programs. One way to do this is to execute a
query and then write the result, adding the XML markup yourself. Another is to install
a few Perl modules and let them do the work:

398 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://bit.ly/dl-excel
http://www.it-ebooks.info/

• XML::Generator::DBI executes a query over a DBI connection and passes the result
to a suitable output writer.

• XML::Handler::YAWriter provides one such writer.

The following script, mysql_to_xml.pl, is somewhat similar to mysql_to_text.pl (see
Recipe 11.5), but doesn’t take options for such things as the quote or delimiter characters.
They are unneeded for writing XML because the XML writer module handles those
issues. mysql_to_xml.pl understands these options:
--execute=query, -e query

Execute query and export its output.

--table=tbl_name, -t tbl_name
Export the contents of the named table. This is equivalent to using --execute to
specify a query value of SELECT * FROM tbl_name.

If necessary, you can also specify standard connection parameter options such as --
user or --host. The final argument on the command line should be the database name,
unless it’s implicit in the query.

Suppose that a table named expt contains test scores from an experiment:
mysql> SELECT * FROM expt;
+---------+------+-------+
| subject | test | score |
+---------+------+-------+
Jane	A	47
Jane	B	50
Jane	C	NULL
Jane	D	NULL
Marvin	A	52
Marvin	B	45
Marvin	C	53
Marvin	D	NULL
+---------+------+-------+

To export the contents of expt, invoke mysql_to_xml.pl using either of the following
commands:

% mysql_to_xml.pl --execute="SELECT * FROM expt" cookbook > expt.xml
% mysql_to_xml.pl --table=cookbook.expt > expt.xml

The resulting XML document, expt.xml, looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<rowset>
 <select query="SELECT * FROM expt">
 <row>
 <subject>Jane</subject>
 <test>A</test>
 <score>47</score>

11.9. Exporting Query Results as XML | 399

www.it-ebooks.info

http://www.it-ebooks.info/

 </row>
 <row>
 <subject>Jane</subject>
 <test>B</test>
 <score>50</score>
 </row>
…
 <row>
 <subject>Marvin</subject>
 <test>C</test>
 <score>53</score>
 </row>
 <row>
 <subject>Marvin</subject>
 <test>D</test>
 </row>
 </select>
</rowset>

Each table row is written as a <row> element. Within a row, column names and values
are used as element names and values, one element per column. Note that NULL values
are omitted from the output.

The script produces this output with very little code after it processes the command-
line arguments and connects to the MySQL server. The XML-related parts of
mysql_to_xml.pl are the use statements that pull in the necessary modules and the code
to set up and use the XML objects. Given a database handle $dbh and a query string
$query, the code instructs the writer object to send its results to the standard output,
then connects that object to DBI and issues the query:

#!/usr/bin/perl
mysql_to_xml.pl: Given a database and table name,
dump the table to the standard output in XML format.

use strict;
use warnings;
use DBI;
use XML::Generator::DBI;
use XML::Handler::YAWriter;

... process command-line options (not shown) ...
... connect to database (not shown) ...

Create output writer; "-" means "standard output"
my $out = XML::Handler::YAWriter->new (AsFile => "-");
Set up connection between DBI and output writer
my $gen = XML::Generator::DBI->new (
 dbh => $dbh, # database handle
 Handler => $out, # output writer
 RootElement => "rowset" # document root element
);

400 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

If table name was given, use it to create query that selects entire table.
Split on dots in case it's a qualified name, to quote parts separately.
$stmt = "SELECT * FROM " . $dbh->quote_identifier (split (/\./, $tbl_name))
 if defined ($tbl_name);

Issue query and write XML
$gen->execute ($stmt);

$dbh->disconnect ();

Other languages might have library modules to perform similar XML export operations.
For example, the Ruby DBI::Utils::XMLFormatter module has a table method that
exports a query result as XML. Here’s a simple script that uses it:

#!/usr/bin/ruby -w
xmlformatter.rb: Demonstrate DBI::Utils::XMLFormatter.table method.

require "Cookbook"

stmt = "SELECT * FROM expt"
override statement with command line argument if one was given
stmt = ARGV[0] if ARGV.length > 0

dbh = Cookbook.connect
DBI::Utils::XMLFormatter.table(dbh.select_all(stmt))
dbh.disconnect

11.10. Importing XML into MySQL
Problem
You want to import an XML document into a MySQL table.

Solution
Set up an XML parser to read the document, then use the document records to construct
and execute INSERT statements.

Discussion
Importing an XML document depends on being able to parse the document and extract
record contents from it. How you do that depends on how the document is written. For
example, one format might represent column names and values as attributes of <col
umn> elements:

<?xml version="1.0" encoding="UTF-8"?>
<rowset>
 <row>

11.10. Importing XML into MySQL | 401

www.it-ebooks.info

http://www.it-ebooks.info/

 <column name="subject" value="Jane" />
 <column name="test" value="A" />
 <column name="score" value="47" />
 </row>
 <row>
 <column name="subject" value="Jane" />
 <column name="test" value="B />
 <column name="score" value="50" />
 </row>
…
</rowset>

Another format uses column names as element names and column values as the contents
of those elements:

<?xml version="1.0" encoding="UTF-8"?>
<rowset>
 <row>
 <subject>Jane</subject>
 <test>A</test>
 <score>47</score>
 </row>
 <row>
 <subject>Jane</subject>
 <test>B</test>
 <score>50</score>
 </row>
…
</rowset>

Due to the various structuring possibilities, it’s necessary to make some assumptions
about the format you expect the XML document to have. For the example here, I assume
the second format just shown. One way to process this kind of document is to use the
XML::XPath module, which enables you to refer to elements within the document using
path expressions. For example, the path //row selects all the <row> elements under the
document root, and the path * selects all child elements of a given element. You can use
these paths with XML::XPath to obtain first a list of all the <row> elements, and then for
each row a list of all its columns.

The following script, xml_to_mysql.pl, takes three arguments:
% xml_to_mysql.pl db_name tbl_name xml_file

The filename argument indicates which document to import, and the database and table
name arguments indicate the table into which to import it. xml_to_mysql.pl processes
the command-line arguments, connects to MySQL, and processes the document:

#!/usr/bin/perl
xml_to_mysql.pl: Read XML file into MySQL.

use strict;
use warnings;

402 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

use DBI;
use XML::XPath;

... process command-line options (not shown) ...
... connect to database (not shown) ...

Open file for reading
my $xp = XML::XPath->new (filename => $file_name);
my $row_list = $xp->find ("//row"); # find set of <row> elements
print "Number of records: " . $row_list->size () . "\n";
foreach my $row ($row_list->get_nodelist ()) # loop through rows
{
 my @name; # array for column names
 my @val; # array for column values
 my $col_list = $row->find ("*"); # child columns of row
 foreach my $col ($col_list->get_nodelist ()) # loop through columns
 {
 push (@name, $col->getName ()); # save column name
 push (@val, $col->string_value ()); # save column value
 }
 # construct INSERT statement, then execute it
 my $stmt = "INSERT INTO $tbl_name ("
 . join (",", @name)
 . ") VALUES ("
 . join (",", ("?") x scalar (@val))
 . ")";
 $dbh->do ($stmt, undef, @val);
}

$dbh->disconnect ();

The script creates an XML::XPath object, which opens and parses the document. This
object is queried for the set of <row> elements, using the path //row. The size of this set
indicates how many rows the document contains.

To process each row, the script uses the path * to ask for all the child elements of the
row object. Each child corresponds to a column within the row; using * as the path for
get_nodelist() this way is convenient because you need not know in advance which
columns to expect. xml_to_mysql.pl obtains the name and value from each column and
saves them in the @name and @value arrays. After all the columns have been extracted,
the arrays are used to construct an INSERT statement that names those columns that
were found to be present in the row and that includes a placeholder for each data value.
(Recipe 2.5 discusses placeholder list construction.) Then the script executes the state‐
ment, passing the column values to do() to bind them to the placeholders.

In Recipe 11.9, we used mysql_to_xml.pl to export the contents of the expt table as an
XML document. xml_to_mysql.pl performs the converse operation of importing the
document back into MySQL:

% xml_to_mysql.pl cookbook expt expt.xml

11.10. Importing XML into MySQL | 403

www.it-ebooks.info

http://www.it-ebooks.info/

As it processes the document, the script generates and executes the following set of
statements:

INSERT INTO expt (subject,test,score) VALUES ('Jane','A','47')
INSERT INTO expt (subject,test,score) VALUES ('Jane','B','50')
INSERT INTO expt (subject,test) VALUES ('Jane','C')
INSERT INTO expt (subject,test) VALUES ('Jane','D')
INSERT INTO expt (subject,test,score) VALUES ('Marvin','A','52')
INSERT INTO expt (subject,test,score) VALUES ('Marvin','B','45')
INSERT INTO expt (subject,test,score) VALUES ('Marvin','C','53')
INSERT INTO expt (subject,test) VALUES ('Marvin','D')

Note that these statements do not all insert the same number of columns. MySQL will
set the missing columns to their default values.

11.11. Guessing Table Structure from a Datafile
Problem
Someone gives you a datafile and says, “Here, put this into MySQL for me.” But no table
yet exists to hold the data.

Solution
Use a utility that guesses the table structure by examining the datafile contents.

Discussion
Sometimes you must import data into MySQL for which no table has yet been set up.
You can create the table yourself, based on any knowledge you have about the contents
of the file. Or you might be able to avoid some of the work by using guess_table.pl, a
utility located in the transfer directory of the recipes distribution. guess_table.pl reads
the datafile to see what kind of information it contains, then attempts to produce an
appropriate CREATE TABLE statement that matches the contents of the file. This script is
necessarily imperfect because column contents sometimes are ambiguous. (For exam‐
ple, a column containing a small number of distinct strings might be a VARCHAR column
or an ENUM.) Still, it may be easier to tweak the CREATE TABLE statement that guess_table.pl
produces than to write the statement from scratch. This utility also has diagnostic value,
although that’s not its primary purpose. For example, if you believe a column contains
only numbers, but guess_table.pl indicates that it should be a VARCHAR column, that tells
you the column contains at least one nonnumeric value.

guess_table.pl assumes that its input is in tab-delimited, linefeed-terminated format. It
also assumes valid input because any attempt to guess data types based on possibly
flawed data is doomed to failure. This means, for example, that if a date column is to be
recognized as such, it should be in ISO format. Otherwise, guess_table.pl may charac‐

404 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

terize it as a VARCHAR column. If a datafile doesn’t satisfy these assumptions, you may be
able to reformat it first using the cvt_file.pl and cvt_date.pl utilities described in Recipes
11.6 and 12.12.

guess_table.pl understands the following options:
--labels

Interpret the first input line as a row of column labels and use them for table column
names. Without this option, guess_table.pl uses default column names of c1, c2,
and so forth.

If the file contains a row of labels and you omit this option, guess_table.pl treats the
labels as data values. The likely result is that the script will characterize all columns
as VARCHAR columns (even those that otherwise contain only numeric or temporal
values), due to the presence of a nonnumeric or nontemporal value in the column.

--lower, --upper
Force column names in the CREATE TABLE statement to be lowercase or uppercase.

--quote-names, --skip-quote-names
Quote or do not quote table and column identifiers in the CREATE TABLE statement
with ` characters (for example, `mytbl`). This can be useful if an identifier is a
reserved word. The default is to quote identifiers.

--report

Generate a report rather than a CREATE TABLE statement. The script displays the
information that it gathers about each column.

--table=tbl_name

Specify the table name to use in the CREATE TABLE statement. The default name is t.

Here’s an example of how guess_table.pl works. Suppose that a file named commodi
ties.csv is in CSV format and has the following contents:

commodity,trade_date,shares,price,change
sugar,12-14-2014,1000000,10.50,-.125
oil,12-14-2014,96000,60.25,.25
wheat,12-14-2014,2500000,8.75,0
gold,12-14-2014,13000,103.25,2.25
sugar,12-15-2014,970000,10.60,.1
oil,12-15-2014,105000,60.5,.25
wheat,12-15-2014,2370000,8.65,-.1
gold,12-15-2014,11000,101,-2.25

The first row indicates the column labels, and the following rows contain data records,
one per line. The values in the trade_date column are dates, but they are in MM-DD-
CCYY format rather than the ISO format that MySQL expects. cvt_date.pl can convert
these dates to ISO format. However, both cvt_date.pl and guess_table.pl require input

11.11. Guessing Table Structure from a Datafile | 405

www.it-ebooks.info

http://www.it-ebooks.info/

in tab-delimited, linefeed-terminated format, so first use cvt_file.pl to convert the input
to tab-delimited, linefeed-terminated format, and cvt_date.pl to convert the dates:

% cvt_file.pl --iformat=csv commodities.csv > tmp1.txt
% cvt_date.pl --iformat=us tmp1.txt > tmp2.txt

Feed the resulting file, tmp2.txt, to guess_table.pl:
% guess_table.pl --labels --table=commodities tmp2.txt > commodities.sql

The CREATE TABLE statement that guess_table.pl writes to commodities.sql looks like this:

CREATE TABLE `commodities`
(
 `commodity` VARCHAR(5) NOT NULL,
 `trade_date` DATE NOT NULL,
 `shares` BIGINT UNSIGNED NOT NULL,
 `price` DOUBLE UNSIGNED NOT NULL,
 `change` DOUBLE NOT NULL
);

guess_table.pl produces that statement based on heuristics such as these:

• A column that contains only numeric values is assumed to be a BIGINT if no values
contain a decimal point, and DOUBLE otherwise.

• A numeric column that contains no negative values is likely to be UNSIGNED.
• If a column contains no empty values, guess_table.pl assumes that it’s probably NOT
NULL.

• Columns that cannot be classified as numbers or dates are taken to be VARCHAR
columns, with a length equal to the longest value present in the column.

You might want to edit the CREATE TABLE statement that guess_table.pl produces, to make
modifications such as using smaller integer types, increasing the size of character fields,
changing VARCHAR to CHAR, adding indexes, or changing a column name that is a reserved
word in MySQL.

To create the table, use the statement produced by guess_table.pl:
% mysql cookbook < commodities.sql

Then load the datafile into the table (skipping the initial row of labels):
mysql> LOAD DATA LOCAL INFILE 'tmp2.txt' INTO TABLE commodities
 -> IGNORE 1 LINES;

The resulting table contents after import look like this:
mysql> SELECT * FROM commodities;
+-----------+------------+---------+--------+--------+
| commodity | trade_date | shares | price | change |
+-----------+------------+---------+--------+--------+
| sugar | 2014-12-14 | 1000000 | 10.5 | -0.125 |

406 | Chapter 11: Importing and Exporting Data

www.it-ebooks.info

http://www.it-ebooks.info/

oil	2014-12-14	96000	60.25	0.25
wheat	2014-12-14	2500000	8.75	0
gold	2014-12-14	13000	103.25	2.25
sugar	2014-12-15	970000	10.6	0.1
oil	2014-12-15	105000	60.5	0.25
wheat	2014-12-15	2370000	8.65	-0.1
gold	2014-12-15	11000	101	-2.25
+-----------+------------+---------+--------+--------+

11.11. Guessing Table Structure from a Datafile | 407

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Validating and Reformatting Data

12.0. Introduction
The previous chapter, Chapter 11, focuses on methods for moving data into and out of
MySQL. The present chapter is related in that it also covers data transfer issues, but here
the emphasis is on issues of datafile content rather than structure. For example, if you
don’t know whether the values contained in a file are legal, preprocess it to check or
reformat them. Numeric values may need verification as lying within a specific range,
dates may need conversion to or from ISO format, and so forth.

The chapter deals with formatting and validation issues primarily within the context of
checking entire files, but many of the techniques discussed here can be applied in other
situations as well. Consider a web-based application that presents a form for a user to
fill in and then processes its contents to create a new row in the database. Web APIs
generally make form contents available as a set of already parsed discrete values, so the
application may not need to deal with record and column delimiters. On the other hand,
validation issues remain paramount. You really have no idea what kind of values a user
is sending your script, so it’s important to check them. This chapter covers validation
extensively, and Recipe 20.6 revisits the issue in web context.

For additional background on the material covered here, see the introduction to Chap‐
ter 11.

Source code for program fragments and scripts discussed in this chapter is located in
the transfer directory of the recipes distribution, with the exception that some utility
functions are contained in library files located in the lib directory.

409

www.it-ebooks.info

http://www.it-ebooks.info/

12.1. Using the SQL Mode to Reject Bad Input Values
Problem
By default, MySQL is forgiving about accepting data values that are invalid, out of range,
or otherwise unsuitable for the data types of the columns into which you insert them.
But you want the server to be more restrictive and not accept bad data.

Solution
Set the SQL mode. Several mode values are available to control how strict the server is.
Some modes apply generally to all input values. Others apply to specific data types such
as dates.

Discussion
Normally, MySQL coerces input values to the data types of your table columns if the
input doesn’t match. Consider the following table, which has integer, string, and date
columns:

mysql> CREATE TABLE t (i INT, c CHAR(6), d DATE);

Inserting a row with unsuitable data values into the table causes warnings (which you
can see with SHOW WARNINGS), but the server loads the values into the table after coercing
them to some value that fits the column:

mysql> INSERT INTO t (i,c,d) VALUES('-1x','too-long string!','1999-02-31');
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
Warning	1265	Data truncated for column 'i' at row 1
Warning	1265	Data truncated for column 'c' at row 1
Warning	1264	Out of range value for column 'd' at row 1
+---------+------+--+		
mysql> SELECT * FROM t;		
+------+--------+------------+		
i	c	d
+------+--------+------------+		
-1	too-lo	0000-00-00
+------+--------+------------+

One way to prevent these warnings is to check the input data on the client side to make
sure that it’s legal. This is a reasonable strategy in certain circumstances (see the sidebar
in Recipe 12.2), but there is an alternative: let the server check data values on the server
side and reject them with an error if they’re invalid.

To do this, set the sql_mode system variable to enable server restrictions on input data
acceptance. With the proper restrictions in place, data values that would otherwise result

410 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

in conversions and warnings result in errors instead. Try the preceding INSERT again
after enabling “strict” SQL mode:

mysql> SET sql_mode = 'STRICT_ALL_TABLES';
mysql> INSERT INTO t (i,c,d) VALUES('-1x','too-long string!','1999-02-31');
ERROR 1265 (01000): Data truncated for column 'i' at row 1

Here the statement doesn’t even progress to the second and third data values because
the first is invalid for an integer column and the server raises an error.

Without input restrictions enabled, the server checks that the month part of date values
is in the range from 1 to 12 and that the day value is legal for the given month. This
means that '2005-02-31' generates a warning by default (with conversion to
'0000-00-00'). In strict mode, an error occurs.

MySQL still permits dates such as '1999-11-00' or '1999-00-00' that have zero parts,
or the “zero” date ('0000-00-00'), and (until MySQL 5.7.4) this is true even in strict
mode. To restrict these kinds of date values, enable the NO_ZERO_IN_DATE and
NO_ZERO_DATE SQL modes to cause warnings, or errors in strict mode. For example, to
prohibit dates with zero parts or “zero” dates, set the SQL mode like this:

mysql> SET sql_mode = 'STRICT_ALL_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE';

A simpler way to enable these restrictions, and a few more besides, is to enable TRADI
TIONAL SQL mode. TRADITIONAL mode is actually a constellation of modes, as you can
see by setting and displaying the sql_mode value:

mysql> SET sql_mode = 'TRADITIONAL';
mysql> SELECT @@sql_mode\G
*************************** 1. row ***************************
@@sql_mode: STRICT_TRANS_TABLES,STRICT_ALL_TABLES,NO_ZERO_IN_DATE,
 NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,TRADITIONAL,
 NO_AUTO_CREATE_USER

You can read more about the various SQL modes in the MySQL Reference Manual.

The examples shown set the session value of the sql_mode system variable, so they
change the SQL mode only for your current session. To set the mode globally for all
clients, start the server with a --sql_mode=mode_value option. Alternatively, if you have
the SUPER privilege, you can set the global mode at runtime:

mysql> SET GLOBAL sql_mode = 'mode_value';

12.2. Validating and Transforming Data
Problem
You must make sure that the data values in a file are legal.

12.2. Validating and Transforming Data | 411

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Check them, possibly rewriting them into a more suitable format.

Discussion
Recipes in Chapter 11 show how to work with the structural characteristics of files, by
reading lines and breaking them into separate columns. But sometimes you must focus
on the data content of a file, not only its structure:

• It’s often a good idea to validate data values to make sure they’re legal for the data
types into which you store them. For example, you can make sure that values in‐
tended for INT, DATE, and ENUM columns are integers, dates in CCYY-MM-DD format,
and legal enumeration values, respectively.

• Data values may need reformatting. You might store credit card values as a string
of digits but permit users of a web application to separate blocks of digits by spaces
or dashes. These values must be rewritten before storing them. Rewriting dates from
one format to another is especially common; for example, if a program writes dates
in MM-DD-YY format to ISO format for import into MySQL. If a program understands
only date and time formats and not a combined date-and-time format (such as
MySQL uses for the DATETIME and TIMESTAMP data types), you must split date-and-
time values into separate date and time values.

This is the first of a set of recipes that describe validation and reformatting techniques
that help in these kinds of situations. Techniques covered here for checking values in‐
clude pattern matching and validation against information in a database. It’s not unusual
for certain validation operations to occur repeatedly, in which case you’ll probably find
it useful to construct a library of functions. By packaging validation operations as library
routines, it is easier to write utilities based on them, and the utilities make it easier to
perform command-line operations on entire files so that you can avoid editing them
yourself.

To avoid writing your own library routines, look around to see if someone else has
already written suitable routines that you can use. For example, if you check the Perl
CPAN (cpan.perl.org), you’ll find a Data::Validate module hierarchy. The modules there
provide library routines that standardize a number of common validation tasks. Da‐
ta::Validate::MySQL deals specifically with MySQL data types.

412 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Server-Side Versus Client-Side Validation
As described in Recipe 12.1, you can cause data validation to be done on the server side
by setting the SQL mode to be restrictive about accepting bad input data. In this case,
the MySQL server raises an error for values that are invalid for the data types of the
columns into which you insert them.

In the next few sections, the focus is validation on the client side rather than on the
server side. Client-side validation can be useful when you require more control over
validation than simply receiving an error from the server. (For example, if you test values
yourself, it’s often easier to provide more informative messages to users about the exact
nature of problems with the values.) Also, it might be necessary to couple validation
with reformatting to transform complex values so that they are compatible with MySQL
data types. You have more flexibility to do this on the client side.

Writing an input-processing loop

Many of the validation recipes shown in the new few sections are typical of those that
you perform within the context of a program that reads a file and checks individual
column values. The general framework for such a file-processing utility looks like this:

#!/usr/bin/perl
loop.pl: Typical input-processing loop.

Assumes tab-delimited, linefeed-terminated input lines.

use strict;
use warnings;

while (<>) # read each line
{
 chomp;
 # split line at tabs, preserving all fields
 my @val = split (/\t/, $_, 10000);
 for my $i (0 .. @val - 1) # iterate through fields in line
 {
 # ... test $val[$i] here ...
 }
}

The while() loop reads each input line. Within the loop, each line is broken into fields.
(Recipe 11.7 discusses why split() is written as it is.) The inner for() loop iterates
through the fields, enabling each to be processed in sequence. If you don’t apply a given
test uniformly to all the fields, replace the for() loop with separate column-specific
tests.

12.2. Validating and Transforming Data | 413

www.it-ebooks.info

http://www.it-ebooks.info/

This loop assumes tab-delimited, linefeed-terminated input, an assumption shared by
most of the utilities discussed throughout this chapter. To use these utilities with datafiles
in other formats, you may be able to convert such files to tab-delimited format using
the cvt_file.pl script discussed in Recipe 11.6.

Putting common tests in libraries

It may be useful to package a test that you perform often as a library function. This
makes the operation easy to perform and also gives it a name that’s likely to make the
meaning of the operation clearer than the comparison code itself. The following test
performs a pattern match to check that $val consists entirely of digits (optionally pre‐
ceded by a plus sign), and then makes sure the value is greater than zero:

$valid = ($val =~ /^\+?\d+$/ && $val > 0);

In other words, the test looks for strings that represent positive integers. To make the
test easier to use and its intent clearer, package it as a function that is used like this:

$valid = is_positive_integer ($val);

Define the function as follows:
sub is_positive_integer
{
my $s = $_[0];

 return $s =~ /^\+?\d+$/ && $s > 0;
}

Now put the function definition into a library file so that multiple scripts can use it
easily. The Cookbook_Utils.pm module file in the lib directory of the recipes distribu‐
tion is an example of a library file that contains a number of validation functions. Take
a look through it to see which functions may be useful in your own programs (or as a
model for writing your own library files). To gain access to this module from within a
script, include a use statement like this:

use Cookbook_Utils;

You must of course install the module file in a directory where Perl will find it (see
Recipe 2.3).

A significant benefit of putting a collection of utility routines into a library file is that
you can use it for all kinds of programs. It’s rare for a data manipulation problem to be
completely unique. If you can pick and choose at least a few validation routines from a
library, it reduces the amount of code you must write, even for highly specialized pro‐
grams.

414 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

12.3. Using Pattern Matching to Validate Data
Problem
You must compare a value to a set of values that is difficult to specify literally without
writing a really ugly expression.

Solution
Use pattern matching.

Discussion
Pattern matching is a powerful validation tool that enables you to test entire classes of
values with a single expression. You can also use pattern tests to break matched values
into subparts for further individual testing or in substitution operations to rewrite
matched values. For example, you might break a matched date into pieces to verify that
the month is in the range from 1 to 12, and the day is within the number of days in the
month. You might use a substitution to reorder MM-DD-YY or DD-MM-YY values into YY-
MM-DD format.

The next few sections describe how to use patterns to test several types of values, but
first let’s review some general pattern-matching principles. The following discussion
focuses on Perl’s regular-expression capabilities. Pattern matching in Ruby, PHP, and
Python is similar, although you should consult the relevant documentation for any
differences. For Java, use the java.util.regex package.

In Perl, the pattern constructor is /pat/:
$it_matched = ($val =~ /pat/); # pattern match

Put an i after the /pat/ constructor to make the pattern match case insensitive:
$it_matched = ($val =~ /pat/i); # case-insensitive match

To use a character other than slash, begin the constructor with m. This is useful if the
pattern itself contains slashes:

$it_matched = ($val =~ m|pat|); # alternate constructor character

To look for a nonmatch, replace the =~ operator with the !~ operator:
$no_match = ($val !~ /pat/); # negated pattern match

To perform a substitution in $val based on a pattern match, use s/pat/replacement/.
If pat occurs within $val, it’s replaced by replacement. To perform a case-insensitive
match, put an i after the last slash. To perform a global substitution that replaces all
instances of pat rather than only the first one, add a g after the last slash:

12.3. Using Pattern Matching to Validate Data | 415

www.it-ebooks.info

http://www.it-ebooks.info/

$val =~ s/pat/replacement/; # substitution
$val =~ s/pat/replacement/i; # case-insensitive substitution
$val =~ s/pat/replacement/g; # global substitution
$val =~ s/pat/replacement/ig; # case-insensitive and global

The following table shows some of the special pattern elements available in Perl regular
expressions:

Pattern What the pattern matches

^ Beginning of string

$ End of string

. Any character

\s, \S Whitespace or nonwhitespace character

\d, \D Digit or nondigit character

\w, \W Word (alphanumeric or underscore) or nonword character

[...] Any character listed between the square brackets

[^...] Any character not listed between the square brackets

p1|p2|p3 Alternation; matches any of the patterns p1, p2, or p3

* Zero or more instances of preceding element

+ One or more instances of preceding element

{n} n instances of preceding element

{m,n} m through n instances of preceding element

Many of these pattern elements are the same as those available for MySQL’s REGEXP
regular-expression operator (see Recipe 5.9).

To match a literal instance of a character that is special within patterns, such as *, ^, or
$, precede it with a backslash. Similarly, to include a character within a character class
construction that is special in character classes ([,], or -), precede it with a backslash.
To include a literal ̂ in a character class, list it somewhere other than as the first character
between the brackets.

Many of the validation patterns shown in the following sections are of the form /^pat
$/. Beginning and ending a pattern with ̂ and $ has the effect of requiring pat to match
the entire string that you test. This is common in data validation contexts because it’s
generally desirable to know that a pattern matches an entire input value, not only part
of it. (To be sure that a value represents an integer, for example, it does no good to know
only that it contains an integer somewhere.) This is not a hard-and-fast rule, however,
and sometimes it’s useful to perform a more relaxed test by omitting the ^ and $ char‐
acters as appropriate. For example, if you want to strip leading and trailing whitespace
from a value, use one pattern anchored only to the beginning of the string, and another
anchored only to the end:

416 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

$val =~ s/^\s+//; # trim leading whitespace
$val =~ s/\s+$//; # trim trailing whitespace

That’s such a common operation, in fact, that it’s a good candidate for being written as
a utility function. The Cookbook_Utils.pm file contains a function trim_white
space() that performs both substitutions and returns the result:

$val = trim_whitespace ($val);

To remember subsections of a string matched by a pattern, use parentheses around the
relevant pattern parts. After a successful match, you can refer to the matched substrings
using the variables $1, $2, and so forth:

if ("2019-05-23" =~ /^(\d+)(.*)$/)
{
 $first_part = $1; # this is the year, 2019
 $the_rest = $2; # this is the rest of the date
}

To indicate that an element within a pattern is optional, follow it with a ? character. To
match values consisting of a sequence of digits, optionally beginning with a minus sign,
and optionally ending with a period, use this pattern:

/^-?\d+\.?$/

Use parentheses to group alternations within a pattern. The following pattern matches
time values in hh:mm format, optionally followed by AM or PM:

/^\d{1,2}:\d{2}\s*(AM|PM)?$/i

The use of parentheses in that pattern also has the side effect of remembering the op‐
tional part in $1. To suppress that side effect, use (?:pat) instead:

/^\d{1,2}:\d{2}\s*(?:AM|PM)?$/i

That’s sufficient background in Perl pattern matching to enable construction of useful
validation tests for several types of data values. The following sections provide patterns
that can be used to test for broad content types, numbers, temporal values, and email
addresses or URLs.

The transfer directory of the recipes distribution contains a test_pat.pl script that reads
input values, matches them against several patterns, and reports which patterns each
value matches. The script is easily extensible, so you can use it as a test harness to try
your own patterns.

12.4. Using Patterns to Match Broad Content Types
Problem
You want to classify values into broad categories.

12.4. Using Patterns to Match Broad Content Types | 417

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use a pattern that is similarly broad.

Discussion
To check whether values are empty or nonempty, or consist only of certain types of
characters, the patterns listed in the following table may suffice:

Pattern Type of value the pattern matches

/^$/ Empty value

/./ Nonempty value

/^\s*$/ Whitespace, possibly empty

/^\s+$/ Nonempty whitespace

/\S/ Nonempty, and not only whitespace

/^\d+$/ Digits only, nonempty

/^[a-z]+$/i Alphabetic characters only (case insensitive), nonempty

/^\w+$/ Alphanumeric or underscore characters only, nonempty

12.5. Using Patterns to Match Numeric Values
Problem
You must make sure a string looks like a number.

Solution
Use a pattern that matches the type of number you’re looking for.

Discussion
Patterns can be used to classify values into several types of numbers, as shown in the
following table:

Pattern Type of value the pattern matches

/^\d+$/ Unsigned integer

/^-?\d+$/ Negative or unsigned integer

/^[-+]?\d+$/ Signed or unsigned integer

/^[-+]?(\d+(\.\d*)?|\.\d+)$/ Floating-point number

The pattern /^\d+$/ matches unsigned integers by requiring a nonempty value that
consists only of digits from the beginning to the end of the value. If you care only that
a value begins with an integer, you can match an initial numeric part and extract it. To

418 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

do this, match only the initial part of the string (omit the $ that requires the pattern to
match to the end of the string) and place parentheses around the \d+ part. Then refer
to the matched number as $1 after a successful match:

if ($val =~ /^(\d+)/)
{
 $val = $1; # reset value to matched subpart
}

You could also add zero to the value, which causes Perl to perform an implicit string-
to-number conversion that discards the nonnumeric suffix:

if ($val =~ /^\d+/)
{
 $val += 0;
}

However, this method of discarding trailing nonnumeric characters has a disadvantage:
the conversion generates warnings for values that actually have a nonnumeric part if
you run Perl with the -w option or include a use warnings line in your script (which I
recommend). It also converts string values like 0013 to the number 13, which may be
unacceptable in some contexts. See Recipe 2.4 for additional discussion and an alter‐
native approach.

Some kinds of numeric values have a special format or other unusual constraints. Here
are a few examples and how to deal with them:
ZIP codes

ZIP and ZIP+4 codes are postal codes used for mail delivery in the United States.
They have values like 12345 or 12345-6789 (that is, five digits, possibly followed by
a dash and four more digits). To match one form or the other, or both forms, use
the patterns shown in the following table:

Pattern Type of value the pattern matches

/^\d{5}$/ ZIP code, five digits only

/^\d{5}-\d{4}$/ ZIP+4 code

/^\d{5}(-\d{4})?$/ ZIP or ZIP+4 code

Credit card numbers
Credit card numbers typically consist of digits, but it’s common for values to be
written with spaces, dashes, or other characters between groups of digits. For ex‐
ample, the following numbers are equivalent:

0123456789012345
0123 4567 8901 2345
0123-4567-8901-2345

To match such values, use this pattern:

12.5. Using Patterns to Match Numeric Values | 419

www.it-ebooks.info

http://www.it-ebooks.info/

/^[- \d]+/

(Perl permits the \d digit specifier within character classes.) However, that pattern
doesn’t identify values of the wrong length, and it may be useful to remove extra‐
neous characters before storing values in MySQL. To require credit card values to
contain 16 digits, use a substitution that removes all nondigits, then check the length
of the result:

$val =~ s/\D//g;
$valid = (length ($val) == 16);

12.6. Using Patterns to Match Dates or Times
Problem
You must make sure a string looks like a date or time.

Solution
Use a pattern that matches the type of temporal value you expect. Be sure to consider
issues such as how strict to be about delimiters between subparts and the lengths of the
subparts.

Discussion
Dates are a validation headache because they come in so many formats. Pattern tests
are extremely useful for weeding out illegal values, but often insufficient for full verifi‐
cation: a date might have a number where you expect a month, but the date isn’t valid
if the number is 13. This section introduces some patterns that match a few common
date formats. Recipe 12.11 revisits this topic in more detail and discusses combining
pattern tests with content verification.

To require values to be dates in ISO (CCYY-MM-DD) format, use this pattern:
/^\d{4}-\d{2}-\d{2}$/

The pattern requires the - character as the delimiter between date parts. To permit either
- or / as the delimiter, use a character class between the numeric parts (the slashes are
escaped with a backslash to prevent them from being interpreted as the end of the pattern
constructor):

/^\d{4}[-\/]\d{2}[-\/]\d{2}$/

To avoid the backslashes, use a different delimiter around the pattern:
m|^\d{4}[-/]\d{2}[-/]\d{2}$|

To permit any nondigit delimiter (which corresponds to how MySQL operates when it
interprets strings as dates), use this pattern:

420 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

/^\d{4}\D\d{2}\D\d{2}$/

To permit leading zeros in values like 03 to be missing, just look for three nonempty
digit sequences:

/^\d+\D\d+\D\d+$/

Of course, that pattern is so general that it also matches other values such as US Social
Security numbers (which have the format 012-34-5678). To constrain the subpart
lengths by requiring two to four digits in the year part and one or two digits in the month
and day parts, use this pattern:

/^\d{2,4}?\D\d{1,2}\D\d{1,2}$/

For dates in other formats such as MM-DD-YY or DD-MM-YY, similar patterns apply, but
the subparts are arranged in a different order. This pattern matches both of those for‐
mats:

/^\d{2}-\d{2}-\d{2}$/

To check the values of individual date parts, use parentheses in the pattern and extract
the substrings after a successful match. If you expect dates to be in ISO format, for
example, do this:

if ($val =~ /^(\d{2,4})\D(\d{1,2})\D(\d{1,2})$/)
{
 ($year, $month, $day) = ($1, $2, $3);
}

The library file lib/Cookbook_Utils.pm in the recipes distribution contains several of
these pattern tests, packaged as function calls. If the date doesn’t match the pattern, they
return undef. Otherwise, they return a reference to an array containing the broken-out
values for the year, month, and day. This can be useful for performing further checking
on the components of the date. For example, is_iso_date() looks for dates that match
ISO format. It’s defined as follows:

sub is_iso_date
{
my $s = $_[0];

 return undef unless $s =~ /^(\d{2,4})\D(\d{1,2})\D(\d{1,2})$/;
 return [$1, $2, $3]; # return year, month, day
}

Use the function like this:
my $ref = is_iso_date ($val);
if (defined ($ref))
{
 # $val matched ISO format pattern;
 # check its subparts using $ref->[0] through $ref->[2]
}
else

12.6. Using Patterns to Match Dates or Times | 421

www.it-ebooks.info

http://www.it-ebooks.info/

{
 # $val didn't match ISO format pattern
}

You’ll often find additional processing necessary with dates because date-matching pat‐
terns help to weed out values that are syntactically malformed, but don’t assess whether
the individual components contain legal values. To do that, some range checking is
necessary. Recipe 12.11 covers that topic.

If you’re willing to skip subpart testing and just want to rewrite the pieces, use a
substitution. For example, to rewrite values assumed to be in MM-DD-YY format into YY-
MM-DD format, do this:

$val =~ s/^(\d+)\D(\d+)\D(\d+)$/$3-$1-$2/;

Time values are somewhat more orderly than dates, usually being written with hours
first and seconds last, with two digits per part:

/^\d{2}:\d{2}:\d{2}$/

To be more lenient, permit the hours part to have a single digit, or the seconds part to
be missing:

/^\d{1,2}:\d{2}(:\d{2})?$/

Mark parts of the time with parentheses if you want to range-check the individual parts,
or perhaps to reformat the value to include a seconds part of 00 if it happens to be
missing. However, this requires some care with the parentheses and the ? characters in
the pattern if the seconds part is optional. You want to permit the entire :\d{2} at the
end of the pattern to be optional, but not to save the : character in $3 if the third time
section is present. To accomplish that, use (?:pat), a grouping notation that doesn’t
save the matched substring. Within that notation, use parentheses around the digits to
save them. Then $3 is undef if the seconds part is not present, and contains the seconds
digits otherwise:

if ($val =~ /^(\d{1,2}):(\d{2})(?::(\d{2}))?$/)
{
 my ($hour, $min, $sec) = ($1, $2, $3);
 $sec = "00" if !defined ($sec); # seconds missing; use 00
 $val = "$hour:$min:$sec";
}

To rewrite times from 12-hour format with AM and PM suffixes to 24-hour format, do
this:

if ($val =~ /^(\d{1,2}):(\d{2})(?::(\d{2}))?\s*(AM|PM)?$/i)
{
 my ($hour, $min, $sec) = ($1, $2, $3);
 # supply missing seconds
 $sec = "00" unless defined ($sec);
 if ($hour == 12 && (!defined ($4) || uc ($4) eq "AM"))
 {

422 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

 $hour = "00"; # 12:xx:xx AM times are 00:xx:xx
 }
 elsif ($hour < 12 && defined ($4) && uc ($4) eq "PM")
 {
 $hour += 12; # PM times other than 12:xx:xx
 }
 $val = "$hour:$min:$sec";
}

The time parts are placed into $1, $2, and $3, with $3 set to undef if the seconds part is
missing. The suffix goes into $4 if it’s present. If the suffix is AM or missing (undef), the
value is interpreted as an AM time. If the suffix is PM, the value is interpreted as a PM
time.

See Also
This section is just the beginning of what you can do when processing dates for data-
transfer purposes. Date and time testing and conversion can be highly idiosyncratic,
and the sheer number of issues to consider is mind-boggling:

• What is the basic date format? Dates come in several common styles, such as ISO
(CCYY-MM-DD), US (MM-DD-YY), and British (DD-MM-YY) formats. And these are just
some of the more standard formats. Many more are possible. For example, a datafile
may contain dates written as June 17, 1959 or as 17 Jun '59.

• Are trailing times permitted on dates, or perhaps required? When times are ex‐
pected, is the full time required or just the hour and minute?

• Do you permit special values like now or today?
• Are date parts required to be delimited by a particular character, such as - or /, or

are other delimiters permitted?
• Are date parts required to have a specific number of digits? Or are leading zeros on

month and year values permitted to be missing?
• Are months written numerically, or represented as month names like January or
Jan?

• Are two-digit year values permitted? Should they be converted to have four digits?
If so, what is the transition point within the range 00 to 99 at which values change
from one century to another?

• Should date parts be checked to ensure their validity? Patterns can recognize strings
that look like dates or times, but while they’re extremely useful for detecting mal‐
formed values, they may not be sufficient. A value like 1947-15-99 may match a
pattern but isn’t a legal date. Pattern testing is thus most useful in conjunction with
range checks on the individual parts of the date.

12.6. Using Patterns to Match Dates or Times | 423

www.it-ebooks.info

http://www.it-ebooks.info/

The prevalence of these issues in data-transfer problems means that you’ll probably end
up writing some of your own validators on occasion to handle very specific date formats.
Other sections of this chapter can provide additional assistance. For example,
Recipe 12.10 covers conversion of two-digit year values to four-digit form, and
Recipe 12.11 discusses how to perform validity checking on components of date or time
values.

You might be able to save yourself some work by using existing date-checking modules
for your API language. Some possibilities: the Perl Date module; the Ruby date module;
the Python datetime module; the PHP DateTime class; the Java GregorianCalendar
and SimpleDateTime classes.

12.7. Using Patterns to Match Email Addresses or URLs
Problem
You want to determine whether a value looks like an email address or a URL.

Solution
Use a pattern, tuned to the desired level of strictness.

Discussion
The immediately preceding sections use patterns to identify classes of values such as
numbers and dates, which are fairly typical applications for regular expressions. But
pattern matching has much more widespread applicability for data validation. To give
some idea of a few other types of values for which pattern matching can be used, this
section shows a few tests for email addresses and URLs.

To check values that are expected to be email addresses, the pattern should require at
least an @ character with nonempty strings on either side:

/.@./

That’s a pretty minimal test. It’s difficult to come up with a fully general pattern that
covers all the legal values and rejects all the illegal ones, but it’s easy to write a pattern
that’s at least a little more restrictive. For example, in addition to being nonempty, the
username and the domain name should consist entirely of characters other than @
characters or spaces:

/^[^@]+@[^@]+$/

You may also want to require that the domain name part contain at least two parts
separated by a dot:

/^[^@]+@[^@ .]+\.[^@ .]+/

424 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

To look for URL values that begin with a protocol specifier of http://, ftp://, or
mailto:, use an alternation that matches any of them at the beginning of the string.
These values contain slashes, so it’s easier to use a different character around the pattern
to avoid escaping the slashes with backslashes:

m#^(http://|ftp://|mailto:)#i

The alternatives in the pattern are grouped within parentheses because otherwise the ^
anchors only the first of them to the beginning of the string. The i modifier follows the
pattern because protocol specifiers in URLs are not case sensitive. The pattern is other‐
wise fairly unrestrictive because it permits anything to follow the protocol specifier. Add
further restrictions as necessary.

12.8. Using Table Metadata to Validate Data
Problem
You must check input values against the legal members of an ENUM or SET column.

Solution
Get the column definition, extract the list of members from it, and check data values
against the list.

Discussion
Some forms of validation involve checking input values against information stored in
a database. This includes values to be stored in an ENUM or SET column, which can be
checked against the valid members stored in the column definition. Database-backed
validation also applies to values that must match those listed in a lookup table to be
considered legal. For example, input records that contain customer IDs can be required
to match a row in a customers table, and state abbreviations in addresses can be verified
against a table that lists each state. This recipe describes ENUM- and SET-based validation,
and Recipe 12.9 discusses how to use lookup tables.

One way to check input values that correspond to the legal values of ENUM or SET columns
is to get the list of legal column values into an array using the information in INFORMA
TION_SCHEMA, then perform an array membership test. For example, the favorite-color
column color from the profile table is an ENUM defined as follows:

mysql> SELECT COLUMN_TYPE FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'profile'
 -> AND COLUMN_NAME = 'color';

12.8. Using Table Metadata to Validate Data | 425

www.it-ebooks.info

http://www.it-ebooks.info/

+--+
| COLUMN_TYPE |
+--+
| enum('blue','red','green','brown','black','white') |
+--+

If you extract the list of enumeration members from the COLUMN_TYPE value and store
them in an array @members, you can perform the membership test like this:

$valid = grep (/^$val$/i, @members);

The pattern constructor begins and ends with ̂ and $ to require $val to match an entire
enumeration member (rather than just a substring). It also is followed by an i to specify
a case-insensitive comparison because the default collation is latin1_swedish_ci,
which is case-insensitive. (If you have a column with a different collation, adjust ac‐
cordingly.)

In Recipe 10.7, we wrote a function get_enumorset_info() that returns ENUM or SET
column metadata. This includes the list of members, so it’s easy to use that function to
write another utility routine, check_enum_value(), that gets the legal enumeration val‐
ues and performs the membership test. The routine takes four arguments: a database
handle, the table name and column name for the ENUM column, and the value to check.
It returns true or false to indicate whether the value is legal:

sub check_enum_value
{
my ($dbh, $db_name, $tbl_name, $col_name, $val) = @_;

 my $valid = 0;
 my $info = get_enumorset_info ($dbh, $db_name, $tbl_name, $col_name);
 if ($info && uc ($info->{type}) eq "ENUM")
 {
 # use case-insensitive comparison because default collation
 # (latin1_swedish_ci) is case-insensitive (adjust if you use
 # a different collation)
 $valid = grep (/^$val$/i, @{$info->{values}});
 }
 return $valid;
}

For single-value testing, such as to validate a value submitted in a web form, that kind
of test works well. However, to test a lot of values (like an entire column in a datafile),
it’s better to read the enumeration values into memory once, then use them repeatedly
to check each data value. Furthermore, it’s a lot more efficient to perform hash lookups
than array lookups (in Perl at least). To do so, retrieve the legal enumeration values and
store them as keys of a hash. Then test each input value by checking whether it exists
as a hash key. It’s a little more effort to construct the hash, which is why check_enum_val
ue() doesn’t do so. But for bulk validation, the improved lookup speed more than makes
up for the hash construction overhead. (To check for yourself the relative efficiency of

426 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

array membership tests versus hash lookups, try the lookup_time.pl script in the trans
fer directory of the recipes distribution.)

Begin by getting the metadata for the column and convert the list of legal enumeration
members to a hash:

my $ref = get_enumorset_info ($dbh, $db_name, $tbl_name, $col_name);
my %members;
convert hash key to consistent lettercase
map { $members{lc ($_)} = 1; } @{$ref->{values}};

The map expression makes each enumeration member exist as the key of a hash element.
The hash key is what’s important here; the value associated with it is irrelevant. (The
example shown sets the value to 1, but you could use undef, 0, or any other value.) Note
that the code converts the hash keys to lowercase before storing them. This is done
because hash key lookups in Perl are case sensitive. That’s fine if the values that you
check also are case sensitive, but ENUM columns by default are not. By converting the
enumeration values to a given lettercase before storing them in the hash, and then
converting the values you want to check similarly, you perform, in effect, a case-
insensitive key existence test:

$valid = exists ($members{lc ($val)});

The preceding example converts enumeration values and input values to lowercase. You
could just as well use uppercase, as long as you do so for all values consistently.

Note that the existence test may fail if the input value is the empty string. You must
decide how to handle that case on a column-by-column basis. For example, if the column
permits NULL values, you might interpret the empty string as equivalent to NULL and
thus as being a legal value.

The validation procedure for SET values is similar to that for ENUM values, except that an
input value might consist of any number of SET members, separated by commas. For
the value to be legal, each element in it must be legal. In addition, because “any number
of members” includes “none,” the empty string is a legal value for any SET column.

For one-shot testing of individual input values, use a utility routine check_set_val
ue() that is similar to check_enum_value():

sub check_set_value
{
my ($dbh, $db_name, $tbl_name, $col_name, $val) = @_;

 my $valid = 0;
 my $info = get_enumorset_info ($dbh, $db_name, $tbl_name, $col_name);
 if ($info && uc ($info->{type}) eq "SET")
 {
 return 1 if $val eq ""; # empty string is legal element
 # use case-insensitive comparison because default collation
 # (latin1_swedish_ci) is case-insensitive (adjust if you use

12.8. Using Table Metadata to Validate Data | 427

www.it-ebooks.info

http://www.it-ebooks.info/

 # a different collation)
 $valid = 1; # assume valid until we find out otherwise
 foreach my $v (split (/,/, $val))
 {
 if (!grep (/^v/i, @{$info->{values}}))
 {
 $valid = 0; # value contains an invalid element
 last;
 }
 }
 }
 return $valid;
}

For bulk testing, construct a hash from the legal SET members. The procedure is the
same as shown previously for producing a hash from ENUM elements.

To validate a given input value against the SET member hash, convert it to the same
lettercase as the hash keys, split it at commas to get a list of the individual elements of
the value, and then check each one. If any of the elements are invalid, the entire value
is invalid:

$valid = 1; # assume valid until we find out otherwise
foreach my $elt (split (/,/, lc ($val)))
{
 if (!exists ($members{$elt}))
 {
 $valid = 0; # value contains an invalid element
 last;
 }
}

After the loop terminates, $valid is true if the value is legal for the SET column, and
false otherwise. Empty strings are always legal SET values, but this code performs no
special-case test for an empty string. No such test is necessary because in that case the
split() operation returns an empty list, the loop never executes, and $valid remains
true.

12.9. Using a Lookup Table to Validate Data
Problem
You must check values to make sure they’re listed in a lookup table.

Solution
Issue statements to check whether the values are in the table. The best way to do this
depends on the number of input values and the table size.

428 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
To validate input values against the contents of a lookup table, the techniques are some‐
what similar to those shown in Recipe 12.8 for checking ENUM and SET columns. How‐
ever, whereas ENUM and SET columns usually have a small number of member values, a
lookup table can have an essentially unlimited number of values. You might not want
to read them all into memory.

Validation of input values against the contents of a lookup table can be done several
ways, as illustrated in the following discussion. The tests shown in the examples perform
comparisons against values exactly as they are stored in the lookup table. To perform
case-insensitive comparisons, convert all values to a consistent lettercase. (See the dis‐
cussion of case conversion in Recipe 12.8.)

Issue individual statements

For one-shot operations, test a value by checking whether it’s listed in the lookup table.
The following query returns true (nonzero) for a value that is present and false other‐
wise:

$valid = $dbh->selectrow_array (
 "SELECT COUNT(*) FROM $tbl_name WHERE val = ?",
 undef, $val);

This kind of test may be suitable for purposes such as checking a value submitted in a
web form, but is inefficient for validating large datasets. It has no memory for the results
of previous tests for values that have been seen before; consequently, you execute a query
for every input value.

Construct a hash from the entire lookup table

To validate a large number of values, it’s more efficient to pull the lookup values into
memory, save them in a data structure, and check each input value against the contents
of that structure. Using an in-memory lookup avoids the overhead of executing a query
for each value.

First, run a query to retrieve all the lookup table values and construct a hash from them:
my %members; # hash for lookup values
my $sth = $dbh->prepare ("SELECT val FROM $tbl_name");
$sth->execute ();
while (my ($val) = $sth->fetchrow_array ())
{
 $members{$val} = 1;
}

Perform a hash key existence test to check a given value:
$valid = exists ($members{$val});

12.9. Using a Lookup Table to Validate Data | 429

www.it-ebooks.info

http://www.it-ebooks.info/

This technique reduces database traffic to a single query. However, for a large lookup
table, that could still be a lot of traffic, and you might not want to hold the entire table
in memory.

Performing Lookups with Other Languages
The lookup example shown here uses a Perl hash to determine whether a given value is
present in a set of values:

$valid = exists ($members{$val});

Similar data structures exist for other languages. In Ruby, use a hash, and check input
values using the has_key? method:

valid = members.has_key?(val)

In PHP, use an associative array, and perform a key lookup with isset():

$valid = isset ($members[$val]);

In Python, use a dictionary, and check input values using the has_key() method:

valid = members.has_key(val)

For lookups in Java, use a HashMap, and test values with the containsKey() method:

valid = members.containsKey (val);

The transfer directory of the recipes distribution contains some sample code for lookup
operations in each language.

Remember already seen values to avoid database lookups

Another lookup technique mixes individual statements with a hash that stores lookup
value existence information. This approach can be useful if you have a very large lookup
table. Begin with an empty hash:

my %members; # hash for lookup values

Then, for each value to be tested, check whether it’s present in the hash. If not, execute
a query to check whether the value is present in the lookup table, and record the result
of the query in the hash. The validity of the input value is determined by the value
associated with the key, not by the existence of the key:

if (!exists ($members{$val})) # haven't seen this value yet
{
 my $count = $dbh->selectrow_array (
 "SELECT COUNT(*) FROM $tbl_name WHERE val = ?",
 undef, $val);
 # store true/false to indicate whether value was found
 $members{$val} = ($count > 0);

430 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

}
$valid = $members{$val};

For this method, the hash acts as a cache, so that you execute a lookup query for any
given value only once, no matter how many times it occurs in the input. For datasets
that have repeated values, this approach avoids issuing a separate query for every single
test, while requiring an entry in the hash only for each unique value. It thus stands
between the other two approaches in terms of the trade-off between database traffic and
program memory requirements for the hash.

Note that the hash is used in a different manner for this method than for the previous
method. Previously, the existence of the input value as a key in the hash determined the
validity of the value, and the value associated with the hash key was irrelevant. For the
hash-as-cache method, the meaning of key existence in the hash changes from “it’s
valid” to “it’s been tested before.” For each key, the value associated with it indicates
whether the input value is present in the lookup table. (If you store as keys only those
values that are found to be in the lookup table, you issue a query for each instance of
an invalid value in the input dataset, which is inefficient.)

12.10. Converting Two-Digit Year Values to
Four-Digit Form
Problem
You must convert years in date values from two digits to four digits.

Solution
Let MySQL do this for you, or perform the operation yourself if MySQL’s conversion
rules aren’t appropriate.

Discussion
Two-digit year values are a problem because the century is not explicit in the data values.
If you know the range of years spanned by your input, you can add the century without
ambiguity. Otherwise, you can only guess. For example, the date 10/2/69 would be
interpreted by most people in the US as as October 2, 1969. But if it represents Mahatma
Gandhi’s birth date, the year is actually 1869.

One way to convert years to four digits is to let MySQL do it. If you store a date containing
a two-digit year, MySQL automatically converts it to four-digit form. MySQL uses a
transition point of 1970; it interprets values from 00 to 69 as the years 2000 to 2069, and
values from 70 to 99 as the years 1970 to 1999. These rules are appropriate for year

12.10. Converting Two-Digit Year Values to Four-Digit Form | 431

www.it-ebooks.info

http://www.it-ebooks.info/

values in the range from 1970 to 2069. If your values lie outside this range, add the
proper century yourself before storing them into MySQL.

To use a different transition point, convert years to four-digit form yourself. Here’s a
general-purpose routine that converts two-digit years to four digits and supports an
arbitrary transition point:

sub yy_to_ccyy
{
my ($year, $transition_point) = @_;

 $transition_point = 70 unless defined ($transition_point);
 $year += ($year >= $transition_point ? 1900 : 2000) if $year < 100;
 return $year;
}

The function uses MySQL’s transition point (70) by default. An optional second argu‐
ment may be given to provide a different transition point. yy_to_ccyy() also verifies
that the year actually is less than 100 and needs converting before modifying it. That
way you can pass year values regardless of whether they include the century. Some
sample invocations using the default transition point have the following results:

$val = yy_to_ccyy (60); # returns 2060
$val = yy_to_ccyy (1960); # returns 1960 (no conversion done)

Suppose that you want to convert year values as follows, using a transition point of 50:
00 .. 49 -> 2000 .. 2049
50 .. 99 -> 1950 .. 1999

To do this, pass an explicit transition point argument to yy_to_ccyy():
$val = yy_to_ccyy (60, 50); # returns 1960
$val = yy_to_ccyy (1960, 50); # returns 1960 (no conversion done)

The yy_to_ccyy() function is included in the Cookbook_Utils.pm library file.

12.11. Performing Validity Checking on Date or
Time Subparts
Problem
A string passes a pattern test as a date or time, but you want to perform further validity
checking.

Solution
Break the value into parts and perform the appropriate range checking on each part.

432 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Pattern matching may not be sufficient for date or time checking. For example, a value
like 1947-15-19 might match a date pattern, but it’s not a legal date. To perform more
rigorous value testing, combine pattern matching with range checking. Break out the
year, month, and day values, then check whether each is within the proper range. Years
should be less than 9999 (MySQL represents dates to an upper limit of 9999-12-31),
month values must be in the range from 1 to 12, and days must be in the range from 1
to the number of days in the month. That last part is the trickiest: it’s month-dependent,
and also year-dependent for February because it changes for leap years.

Suppose that you’re checking input dates in ISO format. In Recipe 12.6, we used the
is_iso_date() function from the Cookbook_Utils.pm library file to perform a pattern
match on a date string and break it into component values. is_iso_date() returns
undef if the value doesn’t satisfy a pattern that matches ISO date format. Otherwise, it
returns a reference to an array containing the year, month, and day values. The Cook‐
book_Utils.pm file also contains is_mmddyy_date() and is_ddmmyy_date() routines
that match dates in US or British format and return undef or a reference to an array of
date parts. (The parts returned are always in year, month, day order, not the order in
which the parts appear in the input date string.)

To perform additional checking on the result returned by any of those routines (as‐
suming that the result is not undef), pass the date parts to is_valid_date(), another
library function:

$valid = is_valid_date ($ref->[0], $ref->[1], $ref->[2]);

Or, more concisely:
$valid = is_valid_date (@{$ref});

is_valid_date() returns nonzero if the date is valid, 0 otherwise. It checks the parts
of a date like this:

sub is_valid_date
{
my ($year, $month, $day) = @_;

 # year must be nonnegative, month and day must be positive
 return 0 if $year < 0 || $month < 1 || $day < 1;
 # check maximum limits on individual parts
 return 0 if $year > 9999
 || $month > 12
 || $day > days_in_month ($year, $month);
 return 1;
}

is_valid_date() requires separate year, month, and day values, not a date string. This
requires that you break candidate values into components before invoking it, but makes

12.11. Performing Validity Checking on Date or Time Subparts | 433

www.it-ebooks.info

http://www.it-ebooks.info/

it applicable in more contexts. For example, you can use it to check dates like 12 Febru
ary 2003 by mapping the month to its numeric value before calling is_valid_date().
If is_valid_date() took a string argument assumed to be in a specific date format, it
would be much less general.

is_valid_date() uses a subsidiary function days_in_month() to determine the num‐
ber of days in the month represented by the date. days_in_month() requires both the
year and the month as arguments because if the month is 2 (February), the number of
days depends on whether the year is a leap year. This means you must pass a four-digit
year value: as discussed in Recipe 6.18, two-digit years are ambiguous with respect to
the century, which makes proper leap-year testing impossible. The days_in_month()
and is_leap_year() functions are based on techniques taken from that recipe:

sub is_leap_year
{
my $year = $_[0];

 return ($year % 4 == 0) && ((($year % 100) != 0) || ($year % 400) == 0);
}

sub days_in_month
{
my ($year, $month) = @_;
my @day_tbl = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
my $days = $day_tbl[$month-1];

 # add a day for Feb of leap years
 $days++ if $month == 2 && is_leap_year ($year);
 return $days;
}

To perform validity checking on time values, a similar procedure applies: verify that the
value matches a time pattern and break it into components, then perform range-testing
on the components. For times, the ranges are 0 to 23 for the hour, and 0 to 59 for the
minute and second. Here is a function is_24hr_time() that checks for values in 24-
hour format and returns the components:

sub is_24hr_time
{
my $s = $_[0];

 return undef unless $s =~ /^(\d{1,2})\D(\d{2})\D(\d{2})$/;
 return [$1, $2, $3]; # return hour, minute, second
}

The following is_ampm_time() function is similar but looks for times in 12-hour format
with an optional AM or PM suffix, converting PM times to 24-hour values:

sub is_ampm_time
{
my $s = $_[0];

434 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

 return undef unless $s =~ /^(\d{1,2})\D(\d{2})\D(\d{2})(?:\s*(AM|PM))?$/i;
 my ($hour, $min, $sec) = ($1, $2, $3);
 if ($hour == 12 && (!defined ($4) || uc ($4) eq "AM"))
 {
 $hour = "00"; # 12:xx:xx AM times are 00:xx:xx
 }
 elsif ($hour < 12 && defined ($4) && uc ($4) eq "PM")
 {
 $hour += 12; # PM times other than 12:xx:xx
 }
 return [$hour, $min, $sec]; # return hour, minute, second
}

Both functions return undef for values that don’t match the pattern. Otherwise, they
return a reference to a three-element array containing the hour, minute, and second
values.

After you obtain the time components, pass them to is_valid_time(), another utility
routine, to perform range checks.

12.12. Writing Date-Processing Utilities
Problem
There’s a date-processing operation that you must perform frequently. You want to write
a utility that does it for you.

Solution
The utilities in this recipe provide some examples that show how to do that.

Discussion
Due to the idiosyncratic nature of dates, you might occasionally find it necessary to
write date converters. This section shows some sample converters that serve various
purposes:

• isoize_date.pl reads a file looking for dates in US format (MM-DD-YY) and converts
them to ISO format.

• cvt_date.pl converts dates to and from any of ISO, US, or British formats. It is more
general than isoize_date.pl, but requires that you tell it what kind of input to expect
and what kind of output to produce.

12.12. Writing Date-Processing Utilities | 435

www.it-ebooks.info

http://www.it-ebooks.info/

• monddccyy_to_iso.pl looks for dates like Feb. 6, 1788 and converts them to ISO
format. It illustrates how to map dates with nonnumeric parts to a format that
MySQL understands.

All three scripts are located in the transfer directory of the recipes distribution. They
assume datafiles are in tab-delimited, linefeed-terminated format. To work with files
that have a different format, use cvt_file.pl (see Recipe 11.6).

Our first date-processing utility, isoize_date.pl, looks for dates in US format and rewrites
them into ISO format. You’ll recognize that it’s modeled after the general input-
processing loop shown in Recipe 12.2, with some extra stuff thrown in to perform a
specific type of conversion:

#!/usr/bin/perl
isoize_date.pl: Read input data, look for values that match
a date pattern, convert them to ISO format. Also converts
2-digit years to 4-digit years, using a transition point of 70.
By default, this looks for dates in MM-DD-[CC]YY format.
Does not check whether dates actually are valid (for example,
won't complain about 13-49-1928).

Assumes tab-delimited, linefeed-terminated input lines.

use strict;
use warnings;

transition point at which 2-digit XX year values are assumed to be
19XX (below that, they are treated as 20XX)
my $transition = 70;

while (<>)
{
 chomp;
 my @val = split (/\t/, $_, 10000); # split, preserving all fields
 for my $i (0 .. @val - 1)
 {
 # look for strings in MM-DD-[CC]YY format
 next unless $val[$i] =~ /^(\d{1,2})\D(\d{1,2})\D(\d{2,4})$/;

 my ($month, $day, $year) = ($1, $2, $3);
 # to interpret dates as DD-MM-[CC]YY instead, replace preceding
 # line with the following one:
 #my ($day, $month, $year) = ($1, $2, $3);

 # convert 2-digit years to 4 digits, then update value in array
 $year += ($year >= $transition ? 1900 : 2000) if $year < 100;
 $val[$i] = sprintf ("%04d-%02d-%02d", $year, $month, $day);
 }
 print join ("\t", @val) . "\n";
}

436 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

If you feed isoize_date.pl an input file that looks like this:
Sybil 04-13-70
Nancy 09-30-69
Ralph 11-02-73
Lothair 07-04-63
Henry 02-14-65
Aaron 09-17-68
Joanna 08-20-52
Stephen 05-01-60

It produces the following output:
Sybil 1970-04-13
Nancy 2069-09-30
Ralph 1973-11-02
Lothair 2063-07-04
Henry 2065-02-14
Aaron 2068-09-17
Joanna 2052-08-20
Stephen 2060-05-01

isoize_date.pl serves a specific purpose: it converts only from US to ISO format. It does
not perform validity checking on date subparts or permit the transition point for adding
the century to be specified. A more general tool would be more useful. The next script,
cvt_date.pl, extends the capabilities of isoize_date.pl; it recognizes input dates in ISO,
US, or British formats and converts any of them to any other. It also can convert two-
digit years to four digits, enable you to specify the conversion transition point, and warn
about bad dates. As such, it can be used to preprocess input for loading into MySQL or
postprocess data exported from MySQL for use by other programs.

cvt_date.pl understands the following options:
--iformat=format, --oformat=format, --format=format

Set the date format for input, output, or both. The default format value is iso;
cvt_date.pl also recognizes any string beginning with us or br as indicating US or
British date format.

--add-century

Convert two-digit years to four digits.

--columns=column_list

Convert dates only in the named columns. By default, cvt_date.pl looks for dates in
all columns. If this option is given, column_list should be a list of one or more
column positions or ranges separated by commas. (Ranges can be given as m-n to
specify columns m through n.) Positions begin at 1.

--transition=n

Specify the transition point for two-digit to four-digit year conversions. The default
transition point is 70. This option turns on --add-century.

12.12. Writing Date-Processing Utilities | 437

www.it-ebooks.info

http://www.it-ebooks.info/

--warn

Warn about bad dates. (This option can produce spurious warnings if the dates
have two-digit years and you don’t specify --add-century, because leap-year testing
won’t always be accurate in that case.)

I won’t show the code for cvt_date.pl here (most of it is taken up with processing
command-line options), but you can examine the source for yourself if you like. As an
example of how cvt_date.pl works, suppose that you have a file newdata.txt with the
following contents:

name1 01/01/99 38
name2 12/31/00 40
name3 02/28/13 42
name4 01/02/18 44

Running the file through cvt_date.pl with options indicating that the dates are in US
format and that the century should be added produces this result:

% cvt_date.pl --iformat=us --add-century newdata.txt
name1 1999-01-01 38
name2 2000-12-31 40
name3 2013-02-28 42
name4 2018-01-02 44

To produce dates in British format instead with no year conversion, do this:
% cvt_date.pl --iformat=us --oformat=br newdata.txt
name1 01-01-99 38
name2 31-12-00 40
name3 28-02-13 42
name4 02-01-18 44

cvt_date.pl has no knowledge of the meaning of each data column, of course. If you have
a nondate column with values that match the pattern, it rewrites that column, too. To
deal with that, specify a --columns option to limit the columns that cvt_date.pl converts.

isoize_date.pl and cvt_date.pl both operate on dates written in all-numeric formats. But
dates in datafiles often are written differently, and it may be necessary to write a special-
purpose script to process them. Suppose an input file contains dates in the following
format (these represent the dates on which US states were admitted to the Union):

Delaware Dec. 7, 1787
Pennsylvania Dec 12, 1787
New Jersey Dec. 18, 1787
Georgia Jan. 2, 1788
Connecticut Jan. 9, 1788
Massachusetts Feb. 6, 1788
…

The dates consist of a three-character month abbreviation (possibly followed by a pe‐
riod), a numeric day of the month, a comma, and a numeric year. To import this file

438 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

into MySQL, you must convert the dates to ISO format, resulting in a file that looks like
this:

Delaware 1787-12-07
Pennsylvania 1787-12-12
New Jersey 1787-12-18
Georgia 1788-01-02
Connecticut 1788-01-09
Massachusetts 1788-02-06
…

That’s a somewhat specialized kind of transformation, although this general type of
problem (converting a particular date format to ISO format) is hardly uncommon. To
perform the conversion, identify the dates as those values matching an appropriate
pattern, map month names to the corresponding numeric values, and reformat the
result. The following script, monddccyy_to_iso.pl, illustrates how:

#!/usr/bin/perl
monddccyy_to_iso.pl: Convert dates from mon[.] dd, ccyy to ISO format.

Assumes tab-delimited, linefeed-terminated input

use strict;
use warnings;

my %map = # map 3-char month abbreviations to numeric month
(
 "jan" => 1, "feb" => 2, "mar" => 3, "apr" => 4, "may" => 5, "jun" => 6,
 "jul" => 7, "aug" => 8, "sep" => 9, "oct" => 10, "nov" => 11, "dec" => 12
);

while (<>)
{
 chomp;
 my @val = split (/\t/, $_, 10000); # split, preserving all fields
 for my $i (0 .. @val - 1)
 {
 # reformat the value if it matches the pattern, otherwise assume
 # that it's not a date in the required format and leave it alone
 if ($val[$i] =~ /^([^.]+)\.? (\d+), (\d+)$/)
 {
 # use lowercase month name
 my ($month, $day, $year) = (lc ($1), $2, $3);
 if (exists ($map{$month}))
 {
 $val[$i] = sprintf ("%04d-%02d-%02d", $year, $map{$month}, $day);
 }
 else
 {
 # warn, but don't reformat
 warn "$val[$i]: bad date?\n";
 }

12.12. Writing Date-Processing Utilities | 439

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 print join ("\t", @val) . "\n";
}

The script only does reformatting, it doesn’t validate the dates. To do that, modify the
script to use the Cookbook_Utils.pm module by adding this statement after the use
warnings line:

use Cookbook_Utils;

That gives the script access to the module’s is_valid_date() routine. To use it, change
this line:

if (exists ($map{$month}))

To this:
if (exists ($map{$month}) && is_valid_date ($year, $map{$month}, $day))

12.13. Importing Non-ISO Date Values
Problem
Date values to be imported are not in the ISO (CCYY-MM-DD) format that MySQL expects.

Solution
Use an external utility to convert the dates to ISO format before importing the data into
MySQL (cvt_date.pl is useful here). Or use LOAD DATA’s capability for preprocessing input
data prior to loading it into the database.

Discussion
Suppose that a table contains three columns, name, date, and value, where date is a
DATE column requiring values in ISO format (CCYY-MM-DD). Suppose also that you’re
given a datafile newdata.txt to be imported into the table, but its contents look like this:

name1 01/01/99 38
name2 12/31/00 40
name3 02/28/13 42
name4 01/02/18 44

The dates are in MM/DD/YY format and must be converted to ISO format to be stored as
DATE values in MySQL. One way to do this is to run the file through the cvt_date.pl script
from Recipe 12.12:

% cvt_date.pl --iformat=us --add-century newdata.txt > tmp.txt

440 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Then load the tmp.txt file into the table. This task also can be accomplished entirely in
MySQL with no external utilities by using SQL to perform the reformatting operation.
As discussed in Recipe 11.1, LOAD DATA can preprocess input values before inserting
them. Applying that capability to the present problem, the date-rewriting LOAD DATA
statement looks like this, using the STR_TO_DATE() function (see Recipe 6.3) to interpret
the input dates:

mysql> LOAD DATA LOCAL INFILE 'newdata.txt'
 -> INTO TABLE t (name,@date,value)
 -> SET date = STR_TO_DATE(@date,'%m/%d/%y');

With the %y format specifier in STR_TO_DATE(), MySQL converts the two-digit years to
four-digit years automatically, so the original MM/DD/YY values end up as ISO values in
CCYY-MM-DD format. The resulting data after import looks like this:

+-------+------------+-------+
| name | date | value |
+-------+------------+-------+
name1	1999-01-01	38
name2	2000-12-31	40
name3	2013-02-28	42
name4	2018-01-02	44
+-------+------------+-------+

This procedure assumes that MySQL’s automatic conversion of two-digit years to four
digits produces the correct century values. This means that the year part of the values
must correspond to years in the range from 1970 to 2069. If that’s not true, you must
convert the year values some other way. (For some ideas, see Recipe 12.11.)

If the dates are not in a format that STR_TO_DATE() can interpret, perhaps you can write
a stored function to handle them and return ISO date values. In that case, the LOAD DATA
statement looks like this, where my_date_interp() is your stored function name:

mysql> LOAD DATA LOCAL INFILE 'newdata.txt'
 -> INTO TABLE t (name,@date,value)
 -> SET date = my_date_interp(@date);

12.14. Exporting Dates Using Non-ISO Formats
Problem
You want to export date values using a format other than MySQL’s default ISO (CCYY-
MM-DD) format. This might be a requirement when exporting dates from MySQL to
applications that don’t use ISO format.

12.14. Exporting Dates Using Non-ISO Formats | 441

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use an external utility to rewrite the dates to non-ISO format after exporting the data
from MySQL (cvt_date.pl is useful here). Or use the DATE_FORMAT() function to rewrite
the values during the export operation.

Discussion
Suppose that you want to export data from MySQL into an application that doesn’t
understand ISO-format dates. One way to do this is to export the data into a file, leaving
the dates in ISO format. Then run the file through a utility such as cvt_date.pl that
rewrites the dates into the required format (see Recipe 12.12).

Another approach is to export the dates directly in the required format by rewriting
them with DATE_FORMAT(). Suppose that you have the following table:

CREATE TABLE datetbl
(
 i INT,
 c CHAR(10),
 d DATE,
 dt DATETIME,
 ts TIMESTAMP
);

Suppose also that you need to export data from this table, but with the dates in any DATE,
DATETIME, or TIMESTAMP columns rewritten in US format (MM-DD-CCYY). A SELECT
statement that uses the DATE_FORMAT() function to rewrite the dates as required looks
like this:

SELECT
 i,
 c,
 DATE_FORMAT(d, '%m-%d-%Y') AS d,
 DATE_FORMAT(dt, '%m-%d-%Y %T') AS dt,
 DATE_FORMAT(ts, '%m-%d-%Y %T') AS ts
FROM datetbl

If datetbl contains the following rows:
3 abc 2005-12-31 2005-12-31 12:05:03 2005-12-31 12:05:03
4 xyz 2006-01-31 2006-01-31 12:05:03 2006-01-31 12:05:03

The statement generates output that looks like this:
3 abc 12-31-2005 12-31-2005 12:05:03 12-31-2005 12:05:03
4 xyz 01-31-2006 01-31-2006 12:05:03 01-31-2006 12:05:03

12.15. Epilogue
Recall the scenario presented at the beginning of Chapter 11:

442 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose that a file named somedata.csv contains 12 data columns in comma-separated
values (CSV) format. From this file you want to extract only columns 2, 11, 5, and 9,
and use them to create database rows in a MySQL table that contains name, birth,
height, and weight columns. You must make sure that the height and weight are positive
integers, and convert the birth dates from MM/DD/YY format to CCYY-MM-DD format. How
can you do this?

So... how can you do that, based on the techniques discussed in the previous chapter
and this one?

Much of the work can be done using the utility programs developed here. Convert the
file to tab-delimited format with cvt_file.pl (see Recipe 11.6), extract the columns in the
desired order with yank_col.pl (see Recipe 11.7), and rewrite the date column to ISO
format with cvt_date.pl (see Recipe 12.12):

% cvt_file.pl --iformat=csv somedata.csv \
 | yank_col.pl --columns=2,11,5,9 \
 | cvt_date.pl --columns=2 --iformat=us --add-century > tmp

The resulting file, tmp, has four columns representing the name, birth, height, and
weight values, in that order. It needs only to have its height and weight columns checked
to make sure they contain positive integers. Using the is_positive_integer() library
function from the Cookbook_Utils.pm module file, that task can be achieved using a
short special-purpose script that is little more than an input loop:

#!/usr/bin/perl
validate_htwt.pl: Height/weight validation example.

Assumes tab-delimited, linefeed-terminated input lines.

Input columns and the actions to perform on them are as follows:
1: name; echo as given
2: birth; echo as given
3: height; validate as positive integer
4: weight; validate as positive integer

use strict;
use warnings;
use Cookbook_Utils;

while (<>)
{
 chomp;
 my ($name, $birth, $height, $weight) = split (/\t/, $_, 4);
 warn "line $.:height $height is not a positive integer\n"
 if !is_positive_integer ($height);
 warn "line $.:weight $weight is not a positive integer\n"
 if !is_positive_integer ($weight);
}

12.15. Epilogue | 443

www.it-ebooks.info

http://www.it-ebooks.info/

The validate_htwt.pl script produces no output (except for warning messages) because
it need not reformat any of the input values. If tmp passes validation with no errors, it
can be loaded into MySQL with a simple LOAD DATA statement:

mysql> LOAD DATA LOCAL INFILE 'tmp' INTO TABLE tbl_name;

444 | Chapter 12: Validating and Reformatting Data

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Generating and Using Sequences

13.0. Introduction
A sequence is a set of integers (1, 2, 3, …) generated in order on demand. Sequences see
frequent use in databases because many applications require each row in a table to
contain a unique value, and sequences provide an easy way to generate them. This
chapter describes how to use sequences in MySQL:
Using AUTO_INCREMENT columns

The AUTO_INCREMENT column is MySQL’s mechanism for generating a sequence
over a set of rows. Each time you create a row in a table that contains an AUTO_IN
CREMENT column, MySQL automatically generates the next value in the sequence as
the column’s value. This value serves as a unique identifier, making sequences an
easy way to create items such as customer ID numbers, shipping package waybill
numbers, invoice or purchase order numbers, bug report IDs, ticket numbers, or
product serial numbers.

Retrieving sequence values
For many applications, it’s not enough just to create sequence values. It’s also nec‐
essary to determine the sequence value for a just-inserted row. A web application
may need to redisplay to a user the contents of a row created from the contents of
a form just submitted by the user. The value may need to be retrieved so it can be
stored in rows of a related table.

Resequencing techniques
It’s possible to renumber a sequence that has holes in it due to row deletions, reuse
deleted values at the top of a sequence, or add a sequence column to a table that has
none.

445

www.it-ebooks.info

http://www.it-ebooks.info/

Managing multiple simultaneous sequences
Special care is necessary when you need to keep track of multiple sequence values,
such as when you create rows in multiple tables that each have an AUTO_INCRE
MENT column.

Using single-row sequence generators
Sequences can be used as counters. For example, to count votes in a poll, you might
increment a counter each time a candidate receives a vote. The counts for a given
candidate form a sequence, but because the count itself is the only value of interest,
there is no need to generate a new row to record each vote. MySQL provides a
solution for this problem using a mechanism that enables a sequence to be easily
generated within a single table row over time. To store multiple counters in the
table, use a column that identifies each counter uniquely. The same mechanism also
enables creation of sequences that increase by values other than one or by nonuni‐
form values.

The engines for most database systems provide sequence-generation capabilities, al‐
though the implementations tend to be engine-dependent. That’s true for MySQL as
well, so the material in this section is almost completely MySQL-specific, even at the
SQL level. In other words, the SQL for generating sequences is itself nonportable, even
if you use an API such as DBI or JDBC that provides an abstraction layer. Abstract
interfaces may help you process SQL statements portably, but they don’t make non‐
portable SQL portable.

Scripts related to the examples shown in this chapter are located in the sequences di‐
rectory of the recipes distribution. For scripts that create tables used here, look in the
tables directory.

13.1. Creating a Sequence Column and Generating
Sequence Values
Problem
A table must include a column containing unique IDs.

Solution
Use an AUTO_INCREMENT column to generate a sequence.

Discussion
This section provides the essential background on using AUTO_INCREMENT columns,
beginning with an example that demonstrates the sequence-generation mechanism. The
illustration centers around a bug-collection scenario: your eight-year-old son Junior is

446 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

assigned the task of collecting insects for a class project at school. For each insect, Junior
is to record its name (“ant,” “bee,” and so forth), and its date and location of collection.
You have expounded the benefits of MySQL for record-keeping to Junior since his early
days, so upon your arrival home from work that day, he immediately announces the
necessity of completing this project and then, looking you straight in the eye, declares
that it’s clearly a task for which MySQL is well-suited. Who are you to argue? So the two
of you get to work. Junior already collected some specimens after school while waiting
for you to come home and has recorded the following information in his notebook:

Name Date Origin

millipede 2014-09-10 driveway

housefly 2014-09-10 kitchen

grasshopper 2014-09-10 front yard

stink bug 2014-09-10 front yard

cabbage butterfly 2014-09-10 garden

ant 2014-09-10 back yard

ant 2014-09-10 back yard

termite 2014-09-10 kitchen woodwork

Looking over Junior’s notes, you’re pleased to see that even at his tender age, he has
learned to write dates in ISO format. However, you also notice that he’s collected a
millipede and a termite, neither of which actually are insects. You decide to let this pass
for the moment; Junior forgot to bring home the written instructions for the project,
so at this point it’s unclear whether these specimens are acceptable. (You also note with
some alarm Junior’s discovery of termites in the house and make a mental note to call
the exterminator.)

As you consider how to create a table to store this information, it’s apparent that you
need at least name, date, and origin columns corresponding to the types of information
that Junior is required to record:

CREATE TABLE insect
(
 name VARCHAR(30) NOT NULL, # type of insect
 date DATE NOT NULL, # date collected
 origin VARCHAR(30) NOT NULL # where collected
);

However, those columns are insufficient to make the table easy to use. Note that the
records collected thus far are not unique; both ants were collected at the same time and
place. If you put the information into an insect table that has the structure just shown,
neither ant row can be referred to individually because there’s nothing to distinguish
one from another. Unique IDs would be helpful to make the rows distinct and to provide

13.1. Creating a Sequence Column and Generating Sequence Values | 447

www.it-ebooks.info

http://www.it-ebooks.info/

values that make each row easy to refer to. An AUTO_INCREMENT column is good for this
purpose, so a better insect table has a structure like this:

CREATE TABLE insect
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (id),
 name VARCHAR(30) NOT NULL, # type of insect
 date DATE NOT NULL, # date collected
 origin VARCHAR(30) NOT NULL # where collected
);

Go ahead and create the insect table using this second CREATE TABLE statement.
(Recipe 13.2 discusses the particulars of the id column definition.)

Now that you have an AUTO_INCREMENT column, use it to generate new sequence values.
One of the useful properties of an AUTO_INCREMENT column is that you need not assign
its values yourself: MySQL does so for you. There are two ways to generate new AU
TO_INCREMENT values in the id column. One is to explicitly set the id column to NULL.
The following statement inserts the first four of Junior’s specimens into the insect table
that way:

mysql> INSERT INTO insect (id,name,date,origin) VALUES
 -> (NULL,'housefly','2014-09-10','kitchen'),
 -> (NULL,'millipede','2014-09-10','driveway'),
 -> (NULL,'grasshopper','2014-09-10','front yard'),
 -> (NULL,'stink bug','2014-09-10','front yard');

Alternatively, omit the id column from the INSERT statement entirely. MySQL permits
creating rows without explicitly specifying values for columns that have a default value.
MySQL assigns each missing column its default value, and the default for an AUTO_IN
CREMENT column is its next sequence number. Thus, this statement adds Junior’s other
four specimens to the insect table and generates sequence values without naming the
id column at all:

mysql> INSERT INTO insect (name,date,origin) VALUES
 -> ('cabbage butterfly','2014-09-10','garden'),
 -> ('ant','2014-09-10','back yard'),
 -> ('ant','2014-09-10','back yard'),
 -> ('termite','2014-09-10','kitchen woodwork');

Whichever method you use, MySQL determines the sequence number for each row and
assigns it to the id column, as you can verify:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------------+
| id | name | date | origin |
+----+-------------------+------------+------------------+
1	housefly	2014-09-10	kitchen
2	millipede	2014-09-10	driveway
3	grasshopper	2014-09-10	front yard

448 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	back yard
7	ant	2014-09-10	back yard
8	termite	2014-09-10	kitchen woodwork
+----+-------------------+------------+------------------+

As Junior collects more specimens, add more rows to the table and they’ll be assigned
the next values in the sequence (9, 10, …).

The concept underlying AUTO_INCREMENT columns is simple enough in principle: each
time you create a new row, MySQL generates the next number in the sequence and
assigns it to the row. But there are certain subtleties to know about, as well as differences
in how different storage engines handle AUTO_INCREMENT sequences. Awareness of these
issues enables you to use sequences more effectively and avoid surprises. For example,
if you explicitly set the id column to a non-NULL value, one of two things happens:

• If the value is already present in the table, an error occurs if the column cannot
contain duplicates. For the insect table, the id column is a PRIMARY KEY, which
prohibits duplicates:

mysql> INSERT INTO insect (id,name,date,origin) VALUES
 -> (3,'cricket','2014-09-11','basement');
ERROR 1062 (23000): Duplicate entry '3' for key 'PRIMARY'

• If the value is not present in the table, MySQL inserts the row using that value. In
addition, if the value is larger than the current sequence counter, the table’s counter
is reset to the value plus one. The insect table at this point has sequence values 1
through 8. If you insert a new row with the id column set to 20, that becomes the
new maximum value. Subsequent inserts that automatically generate id values will
begin at 21. The values 9 through 19 become unused, resulting in a gap in the
sequence.

The next recipe looks in more detail at how to define AUTO_INCREMENT columns and
how they behave.

13.2. Choosing the Definition for a Sequence Column
Problem
You want to know more about how to define a sequence column.

Solution
Use the guidelines given here.

13.2. Choosing the Definition for a Sequence Column | 449

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
You should follow certain principles when creating AUTO_INCREMENT columns. As an
illustration, consider how Recipe 13.1 declared the id column in the insect table:

id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (id)

The AUTO_INCREMENT keyword informs MySQL that it should generate successive se‐
quence numbers for the column’s values, but the other information is important, too:

• INT is the column’s base data type. You need not necessarily use INT, but the column
should be one of the integer types: TINYINT, SMALLINT, MEDIUMINT, INT, or BIGINT.

• UNSIGNED prohibits negative column values. This is not a required attribute for
AUTO_INCREMENT columns, but sequences consist only of positive integers (normally
beginning at 1), so there is no reason to permit negative values. Furthermore, not
declaring the column to be UNSIGNED cuts the range of your sequence in half. For
example, TINYINT has a range of –128 to 127. Because sequences include only pos‐
itive values, the effective range of a TINYINT sequence is 1 to 127. TINYINT UN
SIGNED has a range of 0 to 255, which increases the upper end of the sequence to
255. The specific integer type determines the maximum sequence value. The fol‐
lowing table shows the maximum unsigned value of each type; use this information
to choose a type big enough to hold the largest value you’ll need:

Data type Maximum unsigned value

TINYINT 255

SMALLINT 65,535

MEDIUMINT 16,777,215

INT 4,294,967,295

BIGINT 18,446,744,073,709,551,615

Sometimes people omit UNSIGNED so that they can create rows that contain negative
numbers in the sequence column (using –1 to signify “has no ID,” for example.)
This is a bad idea. MySQL makes no guarantees about how negative numbers will
be treated in an AUTO_INCREMENT column, so by using them you’re playing with fire.
For example, if you resequence the column, all your negative values get turned into
positive sequence numbers.

• AUTO_INCREMENT columns cannot contain NULL values, so id is declared as NOT
NULL. (It’s true that you can specify NULL as the column value when you insert a new
row, but for an AUTO_INCREMENT column, that really means “generate the next se‐
quence value.”) MySQL automatically defines AUTO_INCREMENT columns as NOT
NULL if you forget.

450 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

• AUTO_INCREMENT columns must be indexed. Normally, because a sequence column
exists to provide unique identifiers, you use a PRIMARY KEY or UNIQUE index to
enforce uniqueness. Tables can have only one PRIMARY KEY, so if the table already
has some other PRIMARY KEY column, you can declare an AUTO_INCREMENT column
to have a UNIQUE index instead:

id INT UNSIGNED NOT NULL AUTO_INCREMENT,
UNIQUE (id)

When you create a table that contains an AUTO_INCREMENT column, it’s also important
to consider which storage engine to use (InnoDB, MyISAM, and so forth). The engine
affects behaviors such as reuse of values deleted from the top of the sequence (see
Recipe 13.3).

13.3. The Effect of Row Deletions on Sequence Generation
Problem
You want to know what happens to a sequence when you delete rows from a table that
contains an AUTO_INCREMENT column.

Solution
It depends on which rows you delete and on the storage engine.

Discussion
We have thus far considered how MySQL generates sequence values in an AUTO_INCRE
MENT column under circumstances where rows are only added to a table. But it’s unre‐
alistic to assume that rows will never be deleted. What happens to the sequence then?

Refer again to Junior’s bug-collection project, for which you currently have an insect
table that looks like this:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------------+
| id | name | date | origin |
+----+-------------------+------------+------------------+
1	housefly	2014-09-10	kitchen
2	millipede	2014-09-10	driveway
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	back yard
7	ant	2014-09-10	back yard
8	termite	2014-09-10	kitchen woodwork
+----+-------------------+------------+------------------+

13.3. The Effect of Row Deletions on Sequence Generation | 451

www.it-ebooks.info

http://www.it-ebooks.info/

That’s about to change because after Junior remembers to bring home the written in‐
structions for the project, you read through them and discover two things that affect
the table contents:

• Specimens should include only insects, not insect-like creatures such as millipedes
and termites.

• The purpose of the project is to collect as many different specimens as possible, not
just as many specimens as possible. This means that only one ant row is permitted.

These instructions dictate that a few rows be removed from table—specifically those
with id values 2 (millipede), 8 (termite), and 7 (duplicate ant). Thus, despite Junior’s
evident disappointment at the reduction in the size of his collection, you instruct him
to remove those rows by issuing a DELETE statement:

mysql> DELETE FROM insect WHERE id IN (2,8,7);

This statement illustrates why it’s useful to have unique ID values: they enable you to
specify any row unambiguously. The ant rows are identical except for the id value.
Without that column in the table, it would be more difficult to delete just one of them
(though not impossible; see Recipe 16.4).

After removing the unsuitable rows, the table has these remaining:
mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	back yard
+----+-------------------+------------+------------+

The id column sequence now has a hole (row 2 is missing) and the values 7 and 8 at the
top of the sequence are no longer present. How do these deletions affect future insert
operations? What sequence number will the next new row get?

Removing row 2 creates a gap in the middle of the sequence. This has no effect on
subsequent inserts, because MySQL makes no attempt to fill in holes in a sequence. On
the other hand, deleting rows 7 and 8 removes values at the top of the sequence. For
InnoDB or MyISAM tables, values are not reused. The next sequence number is the
smallest positive integer that has not previously been used. (For a sequence that stands
at 8, the next row gets a value of 9 even if you delete rows 7 and 8 first.) If you require
strictly monotonic sequences, you can use one of these storage engines. For other storage
engines, values removed at the top of the sequence may or may not be reused. Check
the properties of the engine before using it.

452 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

If a table uses an engine that differs in value-reuse behavior from the behavior you
require, use ALTER TABLE to change the table to a more appropriate engine. For example,
to change a table to use InnoDB (to prevent sequence values from being reused after
rows are deleted), do this:

ALTER TABLE tbl_name ENGINE = InnoDB;

If you don’t know what engine a table uses, consult INFORMATION_SCHEMA or use SHOW
TABLE STATUS or SHOW CREATE TABLE to find out. For example, the following statement
indicates that insect is an InnoDB table:

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.TABLES
 -> WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'insect';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

To empty a table and reset the sequence counter (even for engines that normally do not
reuse values), use TRUNCATE TABLE:

TRUNCATE TABLE tbl_name;

13.4. Retrieving Sequence Values
Problem
After creating a row that includes a new sequence number, you want to know what that
number is.

Solution
Invoke the LAST_INSERT_ID() function. If you’re writing a program, your MySQL API
may provide a way to get the value directly without issuing an SQL statement.

Discussion
It’s common for applications to need to know the AUTO_INCREMENT value of a newly
created row. For example, if you write a web-based frontend for entering rows into
Junior’s insect table, you might have the application display each new row nicely for‐
matted in a new page immediately after you hit the Submit button. To do this, you must
know the new id value so that you can retrieve the proper row. Another situation in
which the AUTO_INCREMENT value is needed occurs when you use multiple tables: after
inserting a row in a master table, you need its ID to create rows in other related tables
that refer to the master row. (Recipe 13.11 shows how to do this.)

13.4. Retrieving Sequence Values | 453

www.it-ebooks.info

http://www.it-ebooks.info/

When you generate a new AUTO_INCREMENT value, one way to get the value from the
server is to execute a statement that invokes the LAST_INSERT_ID() function. In addi‐
tion, many MySQL APIs provide a client-side mechanism for making the value available
without issuing another statement. This recipe discusses both methods and compares
their characteristics.

Using LAST_INSERT_ID() to obtain AUTO_INCREMENT values

The obvious (but incorrect) way to determine a new row’s AUTO_INCREMENT value uses
the fact that when MySQL generates the value, it becomes the largest sequence number
in the column. Thus, you might try using the MAX() function to retrieve it:

SELECT MAX(id) FROM insect;

This is unreliable; if another client inserts a row before you issue the SELECT statement,
MAX(id) returns that client’s ID, not yours. It’s possible to solve this problem by grouping
the INSERT and SELECT statements as a transaction or locking the table, but MySQL
provides a simpler way to obtain the proper value: invoke the LAST_INSERT_ID() func‐
tion. It returns the most recent AUTO_INCREMENT value generated within your session,
regardless of what other clients are doing. For example, to insert a row into the in
sect table and retrieve its id value, do this:

mysql> INSERT INTO insect (name,date,origin)
 -> VALUES('cricket','2014-09-11','basement');
mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 9 |
+------------------+

Or you can use the new value to retrieve the entire row, without even knowing what
it is:

mysql> INSERT INTO insect (name,date,origin)
 -> VALUES('moth','2014-09-14','windowsill');
mysql> SELECT * FROM insect WHERE id = LAST_INSERT_ID();
+----+------+------------+------------+
| id | name | date | origin |
+----+------+------------+------------+
| 10 | moth | 2014-09-14 | windowsill |
+----+------+------------+------------+

The server maintains the value returned by LAST_INSERT_ID() on a session-specific
basis. This property is by design, and it’s important because it prevents clients from
interfering with each other. When you generate an AUTO_INCREMENT value, LAST_IN
SERT_ID() returns that specific value, even when other clients generate new rows in the
same table in the meantime.

454 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

Using API-specific methods to obtain AUTO_INCREMENT values

LAST_INSERT_ID() is an SQL function, so you can use it from within any client that can
execute SQL statements. On the other hand, you do have to execute a separate statement
to get its value. When you write your own programs, you may have another choice.
Many MySQL interfaces include an API-specific extension that returns the AUTO_IN
CREMENT value without executing an additional statement. Most of our APIs have this
capability.
Perl

Use the mysql_insertid attribute to obtain the AUTO_INCREMENT value generated
by a statement. This attribute is accessed through either a database handle or a
statement handle, depending on how you issue the statement. The following ex‐
ample references it through the database handle:

$dbh->do ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
my $seq = $dbh->{mysql_insertid};

To access mysql_insertid as a statement-handle attribute, use prepare() and
execute():

my $sth = $dbh->prepare ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
$sth->execute ();
my $seq = $sth->{mysql_insertid};

Ruby
The Ruby DBI driver for MySQL exposes the client-side AUTO_INCREMENT value
using the func database-handle method that returns driver-specific values:

dbh.do("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')")
seq = dbh.func(:insert_id)

PHP
The PDO interface for MySQL has a lastInsertId() database-handle method that
returns the most recent AUTO_INCREMENT value:

$dbh->exec ("INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')");
$seq = $dbh->lastInsertId ();

Python
The Connector/Python driver for DB API provides a lastrowid cursor object at‐
tribute that returns the most recent AUTO_INCREMENT value:

cursor = conn.cursor()
cursor.execute('''
 INSERT INTO insect (name,date,origin)
 VALUES('moth','2014-09-14','windowsill')

13.4. Retrieving Sequence Values | 455

www.it-ebooks.info

http://www.it-ebooks.info/

 ''')
seq = cursor.lastrowid

Java
The Connector/J JDBC driver getGeneratedKeys() method returns AUTO_INCRE
MENT values. It can be used with a Statement or PreparedStatement object if you
supply an additional Statement.RETURN_GENERATED_KEYS argument during the
statement-execution process to indicate that you want to retrieve the sequence val‐
ue.

For a Statement:
Statement s = conn.createStatement ();
s.executeUpdate ("INSERT INTO insect (name,date,origin)"
 + " VALUES('moth','2014-09-14','windowsill')",
 Statement.RETURN_GENERATED_KEYS);

For a PreparedStatement:
PreparedStatement s = conn.prepareStatement (
 "INSERT INTO insect (name,date,origin)"
 + " VALUES('moth','2014-09-14','windowsill')",
 Statement.RETURN_GENERATED_KEYS);
s.executeUpdate ();

Then generate a new result set from getGeneratedKeys() to access the sequence
value:

long seq;
ResultSet rs = s.getGeneratedKeys ();
if (rs.next ())
{
 seq = rs.getLong (1);
}
else
{
 throw new SQLException ("getGeneratedKeys() produced no value");
}
rs.close ();
s.close ();

Server-side and client-side sequence value retrieval compared

As mentioned earlier, the server maintains the value of LAST_INSERT_ID() on a session-
specific basis. By contrast, the API-specific methods for accessing AUTO_INCREMENT
values directly are implemented on the client side. Server-side and client-side sequence
value retrieval methods have some similarities, but also some differences.

All methods, both server-side and client-side, require that you access an AUTO_INCRE
MENT value within the same MySQL session that generated it. If you generate an AU
TO_INCREMENT value, then disconnect from the server and reconnect before attempting

456 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

to access the value, you’ll get zero. Within a given session, the persistence of AUTO_IN
CREMENT values can be much longer on the server side of the session:

• After you execute a statement that generates an AUTO_INCREMENT value, the value
remains available through LAST_INSERT_ID() even if you execute other statements,
as long as none of those statements generate an AUTO_INCREMENT value.

• The sequence value available using client-side API methods typically is set for every
statement, not only those that generate AUTO_INCREMENT values. If you execute an
INSERT statement that generates a new value and then execute some other statement
before accessing the client-side sequence value, it probably will have been set to
zero. The precise behavior varies among APIs, but to be safe, you can do this: when
a statement generates a sequence value that you won’t use immediately, save the
value in a variable that you can refer to later. Otherwise, you may find the sequence
value wiped out by the time you try to access it. (For more on this topic, see
Recipe 13.10.)

13.5. Renumbering an Existing Sequence
Problem
You have gaps in a sequence column, and you want to resequence it.

Solution
Don’t bother. Or at least don’t do so without a good reason, of which there are very few.

Discussion
If you insert rows into a table that has an AUTO_INCREMENT column and never delete any
of them, values in the column form an unbroken sequence. If you delete rows, the
sequence begins to have holes in it. For example, Junior’s insect table currently looks
something like this, with gaps in the sequence (assuming that you’ve inserted the cricket
and moth rows shown in Recipe 13.4):

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
3	grasshopper	2014-09-10	front yard
4	stink bug	2014-09-10	front yard
5	cabbage butterfly	2014-09-10	garden
6	ant	2014-09-10	back yard
9	cricket	2014-09-11	basement

13.5. Renumbering an Existing Sequence | 457

www.it-ebooks.info

http://www.it-ebooks.info/

| 10 | moth | 2014-09-14 | windowsill |
+----+-------------------+------------+------------+

MySQL won’t attempt to eliminate these gaps by filling in the unused values when you
insert new rows. People who dislike this behavior tend to resequence AUTO_INCRE
MENT columns periodically to eliminate the holes. The examples in this section show
how to do that. It’s also possible to extend the range of an existing sequence (see
Recipe 13.6), force deleted values at the top of a sequence to be reused (see
Recipe 13.7), number rows in a particular order (see Recipe 13.8), or add a sequence
column to a table that doesn’t currently have one (see Recipe 13.9).

Before you decide to resequence an AUTO_INCREMENT column, consider whether that’s
really necessary. It usually isn’t, and in some cases can cause you real problems. For
example, you should not resequence a column containing values that are referenced by
another table. Renumbering the values destroys their correspondence to values in the
other table, making it impossible to properly relate rows in the two tables to each other.

Here are reasons I have seen advanced for resequencing a column:
Aesthetics

Some people prefer unbroken sequences to sequences with holes in them. If this is
why you want to resequence, there’s probably not much I can say to convince you
otherwise. Nevertheless, it’s not a particularly good reason.

Performance
The impetus for resequencing may stem from the notion that doing so “com‐
pacts” a sequence column by removing gaps and enables MySQL to run statements
more quickly. This is not true. MySQL doesn’t care whether there are holes, and
there is no performance gain to be had by renumbering an AUTO_INCREMENT col‐
umn. In fact, resequencing affects performance negatively in the sense that the table
remains locked while MySQL performs the operation—which may take a nontrivial
amount of time for a large table. Other clients can read from the table while this is
happening, but clients trying to insert new rows block until the operation is com‐
plete.

Running out of numbers
The sequence column’s data type and signedness determine its upper limit (see
Recipe 13.2). If an AUTO_INCREMENT sequence is approaching the upper limit of its
data type, renumbering packs the sequence and frees up more values at the top.
This may be a legitimate reason to resequence a column, but it is still unnecessary
in many cases. You may be able to change the column data type to increase its upper
limit without changing the values stored in the column; see Recipe 13.6.

If you’re still determined to resequence a column, it’s easy to do: drop the column from
the table; then put it back. MySQL renumbers the values in the column in unbroken

458 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

sequence. The following example shows how to renumber the id values in the insect
table using this technique:

mysql> ALTER TABLE insect DROP id;
mysql> ALTER TABLE insect
 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST,
 -> ADD PRIMARY KEY (id);

The first ALTER TABLE statement gets rid of the id column (and as a result also drops the
PRIMARY KEY, because the column to which it refers is no longer present). The second
statement restores the column to the table and establishes it as the PRIMARY KEY. (The
FIRST keyword places the column first in the table, which is where it was originally.
Normally, ADD puts columns at the end of the table.)

When you add an AUTO_INCREMENT column to a table, MySQL automatically numbers
all the rows consecutively, so the resulting contents of the insect table look like this:

mysql> SELECT * FROM insect ORDER BY id;
+----+-------------------+------------+------------+
| id | name | date | origin |
+----+-------------------+------------+------------+
1	housefly	2014-09-10	kitchen
2	grasshopper	2014-09-10	front yard
3	stink bug	2014-09-10	front yard
4	cabbage butterfly	2014-09-10	garden
5	ant	2014-09-10	back yard
6	cricket	2014-09-11	basement
7	moth	2014-09-14	windowsill
+----+-------------------+------------+------------+

One problem with resequencing a column using separate ALTER TABLE statements is that
the table is without that column for the interval between the two operations. This might
cause difficulties for other clients that try to access the table during that time. To prevent
this from happening, perform both operations with a single ALTER TABLE statement:

mysql> ALTER TABLE insect
 -> DROP id,
 -> ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT FIRST;

MySQL permits multiple actions to be done with ALTER TABLE (something not true for
all database systems). However, notice that this multiple-action statement is not simply
a concatenation of the two single-action ALTER TABLE statements. The difference is that
it is unnecessary to reestablish the PRIMARY KEY: MySQL doesn’t drop it unless the in‐
dexed column is missing after all the actions specified in the ALTER TABLE statement
have been performed.

13.5. Renumbering an Existing Sequence | 459

www.it-ebooks.info

http://www.it-ebooks.info/

13.6. Extending the Range of a Sequence Column
Problem
You want to avoid resequencing a column, but you’re running out of room for new
sequence numbers.

Solution
Check whether you can make the column UNSIGNED or change it to use a larger integer
type.

Discussion
Resequencing an AUTO_INCREMENT column changes the contents of potentially every
row in the table. It’s often possible to avoid this by extending the range of the column,
which changes the table’s structure rather than its contents:

• If the data type is signed, make it UNSIGNED to double the range of available values.
Suppose that an id column currently is defined like this:

id MEDIUMINT NOT NULL AUTO_INCREMENT

The upper range of a signed MEDIUMINT column is 8,388,607. To increase this to
16,777,215, make the column UNSIGNED with ALTER TABLE:

ALTER TABLE tbl_name MODIFY id MEDIUMINT UNSIGNED NOT NULL AUTO_INCREMENT;

• If your column is already UNSIGNED and it is not already the largest integer type
(BIGINT), converting it to a larger type increases its range. Use ALTER TABLE for this,
too. Convert the id column in the previous example from MEDIUMINT to BIGINT like
so:

ALTER TABLE tbl_name MODIFY id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT;

Recipe 13.2 shows the ranges for each integer data type, which can help you choose an
appropriate type.

13.7. Reusing Values at the Top of a Sequence
Problem
You’ve deleted rows at the top end of your sequence. Can you avoid resequencing the
column but still reuse the values that have been deleted?

460 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Yes. Use ALTER TABLE to reset the sequence counter. New sequence numbers will begin
with the value one larger than the current maximum in the table.

Discussion
If you have removed rows only from the top of the sequence, those that remain are still
in order with no gaps. (For example, if you have rows numbered 1 to 100 and you remove
the rows with numbers 91 to 100, the remaining rows are still in unbroken sequence
from 1 to 90.) In this special case, it’s unnecessary to renumber the column. Instead, tell
MySQL to resume the sequence beginning with the value one larger than the highest
existing sequence number by executing this statement, which causes MySQL to reset
the sequence counter down as far as it can for new rows:

ALTER TABLE tbl_name AUTO_INCREMENT = 1;

You can use ALTER TABLE to reset the sequence counter if a sequence column contains
gaps in the middle, but doing so still reuses only values deleted from the top of the
sequence. It does not eliminate the gaps. Suppose that a table contains sequence values
from 1 to 10, from which you delete the rows for values 3, 4, 5, 9, and 10. The maximum
remaining value is 8, so if you use ALTER TABLE to reset the sequence counter, the next
row is given a value of 9, not 3. To resequence a table to eliminate the gaps, see
Recipe 13.5.

13.8. Ensuring That Rows Are Renumbered in a Particular
Order
Problem
You resequenced a column, but MySQL didn’t number the rows the way you want.

Solution
Select the rows into another table, using an ORDER BY clause to place them in the order
you want, and let MySQL number them according to the sort order as it performs the
operation.

Discussion
When you resequence an AUTO_INCREMENT column, MySQL is free to pick the rows from
the table in any order, so it doesn’t necessarily renumber them in the order that you
expect. This doesn’t matter at all if your only requirement is that each row have a unique
identifier. But you might have an application for which it’s important that the rows be

13.8. Ensuring That Rows Are Renumbered in a Particular Order | 461

www.it-ebooks.info

http://www.it-ebooks.info/

assigned sequence numbers in a particular order. For example, you may want the se‐
quence to correspond to the order in which rows were created, as indicated by a TIME
STAMP column. To assign numbers in a particular order, use this procedure:

1. Create an empty clone of the table (see Recipe 4.1).
2. Copy rows from the original into the clone using INSERT INTO … SELECT. Copy all

columns except the AUTO_INCREMENT column, using an ORDER BY clause to specify
the order in which rows are copied (and thus the order in which MySQL assigns
numbers to the AUTO_INCREMENT column).

3. Drop the original table and rename the clone to have the original table’s name.
4. If the table is a large MyISAM table and has multiple indexes, it is more efficient to

create the new table initially with no indexes except the one on the AUTO_INCRE
MENT column. Then copy the original table into the new table and use ALTER TABLE
to add the remaining indexes afterward.

An alternative procedure:

1. Create a new table that contains all the columns of the original table except the
AUTO_INCREMENT column.

2. Use INSERT INTO … SELECT to copy the non-AUTO_INCREMENT columns from the
original table into the new table.

3. Use TRUNCATE TABLE on the original table to empty it; this also resets the sequence
counter to 1.

4. Copy rows from the new table back to the original table, using an ORDER BY clause
to sort rows into the order in which you want sequence numbers assigned. MySQL
assigns sequence values to the AUTO_INCREMENT column.

13.9. Sequencing an Unsequenced Table
Problem
You forgot to include a sequence column when you created a table. Is it too late to
sequence the table rows?

Solution
No. Add an AUTO_INCREMENT column using ALTER TABLE; MySQL creates the column
and numbers its rows.

462 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
To add a sequence to a table that doesn’t currently contain one, use ALTER TABLE to create
an AUTO_INCREMENT column. Suppose that a table contains name and age columns, but
no sequence column:

mysql> SELECT * FROM t;
+----------+------+
| name | age |
+----------+------+
boris	47
clarence	62
abner	53
+----------+------+

Add a sequence column named id to the table as follows:
mysql> ALTER TABLE t
 -> ADD id INT NOT NULL AUTO_INCREMENT,
 -> ADD PRIMARY KEY (id);
mysql> SELECT * FROM t ORDER BY id;
+----------+------+----+
| name | age | id |
+----------+------+----+
boris	47	1
clarence	62	2
abner	53	3
+----------+------+----+

MySQL numbers the rows for you; it’s unnecessary to assign the values yourself. Very
handy.

By default, ALTER TABLE adds new columns to the end of the table. To place a column
at a specific position, use FIRST or AFTER at the end of the ADD clause. The following
ALTER TABLE statements are similar to the one just shown, but place the id column first
in the table or after the name column, respectively:

ALTER TABLE t
 ADD id INT NOT NULL AUTO_INCREMENT FIRST,
 ADD PRIMARY KEY (id);

ALTER TABLE t
 ADD id INT NOT NULL AUTO_INCREMENT AFTER name,
 ADD PRIMARY KEY (id);

13.9. Sequencing an Unsequenced Table | 463

www.it-ebooks.info

http://www.it-ebooks.info/

13.10. Managing Multiple Auto-Increment Values
Simultaneously
Problem
You’re executing multiple statements that generate AUTO_INCREMENT values, and it’s nec‐
essary to keep track of them independently. For example, you’re inserting rows into
multiple tables, each of which has its own AUTO_INCREMENT column.

Solution
Save the sequence values in variables for later use. Alternatively, if you execute sequence-
generating statements from within a program, you might be able to issue the statements
using separate connection or statement objects to keep them from getting mixed up.

Discussion
As described in Recipe 13.4, the LAST_INSERT_ID() server-side sequence value function
is set each time a statement generates an AUTO_INCREMENT value, whereas client-side
sequence indicators may be reset for every statement. What if you issue a statement that
generates an AUTO_INCREMENT value, but you don’t want to refer to that value until after
issuing a second statement that also generates an AUTO_INCREMENT value? In this case,
the original value is no longer accessible, either through LAST_INSERT_ID() or as a
client-side value. To retain access to it, save the value first before issuing the second
statement. There are several ways to do this:

• At the SQL level, save the value in a user-defined variable after issuing a statement
that generates an AUTO_INCREMENT value:

INSERT INTO tbl_name (id,...) VALUES(NULL,...);
SET @saved_id = LAST_INSERT_ID();

Then you can issue other statements without regard to their effect on LAST_IN
SERT_ID(). To use the original AUTO_INCREMENT value in a subsequent statement,
refer to the @saved_id variable.

• At the API level, save the AUTO_INCREMENT value in an API language variable. This
can be done by saving the value returned from either LAST_INSERT_ID() or any
API-specific extension that is available.

• Some APIs enable you to maintain separate client-side AUTO_INCREMENT values. For
example, Perl DBI statement handles have a mysql_insertid attribute, and the
attribute value for one handle is unaffected by activity on another. In Java, use
separate Statement or PreparedStatement objects.

464 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

See Recipe 13.11 for application of these techniques to situations in which you must
insert rows into multiple tables that each contain an AUTO_INCREMENT column.

13.11. Using Auto-Increment Values to Associate Tables
Problem
You use sequence values from one table as keys in a second table so that you can associate
rows in the two tables with each other. But the associations aren’t being set up properly.

Solution
You’re probably not inserting rows in the proper order, or you’re losing track of the
sequence values. Change the insertion order, or save the sequence values so that you
can refer to them when you need them.

Discussion
Be careful with an AUTO_INCREMENT value used as an ID value in a master table if you
also store the value in detail table rows for the purpose of linking the detail rows to the
proper master table row. Suppose that an invoice table lists invoice information for
customer orders, and an inv_item table lists the individual items associated with each
invoice. Here, invoice is the master table and inv_item is the detail table. To uniquely
identify each order, include an AUTO_INCREMENT column inv_id in the invoice table.
You’d also store the appropriate invoice number in each inv_item table row so that you
can tell which invoice it goes with. The tables might look something like this:

CREATE TABLE invoice
(
 inv_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (inv_id),
 date DATE NOT NULL
 # ... other columns could go here
 # ... (customer ID, shipping address, etc.)
);
CREATE TABLE inv_item
(
 inv_id INT UNSIGNED NOT NULL, # invoice ID (from invoice table)
 INDEX (inv_id),
 qty INT, # quantity
 description VARCHAR(40) # description
);

For this kind of table relationship, it’s typical to insert a row into the master table first
(to generate the AUTO_INCREMENT value that identifies the row), and then insert the detail
rows using LAST_INSERT_ID() to obtain the master row ID. If a customer buys a ham‐
mer, three boxes of nails, and (in anticipation of finger-bashing with the hammer) a

13.11. Using Auto-Increment Values to Associate Tables | 465

www.it-ebooks.info

http://www.it-ebooks.info/

dozen bandages, the rows pertaining to the order can be inserted into the two tables
like so:

INSERT INTO invoice (inv_id,date)
 VALUES(NULL,CURDATE());
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),1,'hammer');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),3,'nails, box');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(LAST_INSERT_ID(),12,'bandage');

The first INSERT adds a row to the invoice master table and generates a new AUTO_IN
CREMENT value for its inv_id column. The following INSERT statements each add a row
to the inv_item detail table, using LAST_INSERT_ID() to get the invoice number. This
associates the detail rows with the proper master row.

What if you have multiple invoices to process? There’s a right way and a wrong way to
enter the information. The right way is to insert all the information for the first invoice,
then proceed to the next. The wrong way is to add all the master rows into the in
voice table, then add all the detail rows to the inv_item table. If you do that, all the new
detail rows in the inv_item table have the AUTO_INCREMENT value from the most recently
entered invoice row. Thus, all items appear to be part of that invoice, and rows in the
two tables don’t have the proper associations.

If the detail table contains its own AUTO_INCREMENT column, you must be even more
careful about how you add rows to the tables. Suppose that you want each row in the
inv_item table to have a unique identifier. To do that, create the inv_item table as
follows with an AUTO_INCREMENT column named item_id:

CREATE TABLE inv_item
(
 inv_id INT UNSIGNED NOT NULL, # invoice ID (from invoice table)
 item_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # item ID
 PRIMARY KEY (item_id),
 qty INT, # quantity
 description VARCHAR(40) # description
);

The inv_id column enables each inv_item row to be associated with the proper in
voice table row, just as with the original table structure. In addition, item_id uniquely
identifies each item row. However, now that both tables contain an AUTO_INCREMENT
column, you cannot enter information for an invoice the same way as before. If you
execute the INSERT statements shown previously, they now produce a different result
due to the change in the inv_item table structure. The INSERT into the invoice table
works properly. So does the first INSERT into the inv_item table; LAST_INSERT_ID()
returns the inv_id value from the master row in the invoice table. However, this INSERT
also generates its own AUTO_INCREMENT value (for the item_id column), which changes

466 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

the value of LAST_INSERT_ID() and causes the master row inv_id value to be “lost.” As
a result, each of the remaining inserts into the inv_item table stores the preceding row’s
item_id value into the inv_id column. This causes the second and following rows to
have incorrect inv_id values.

To avoid this difficulty, save the sequence value generated by the insert into the master
table and use the saved value for the inserts into the detail table. To save the value, use
a user-defined SQL variable or a variable maintained by your program. Recipe 13.10
describes those techniques, which apply here as follows:

• Use a user-defined variable: Save the master row AUTO_INCREMENT value in a user-
defined variable for use when inserting the detail rows:

INSERT INTO invoice (inv_id,date)
 VALUES(NULL,CURDATE());
SET @inv_id = LAST_INSERT_ID();
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,1,'hammer');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,3,'nails, box');
INSERT INTO inv_item (inv_id,qty,description)
 VALUES(@inv_id,12,'bandage');

• Use a variable maintained by your program: This method is similar to the previous
one, but applies only from within an API. Insert the master row, and then save the
AUTO_INCREMENT value into an API variable for use when inserting detail rows. For
example, in Ruby, access the AUTO_INCREMENT value using the insert_id database-
handle attribute:

dbh.do("INSERT INTO invoice (inv_id,date) VALUES(NULL,CURDATE())")
inv_id = dbh.func(:insert_id)
sth = dbh.prepare("INSERT INTO inv_item (inv_id,qty,description)
 VALUES(?,?,?)")
sth.execute(inv_id, 1, "hammer")
sth.execute(inv_id, 3, "nails, box")
sth.execute(inv_id, 12, "bandage")

13.12. Using Sequence Generators as Counters
Problem
You’re interested only in counting events, so there’s no point in creating a table row for
each sequence value.

Solution
Use a sequence-generation mechanism that uses a single row per counter.

13.12. Using Sequence Generators as Counters | 467

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
AUTO_INCREMENT columns are useful for generating sequences across a set of individual
rows. But some applications require only a count of the number of times an event occurs,
and there’s no benefit from creating a separate row for each event. Instances include
web page or banner ad hit counters, a count of items sold, or the number of votes in a
poll. Such applications need only a single row to hold the count as it changes over time.
MySQL provides a mechanism for this that enables counts to be treated like AUTO_IN
CREMENT values so that you can not only increment the count, but retrieve the updated
value easily.

To count a single type of event, use a trivial table with a single row and column. For
example, to record copies sold of a book, create a table like this:

CREATE TABLE booksales (copies INT UNSIGNED);

However, if you’re counting sales for multiple book titles, that method doesn’t work well.
You certainly don’t want to create a separate single-row counting table per book. Instead,
count them all within a single table by including a column that uniquely identifies each
book. The following table does this using a title column for the book title in addition
to a copies column that records the number of copies sold:

CREATE TABLE booksales
(
 title VARCHAR(60) NOT NULL, # book title
 copies INT UNSIGNED NOT NULL, # number of copies sold
 PRIMARY KEY (title)
);

To record sales for a given book, different approaches are possible:

• Initialize a row for the book with a copies value of 0:
INSERT INTO booksales (title,copies) VALUES('The Greater Trumps',0);

Then increment the copies value for each sale:
UPDATE booksales SET copies = copies+1 WHERE title = 'The Greater Trumps';

This method requires that you remember to initialize a row for each book or the
UPDATE will fail.

• Use INSERT with ON DUPLICATE KEY UPDATE, which initializes the row with a count
of 1 for the first sale and increments the count for subsequent sales:

INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',1)
ON DUPLICATE KEY UPDATE copies = copies+1;

This is simpler because the same statement works to initialize and update the sales
count.

468 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

To retrieve the sales count (for example, to display a message to customers such as “you
just purchased copy n of this book”), issue a SELECT query for the same book title:

SELECT copies FROM booksales WHERE title = 'The Greater Trumps';

Unfortunately, this is not quite correct. Suppose that between the times when you update
and retrieve the count, some other person buys a copy of the book (and thus increments
the copies value). Then the SELECT statement won’t actually produce the value you
incremented the sales count to, but rather its most recent value. In other words, other
clients can affect the value before you have time to retrieve it. This is similar to the
problem discussed in Recipe 13.4 that can occur if you try to retrieve the most recent
AUTO_INCREMENT value from a column by invoking MAX(col_name) rather than LAST_IN
SERT_ID().

There are ways around this (such as by grouping the two statements as a transaction or
by locking the table), but MySQL provides a simpler solution based on LAST_IN
SERT_ID(). If you call LAST_INSERT_ID() with an expression argument, MySQL treats
it like an AUTO_INCREMENT value. To use this feature with the booksales table, modify
the count-incrementing statement slightly:

INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',LAST_INSERT_ID(1))
ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1);

The statement uses the LAST_INSERT_ID(expr) construct both to initialize and to in‐
crement the count. MySQL treats the expression argument like an AUTO_INCREMENT
value, so that you can invoke LAST_INSERT_ID() later with no argument to retrieve the
value:

SELECT LAST_INSERT_ID();

By setting and retrieving the copies column this way, you always get back the value you
set it to, even if some other client updated it in the meantime. If you issue the INSERT
statement from within an API that provides a mechanism for fetching the most recent
AUTO_INCREMENT value directly, you need not even issue the SELECT query. For example,
using Connector/Python, update a count and get the new value using the lastrowid
attribute:

cursor = conn.cursor()
cursor.execute('''
 INSERT INTO booksales (title,copies)
 VALUES('The Greater Trumps',LAST_INSERT_ID(1))
 ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1)
 ''')
count = cursor.lastrowid
cursor.close()
conn.commit()

In Java, the operation looks like this:

13.12. Using Sequence Generators as Counters | 469

www.it-ebooks.info

http://www.it-ebooks.info/

Statement s = conn.createStatement ();
s.executeUpdate (
 "INSERT INTO booksales (title,copies)"
 + "VALUES('The Greater Trumps',LAST_INSERT_ID(1))"
 + "ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1)",
 Statement.RETURN_GENERATED_KEYS);
long count;
ResultSet rs = s.getGeneratedKeys ();
if (rs.next ())
{
 count = rs.getLong (1);
}
else
{
 throw new SQLException ("getGeneratedKeys() produced no value");
}
rs.close ();
s.close ();

Use of LAST_INSERT_ID(expr) for sequence generation has certain other properties that
differ from true AUTO_INCREMENT sequences:

• AUTO_INCREMENT values increment by one each time, whereas values generated by
LAST_INSERT_ID(expr) can be any nonnegative value you want. For example, to
produce the sequence 10, 20, 30, …, increment the count by 10 each time. You need
not even increment the counter by the same value each time. If you sell a dozen
copies of a book rather than a single copy, update its sales count as follows:

INSERT INTO booksales (title,copies)
VALUES('The Greater Trumps',LAST_INSERT_ID(12))
ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+12);

• To reset a counter, simply set it to the desired value. Suppose that you want to report
to book buyers the sales for the current month, rather than the total sales (for ex‐
ample, to display messages like “you’re the nth buyer this month”). To clear the
counters to zero at the beginning of each month, use this statement:

UPDATE booksales SET copies = 0;

• One property that’s not so desirable is that the value generated by LAST_IN
SERT_ID(expr) is not uniformly available via client-side retrieval methods under
all circumstances. You can get it after UPDATE or INSERT statements, but not for SET
statements. If you generate a value as follows (in Ruby), the client-side value re‐
turned by insert_id is 0, not 48:

dbh.do("SET @x = LAST_INSERT_ID(48)")
seq = dbh.func(:insert_id)

To get the value in this case, ask the server for it:
seq = dbh.select_one("SELECT LAST_INSERT_ID()")[0]

470 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

See Also
Recipe 20.12 uses this single-row sequence-generation mechanism as the basis for im‐
plementing web page hit counters.

13.13. Generating Repeating Sequences
Problem
You require a sequence that contains cycles.

Solution
Generate a sequence and use it to produce cyclic elements with division and modulo
operations.

Discussion
Some sequence-generation problems require values that go through cycles. Suppose
that you manufacture items such as pharmaceutical products or automobile parts, and
you must be able to track them by lot number if manufacturing problems are discovered
later that require items sold within a particular lot to be recalled. Suppose also that you
pack and distribute items 12 units to a box and 6 boxes to a case. In this situation, item
identifiers are three-part values: the unit number (with a value from 1 to 12), the box
number (with a value from 1 to 6), and a lot number (with a value from 1 to the highest
current case number).

This item-tracking problem appears to require that you maintain three counters, so you
might generate the next identifier value using an algorithm like this:

retrieve most recently used case, box, and unit numbers
unit = unit + 1 # increment unit number
if (unit > 12) # need to start a new box?
{
 unit = 1 # go to first unit of next box
 box = box + 1
}
if (box > 6) # need to start a new case?
{
 box = 1 # go to first box of next case
 case = case + 1
}
store new case, box, and unit numbers

Alternatively, it’s possible simply to assign each item a sequence number identifier and
derive the corresponding case, box, and unit numbers from it. The identifier can come
from an AUTO_INCREMENT column or a single-row sequence generator. The formulas for

13.13. Generating Repeating Sequences | 471

www.it-ebooks.info

http://www.it-ebooks.info/

determining the case, box, and unit numbers for any item from its sequence number
look like this:

unit_num = ((seq - 1) % 12) + 1
box_num = (int ((seq - 1) / 12) % 6) + 1
case_num = int ((seq - 1)/(6 * 12)) + 1

The following table illustrates the relationship between some sample sequence numbers
and the corresponding case, box, and unit numbers:

seq case box unit

1 1 1 1

12 1 1 12

13 1 2 1

72 1 6 12

73 2 1 1

144 2 6 12

472 | Chapter 13: Generating and Using Sequences

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Using Joins and Subqueries

14.0. Introduction
Most queries in earlier chapters used a single table, but for any application of even
moderate complexity, you’ll likely need to use multiple tables. Some questions simply
cannot be answered using a single table, and the real power of a relational database
comes into play when you combine the information from multiple sources:

• To combine rows from tables to obtain more comprehensive information than can
be obtained from individual tables alone

• To hold intermediate results for a multiple-stage operation
• To modify rows in one table based on information from another

This chapter focuses on two types of statements that use multiple tables: joins between
tables and subqueries that nest one SELECT within another. It covers the following topics:
Comparing tables to find matches or mismatches

To solve such problems, you should know which types of joins apply. Inner joins
show which rows in one table match rows in another. Outer joins show matching
rows, but also find rows in one table not matched by rows in another.

Deleting unmatched rows
If two datasets are related, but imperfectly, you can determine which rows are un‐
matched and remove them as necessary.

Comparing a table to itself
Some problems require comparing a table to itself. This is similar to performing a
join between different tables, except that you must use table aliases to disambiguate
table references.

473

www.it-ebooks.info

http://www.it-ebooks.info/

Producing master-detail and many-to-many relationships
Joins enable production of lists or summaries when each item in one table can match
many in the other, or when each item in either table can match many in the other.

Scripts that create tables used in this chapter are located in the tables directory of the
recipes distribution. For scripts that implement techniques discussed here, look in the
joins directory.

14.1. Finding Matches Between Tables
Problem
You need to perform a task that requires information from more than one table.

Solution
Use a join—that is, a query that lists multiple tables in its FROM clause and tells MySQL
how to match information from them.

Discussion
The essential idea behind a join is that it matches rows in one table with rows in one or
more other tables. Joins enable you to combine information from multiple tables when
each one answers only part of the question in which you’re interested.

A complete join that produces all possible row combinations is called a Cartesian prod‐
uct. For example, joining each row in a 100-row table to each row in a 200-row table
produces a result containing 100 × 200 = 20,000 rows. With larger tables, or joins be‐
tween more than two tables, the result set for a Cartesian product easily becomes im‐
mense, so a join normally includes an ON or USING comparison clause to produce only
the desired matches between tables. (This requires that each table have one or more
columns of common information that link them together logically.) You can also include
a WHERE clause that restricts which of the joined rows to select. Each clause narrows the
focus of the query.

This section introduces join syntax and demonstrates how joins answer specific types
of questions when you are looking for matches between tables. Other sections show
how to identify mismatches between tables (see Recipe 14.2) and how to compare a table
to itself (see Recipe 14.4). The examples assume that you have an art collection and use
the following two tables to record your acquisitions. artist lists those painters whose
works you want to collect, and painting lists each painting you’ve actually purchased:

CREATE TABLE artist
(
 a_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # artist ID
 name VARCHAR(30) NOT NULL, # artist name

474 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

 PRIMARY KEY (a_id),
 UNIQUE (name)
);

CREATE TABLE painting
(
 a_id INT UNSIGNED NOT NULL, # artist ID
 p_id INT UNSIGNED NOT NULL AUTO_INCREMENT, # painting ID
 title VARCHAR(100) NOT NULL, # title of painting
 state VARCHAR(2) NOT NULL, # state where purchased
 price INT UNSIGNED, # purchase price (dollars)
 INDEX (a_id),
 PRIMARY KEY (p_id)
);

You’ve just begun the collection, so the tables contain only a few rows:
mysql> SELECT * FROM artist ORDER BY a_id;
+------+----------+
| a_id | name |
+------+----------+
1	Da Vinci
2	Monet
3	Van Gogh
4	Renoir
+------+----------+	
mysql> SELECT * FROM painting ORDER BY a_id, p_id;	
+------+------+-------------------+-------+-------+	
a_id	p_id
+------+------+-------------------+-------+-------+	
1	1
1	2
3	3
3	4
4	5
+------+------+-------------------+-------+-------+

The low values in the price column of the painting table betray the fact that your
collection actually contains only cheap imitations, not the originals. Well, that’s all right:
who can afford the originals?

Each table contains partial information about your collection. For example, the ar
tist table doesn’t tell you which paintings each artist produced, and the painting table
lists artist IDs but not their names. To use the information in both tables, write a query
that performs a join. A join names two or more tables after the FROM keyword. In the
output column list, use * to select all columns from all tables, tbl_name.* to select all
columns from a given table, or name specific columns from the joined tables or ex‐
pressions based on those columns.

14.1. Finding Matches Between Tables | 475

www.it-ebooks.info

http://www.it-ebooks.info/

The simplest join involves two tables and selects all columns from each. The following
join between the artist and painting tables shows this (the ORDER BY clause makes the
result easier to read):

mysql> SELECT * FROM artist INNER JOIN painting ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	3	3	Starry Night	KY	48
1	Da Vinci	4	5	Les Deux Soeurs	NE	64
1	Da Vinci	1	2	Mona Lisa	MI	87
1	Da Vinci	3	4	The Potato Eaters	KY	67
2	Monet	1	2	Mona Lisa	MI	87
2	Monet	3	4	The Potato Eaters	KY	67
2	Monet	1	1	The Last Supper	IN	34
2	Monet	3	3	Starry Night	KY	48
2	Monet	4	5	Les Deux Soeurs	NE	64
3	Van Gogh	1	2	Mona Lisa	MI	87
3	Van Gogh	3	4	The Potato Eaters	KY	67
3	Van Gogh	1	1	The Last Supper	IN	34
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	4	5	Les Deux Soeurs	NE	64
4	Renoir	1	1	The Last Supper	IN	34
4	Renoir	3	3	Starry Night	KY	48
4	Renoir	4	5	Les Deux Soeurs	NE	64
4	Renoir	1	2	Mona Lisa	MI	87
4	Renoir	3	4	The Potato Eaters	KY	67
+------+----------+------+------+-------------------+-------+-------+

An INNER JOIN produces results that combine values in one table with values in another
table. The preceding query specifies no restrictions on row matching, so the join gen‐
erates all row combinations (that is, the Cartesian product). This result illustrates why
such a join generally is not useful: it produces a lot of unmeaningful output. Clearly,
you don’t maintain these tables to match every artist with every painting.

To answer questions meaningfully, produce only the relevant matches by including
appropriate join conditions. For example, to produce a list of paintings together with
the artist names, associate rows from the two tables using a simple WHERE clause that
matches values based on the artist ID column that is common to both tables and serves
to link them:

mysql> SELECT * FROM artist INNER JOIN painting
 -> WHERE artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	1	2	Mona Lisa	MI	87
3	Van Gogh	3	3	Starry Night	KY	48

476 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY | 67 |
| 4 | Renoir | 4 | 5 | Les Deux Soeurs | NE | 64 |
+------+----------+------+------+-------------------+-------+-------+

The column names in the WHERE clause include table qualifiers to make it clear which
a_id values to compare. The result indicates who painted each painting, and, conversely,
which paintings by each artist are in your collection.

Joins and Indexes
A join can easily cause MySQL to process large numbers of row combinations, so it’s a
good idea to index the comparison columns. Otherwise, performance drops off quickly
as table sizes increase. For the artist and painting tables, joins are made by comparing
the a_id columns. If you look back at the CREATE TABLE statements for those tables, you
see that a_id is indexed in each table.

Another way to write the same join indicates the matching conditions with an ON clause:
SELECT * FROM artist INNER JOIN painting
ON artist.a_id = painting.a_id
ORDER BY artist.a_id;

In the special case of equality comparisons between columns with the same name in
both tables, you can use an INNER JOIN with a USING clause instead. This requires no
table qualifiers and names each joined column only once:

SELECT * FROM artist INNER JOIN painting
USING (a_id)
ORDER BY a_id;

For SELECT * queries, the USING form produces a result that differs from the ON form: it
returns only one instance of each join column, so a_id appears once, not twice.

Any of ON, USING, or WHERE can include comparisons, so how do you know which join
conditions to put in each clause? As a rule of thumb, it’s conventional to use ON or USING
to specify how to join the tables, and the WHERE clause to restrict which of the joined
rows to select. For example, to join tables based on the a_id column, but select only
rows for paintings obtained in Kentucky, use an ON (or USING) clause to match the rows
in the two tables, and a WHERE clause to test the state column:

mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.state = 'KY';
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
| 3 | Van Gogh | 3 | 3 | Starry Night | KY | 48 |

14.1. Finding Matches Between Tables | 477

www.it-ebooks.info

http://www.it-ebooks.info/

| 3 | Van Gogh | 3 | 4 | The Potato Eaters | KY | 67 |
+------+----------+------+------+-------------------+-------+-------+

The preceding queries use SELECT * to display all columns. To be more selective, name
only those columns in which you’re interested:

mysql> SELECT artist.name, painting.title, painting.state, painting.price
 -> FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.state = 'KY';
+----------+-------------------+-------+-------+
| name | title | state | price |
+----------+-------------------+-------+-------+
| Van Gogh | Starry Night | KY | 48 |
| Van Gogh | The Potato Eaters | KY | 67 |
+----------+-------------------+-------+-------+

Joins can use more than two tables. Suppose that you prefer to see complete state names
rather than abbreviations in the preceding query result. The states table used in earlier
chapters maps state abbreviations to names; add it to the previous query to display name
rather than abbreviation:

mysql> SELECT artist.name, painting.title, states.name, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN states
 -> ON artist.a_id = painting.a_id AND painting.state = states.abbrev
 -> WHERE painting.state = 'KY';
+----------+-------------------+----------+-------+
| name | title | name | price |
+----------+-------------------+----------+-------+
| Van Gogh | Starry Night | Kentucky | 48 |
| Van Gogh | The Potato Eaters | Kentucky | 67 |
+----------+-------------------+----------+-------+

Another common use of three-way joins is enumerating many-to-many relationships
(see Recipe 14.6).

By including appropriate conditions in your joins, you can answer very specific ques‐
tions:

• Which paintings did Van Gogh paint? Use the a_id value to find matching rows,
add a WHERE clause to restrict output to rows that contain the artist name, and select
the title from those rows:

mysql> SELECT painting.title
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> WHERE artist.name = 'Van Gogh';
+-------------------+
| title |
+-------------------+
| Starry Night |
| The Potato Eaters |
+-------------------+

478 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

• Who painted the Mona Lisa? Again, use the a_id column to join the rows, but this
time use the WHERE clause to restrict output to rows that contain the title, and select
the artist name from those rows:

mysql> SELECT artist.name
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> WHERE painting.title = 'Mona Lisa';
+----------+
| name |
+----------+
| Da Vinci |
+----------+

• For which artists did you purchase paintings in Kentucky or Indiana? This is similar
to the previous statement, but tests a different column in the painting table (state)
to restrict output to rows for KY or IN:

mysql> SELECT DISTINCT artist.name
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> WHERE painting.state IN ('KY','IN');
+----------+
| name |
+----------+
| Da Vinci |
| Van Gogh |
+----------+

The statement also uses DISTINCT to display each artist name just once. Try it
without DISTINCT; Van Gogh appears twice because you obtained two Van Goghs
in Kentucky.

• Joins used with aggregate functions produce summaries. This statement shows how
many paintings you have per artist:

mysql> SELECT artist.name, COUNT(*) AS 'number of paintings'
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+
| name | number of paintings |
+----------+---------------------+
Da Vinci	2
Renoir	1
Van Gogh	2
+----------+---------------------+

A more elaborate statement uses aggregates to also show how much you paid for
each artist’s paintings, in total and on average:

mysql> SELECT artist.name,
 -> COUNT(*) AS 'number of paintings',
 -> SUM(painting.price) AS 'total price',
 -> AVG(painting.price) AS 'average price'
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;

14.1. Finding Matches Between Tables | 479

www.it-ebooks.info

http://www.it-ebooks.info/

+----------+---------------------+-------------+---------------+
| name | number of paintings | total price | average price |
+----------+---------------------+-------------+---------------+
Da Vinci	2	121	60.5000
Renoir	1	64	64.0000
Van Gogh	2	115	57.5000
+----------+---------------------+-------------+---------------+

The preceding summary statements produce output only for those artists in the ar
tist table for whom you actually have acquired paintings. (For example, Monet is listed
in the artist table but is not present in the summary because you have none of his
paintings yet.) To summarize all artists, including those for whom you have no paintings,
you must use a different kind of join—specifically, an outer join:

• Joins written with INNER JOIN are inner joins. They produce a result only for values
in one table that match values in another table.

• An outer join can produce those matches as well, but also can show you which
values in one table are missing from the other. Recipe 14.2 introduces outer joins.

The tbl_name.col_name notation that qualifies a column name with a table name is
always permitted in a join but can be shortened to just col_name if the name appears in
only one of the joined tables. In that case, MySQL can determine without ambiguity
which table the column comes from, and no table name qualifier is necessary. We can’t
do that for the following join. Both tables have an a_id column, so the ON clause column
references are ambiguous:

mysql> SELECT * FROM artist INNER JOIN painting ON a_id = a_id;
ERROR 1052 (23000): Column 'a_id' in on clause is ambiguous

By contrast, the following query is unambiguous. Each instance of a_id is qualified with
the appropriate table name, only artist has a name column, and only painting has
title and state columns:

mysql> SELECT name, title, state FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY name;
+----------+-------------------+-------+
| name | title | state |
+----------+-------------------+-------+
Da Vinci	The Last Supper	IN
Da Vinci	Mona Lisa	MI
Renoir	Les Deux Soeurs	NE
Van Gogh	Starry Night	KY
Van Gogh	The Potato Eaters	KY
+----------+-------------------+-------+

480 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

To make the meaning of a statement clearer to human readers, it’s often useful to qualify
column names even when that’s not strictly necessary as far as MySQL is concerned. I
tend to use qualified names in join examples for that reason.

To avoid writing complete table names when qualifying column references, give each
table a short alias and refer to its columns using the alias. The following two statements
are equivalent:

SELECT artist.name, painting.title, states.name, painting.price
FROM artist INNER JOIN painting INNER JOIN states
ON artist.a_id = painting.a_id AND painting.state = states.abbrev;

SELECT a.name, p.title, s.name, p.price
FROM artist AS a INNER JOIN painting AS p INNER JOIN states AS s
ON a.a_id = p.a_id AND p.state = s.abbrev;

In AS alias_name clauses, the AS is optional.

For complicated statements that select many columns, aliases can save a lot of typing.
In addition, for some types of statements, aliases are not only convenient but necessary,
as will become evident when we get to the topic of self-joins (see Recipe 14.4).

Joining Tables from Different Databases
To perform a join between tables located in different databases, qualify table and column
names sufficiently that MySQL knows what you’re referring to. Thus far, we have used
the artist and painting tables with the implicit understanding that both are in the
cookbook database, so we can simply refer to the tables without specifying any database
name when cookbook is the default database. For example, the following statement uses
the two tables to associate artists with their paintings:

SELECT artist.name, painting.title
FROM artist INNER JOIN painting
ON artist.a_id = painting.a_id;

But suppose instead that artist is in the db1 database and painting is in the db2
database. To indicate this, qualify each table name with a prefix that specifies which
database it’s in. The fully qualified form of the join looks like this:

SELECT db1.artist.name, db2.painting.title
FROM db1.artist INNER JOIN db2.painting
ON db1.artist.a_id = db2.painting.a_id;

Table aliases can simplify that considerably:

SELECT a.name, p.title
FROM db1.artist AS a INNER JOIN db2.painting AS p
ON a.a_id = p.a_id;

If there is no default database, or it is neither db1 nor db2, it’s necessary to fully qualify
both table names. If the default database is either db1 or db2, you can dispense with the

14.1. Finding Matches Between Tables | 481

www.it-ebooks.info

http://www.it-ebooks.info/

corresponding qualifiers. If the default database is db1, you can omit the db1 qualifiers.
Conversely, if the default database is db2, no db2 qualifiers are necessary.

14.2. Finding Mismatches Between Tables
Problem
You want to find rows in one table that have no match in another. Or you want to produce
a list on the basis of a join between tables, and you want the list to include an entry for
every row in the first table, including those for which no match occurs in the second
table.

Solution
Use an outer join (a LEFT JOIN or a RIGHT JOIN) or a NOT IN subquery.

Discussion
Recipe 14.1 focuses on inner joins, which find matches between two tables. However,
the answers to some questions require determining which rows do not have a match
(or, stated another way, which rows have values missing from the other table). For ex‐
ample, you might want to know artists in the artist table for whom you have no paint‐
ings yet. Similar questions occur in other contexts:

• You have a list of potential customers, and another list of people who have placed
orders. To focus sales efforts on people who are not yet actual customers, produce
the set of people who are in the first list but not the second.

• You have one list of baseball players, and another list of players who have hit home
runs. To determine which players in the first list have not hit a home run, produce
the set of players who are in the first list but not the second.

These types of questions require use of an outer join. Like inner joins, an outer join
finds matches between tables. But unlike an inner join, an outer join also determines
which rows in one table have no match in another. Two types of outer join are LEFT
JOIN and RIGHT JOIN.

To see how outer joins are useful, consider the problem of determining which artists in
the artist table are missing from the painting table. At present, the tables are small,
so it’s easy to examine them visually and see that you have no paintings by Monet (there
are no painting rows with an a_id value of 2):

482 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT * FROM artist ORDER BY a_id;
+------+----------+
| a_id | name |
+------+----------+
1	Da Vinci
2	Monet
3	Van Gogh
4	Renoir
+------+----------+	
mysql> SELECT * FROM painting ORDER BY a_id, p_id;	
+------+------+-------------------+-------+-------+	
a_id	p_id
+------+------+-------------------+-------+-------+	
1	1
1	2
3	3
3	4
4	5
+------+------+-------------------+-------+-------+

As you acquire more paintings and the tables get larger, it won’t be so easy to eyeball
them and answer questions by inspection. Can you answer it using SQL? Sure, although
first attempts at a solution often look something like the following statement, which
uses a not-equal condition to look for mismatches between the two tables:

mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id <> painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	4	5	Les Deux Soeurs	NE	64
1	Da Vinci	3	4	The Potato Eaters	KY	67
1	Da Vinci	3	3	Starry Night	KY	48
2	Monet	1	1	The Last Supper	IN	34
2	Monet	4	5	Les Deux Soeurs	NE	64
2	Monet	3	4	The Potato Eaters	KY	67
2	Monet	3	3	Starry Night	KY	48
2	Monet	1	2	Mona Lisa	MI	87
3	Van Gogh	1	2	Mona Lisa	MI	87
3	Van Gogh	1	1	The Last Supper	IN	34
3	Van Gogh	4	5	Les Deux Soeurs	NE	64
4	Renoir	3	3	Starry Night	KY	48
4	Renoir	1	2	Mona Lisa	MI	87
4	Renoir	1	1	The Last Supper	IN	34
4	Renoir	3	4	The Potato Eaters	KY	67
+------+----------+------+------+-------------------+-------+-------+

The query may look plausible but its result obviously is not. For example, it falsely
indicates that each painting was painted by several different artists. The problem is that
the statement lists all combinations of values from the two tables in which the artist ID
values aren’t the same. What you really need is a list of values in artist that aren’t present

14.2. Finding Mismatches Between Tables | 483

www.it-ebooks.info

http://www.it-ebooks.info/

at all in painting, but an inner join can only produce results based on values that are
present in both tables. It can’t tell you anything about values that are missing from one
of them.

When faced with the need to find values in one table with no match in (or missing from)
another table, you should get in the habit of thinking, “Aha, that’s a LEFT JOIN prob‐
lem.” A LEFT JOIN is one type of outer join: it’s similar to an inner join in that it matches
rows in the first (left) table with rows in the second (right) table. In addition, if a left
table row has no match in the right table, a LEFT JOIN still produces a row—one in which
all the columns from the right table are set to NULL. This means you can find values that
are missing from the right table by looking for NULL. It’s easier to understand how this
happens by working in stages. Begin with an inner join that displays matching rows:

mysql> SELECT * FROM artist INNER JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	1	2	Mona Lisa	MI	87
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	3	4	The Potato Eaters	KY	67
4	Renoir	4	5	Les Deux Soeurs	NE	64
+------+----------+------+------+-------------------+-------+-------+

In this output, the first a_id column comes from the artist table and the second one
comes from the painting table.

Now substitute LEFT for INNER to see the result you get from an outer join:
mysql> SELECT * FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> ORDER BY artist.a_id;
+------+----------+------+------+-------------------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+----------+------+------+-------------------+-------+-------+
1	Da Vinci	1	1	The Last Supper	IN	34
1	Da Vinci	1	2	Mona Lisa	MI	87
2	Monet	NULL	NULL	NULL	NULL	NULL
3	Van Gogh	3	3	Starry Night	KY	48
3	Van Gogh	3	4	The Potato Eaters	KY	67
4	Renoir	4	5	Les Deux Soeurs	NE	64
+------+----------+------+------+-------------------+-------+-------+

Compared to the inner join, the outer join produces an additional row for every ar
tist row that has no painting table match, with all painting columns set to NULL.

Next, to restrict the output only to the unnmatched artist rows, add a WHERE clause
that looks for NULL values in any painting column that cannot otherwise contain

484 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

NULL. This filters out the rows that the inner join produces, leaving those produced only
by the outer join:

mysql> SELECT * FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.a_id IS NULL;
+------+-------+------+------+-------+-------+-------+
| a_id | name | a_id | p_id | title | state | price |
+------+-------+------+------+-------+-------+-------+
| 2 | Monet | NULL | NULL | NULL | NULL | NULL |
+------+-------+------+------+-------+-------+-------+

Finally, to show only the artist table values that are missing from the painting table,
write the output column list to name only columns from the artist table. The result is
that the LEFT JOIN lists those left-table rows containing a_id values not present in the
right table:

mysql> SELECT artist.* FROM artist LEFT JOIN painting
 -> ON artist.a_id = painting.a_id
 -> WHERE painting.a_id IS NULL;
+------+-------+
| a_id | name |
+------+-------+
| 2 | Monet |
+------+-------+

A similar kind of operation reports each left-table value along with an indicator as to
whether it’s present in the right table. To do this, perform a LEFT JOIN that counts the
number of times each left-table value occurs in the right table. A count of zero indicates
that the value is not present. The following statement lists each artist from the artist
table and shows whether you have any paintings by the artist:

mysql> SELECT artist.name,
 -> IF(COUNT(painting.a_id)>0,'yes','no') AS 'in collection?'
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+----------------+
| name | in collection? |
+----------+----------------+
Da Vinci	yes
Monet	no
Renoir	yes
Van Gogh	yes
+----------+----------------+

A RIGHT JOIN is an outer join that is like LEFT JOIN but reverses the roles of the left and
right tables. Semantically, RIGHT JOIN forces the matching process to produce a row
from each table in the right table, even in the absence of a corresponding row in the left
table. Syntactically, tbl1 LEFT JOIN tbl2 is equivalent to tbl2 RIGHT JOIN tbl1. There‐
fore, references to LEFT JOIN in this book apply to RIGHT JOIN as well if you reverse the
roles of the tables.

14.2. Finding Mismatches Between Tables | 485

www.it-ebooks.info

http://www.it-ebooks.info/

Another way to identify values present in one table but missing from another is to use
a NOT IN subquery. The following example finds artists not represented in the paint
ing table; compare it to the earlier LEFT JOIN that answers the same question:

mysql> SELECT * FROM artist
 -> WHERE a_id NOT IN (SELECT a_id FROM painting);
+------+-------+
| a_id | name |
+------+-------+
| 2 | Monet |
+------+-------+

Other Ways to Write LEFT JOIN and RIGHT JOIN Queries
As with INNER JOIN, if the names of the columns to be matched in an outer join are the
same in both tables and you compare them with the = operator, you can use a USING
clause rather than ON. For example, the following two statements are equivalent:

SELECT * FROM t1 LEFT JOIN t2 ON t1.n = t2.n;
SELECT * FROM t1 LEFT JOIN t2 USING (n);

As are these:

SELECT * FROM t1 RIGHT JOIN t2 ON t1.n = t2.n;
SELECT * FROM t1 RIGHT JOIN t2 USING (n);

In the special case that you want to base the comparison on every column that appears
in both tables, you can use NATURAL LEFT JOIN or NATURAL RIGHT JOIN and omit the ON
or USING clause:

SELECT * FROM t1 NATURAL LEFT JOIN t2;
SELECT * FROM t1 NATURAL RIGHT JOIN t2;

See Also
As shown in this section, LEFT JOIN is useful for finding values with no match in another
table or for showing whether each value is matched. LEFT JOIN may also be used to
produce a summary that includes all items in a list, even those for which there’s nothing
to summarize. This is very common for relationships between a master table and a detail
table. For example, a LEFT JOIN can produce “total sales per customer” reports that list
all customers, even those who bought nothing during the summary period. (For infor‐
mation about master-detail lists, see Recipe 14.5.)

LEFT JOIN is also useful for consistency checking when you receive two datafiles that
are supposed to be related, and you want to determine whether they really are. (That is,
you want to check the integrity of their relationship.) Import each file into a MySQL
table, and then run a couple LEFT JOIN statements to determine whether there are un‐
attached rows in one table or the other—that is, rows that have no match in the other

486 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

table. Recipe 14.3 discusses how to identify (and optionally delete) these unattached
rows.

14.3. Identifying and Removing Mismatched or
Unattached Rows
Problem
You have two datasets that are related, but possibly imperfectly so. You want to determine
whether there are records in either dataset that are “unattached” (not matched by any
record in the other dataset), and perhaps remove them if so.

Solution
To identify unmatched values in each table, use a LEFT JOIN or a NOT IN subquery. To
remove them, use DELETE with a NOT IN subquery.

Discussion
Inner joins are useful for identifying matches, and outer joins are useful for identifying
mismatches. This property of outer joins is valuable when you have related datasets for
which the relationship might be imperfect. Mismatches might be found, for example,
when you must verify the integrity of two datafiles received from an external source.

When you have related tables with unmatched rows, you can analyze and modify them
using SQL statements. Specifically, restoring their relationship is a matter of identifying
the unattached rows and then deleting them:

• To identify unattached rows, use a LEFT JOIN, because this is a “find unmatched
rows” problem; alternatively, use a NOT IN subquery (see Recipe 14.2).

• To delete rows that are unmatched, use DELETE with a NOT IN subquery.

It’s useful to know about unmatched data because you can alert whoever gave you the
data. The data collection method might have a flaw that must be corrected. For example,
with sales data, a missing region might mean that some regional manager didn’t report
in and the omission was overlooked.

The following example shows how to identify and remove mismatched rows using two
datasets that describe sales regions and volume of sales per region. One dataset contains
the ID and location of each region:

mysql> SELECT * FROM sales_region ORDER BY region_id;
+-----------+------------------------+
| region_id | name |
+-----------+------------------------+

14.3. Identifying and Removing Mismatched or Unattached Rows | 487

www.it-ebooks.info

http://www.it-ebooks.info/

1	London, United Kingdom
2	Madrid, Spain
3	Berlin, Germany
4	Athens, Greece
+-----------+------------------------+

The other dataset contains sales volume figures. Each row contains the amount of sales
for a given quarter of a year and indicates the sales region to which the row applies:

mysql> SELECT * FROM sales_volume ORDER BY region_id, year, quarter;
+-----------+------+---------+--------+
| region_id | year | quarter | volume |
+-----------+------+---------+--------+
1	2014	1	100400
1	2014	2	120000
3	2014	1	280000
3	2014	2	250000
5	2014	1	18000
5	2014	2	32000
+-----------+------+---------+--------+

A little visual inspection reveals that neither table is fully matched by the other. Sales
regions 2 and 4 are not represented in the sales volume table, and the sales volume table
contains rows for region 5, which is not in the sales region table. But we don’t want to
check the tables by inspection. We want to find unmatched rows by using SQL state‐
ments that do the work.

Mismatch identification is a matter of using outer joins. For example, to find sales re‐
gions for which there are no sales volume rows, use the following LEFT JOIN:

mysql> SELECT sales_region.region_id AS 'unmatched region row IDs'
 -> FROM sales_region LEFT JOIN sales_volume
 -> ON sales_region.region_id = sales_volume.region_id
 -> WHERE sales_volume.region_id IS NULL;
+--------------------------+
| unmatched region row IDs |
+--------------------------+
| 2 |
| 4 |
+--------------------------+

Conversely, to find sales volume rows that are not associated with any known region,
reverse the roles of the two tables:

mysql> SELECT sales_volume.region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume LEFT JOIN sales_region
 -> ON sales_volume.region_id = sales_region.region_id
 -> WHERE sales_region.region_id IS NULL;
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |

488 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

| 5 |
+--------------------------+

In this case, an ID appears more than once in the list if there are multiple volume rows
for a missing region. To see each unmatched ID only once, use SELECT DISTINCT:

mysql> SELECT DISTINCT sales_volume.region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume LEFT JOIN sales_region
 -> ON sales_volume.region_id = sales_region.region_id
 -> WHERE sales_region.region_id IS NULL
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
+--------------------------+

You can also identify mismatches using NOT IN subqueries:
mysql> SELECT region_id AS 'unmatched region row IDs'
 -> FROM sales_region
 -> WHERE region_id NOT IN (SELECT region_id FROM sales_volume);
+--------------------------+
| unmatched region row IDs |
+--------------------------+
| 2 |
| 4 |
+--------------------------+
mysql> SELECT region_id AS 'unmatched volume row IDs'
 -> FROM sales_volume
 -> WHERE region_id NOT IN (SELECT region_id FROM sales_region);
+--------------------------+
| unmatched volume row IDs |
+--------------------------+
| 5 |
| 5 |
+--------------------------+

To get rid of unmatched rows, use a NOT IN subquery in a DELETE statement. To remove
sales_region rows that match no sales_volume rows, do this:

DELETE FROM sales_region
WHERE region_id NOT IN (SELECT region_id FROM sales_volume);

To remove mismatched sales_volume rows that match no sales_region rows, the
statement is similar but with the table roles reversed:

DELETE FROM sales_volume
WHERE region_id NOT IN (SELECT region_id FROM sales_region);

14.3. Identifying and Removing Mismatched or Unattached Rows | 489

www.it-ebooks.info

http://www.it-ebooks.info/

Using Foreign Keys to Enforce Referential Integrity and
Prevent Mismatches

One feature a database system offers to help you maintain consistency between tables
is the ability to define foreign key relationships. This means you can specify explicitly
in the table definition that a primary key in a parent table (such as the region_id column
of the sales_region table) is a parent to a key in another table (the region_id column
in the sales_volume table).

By defining the ID column in the child table as a foreign key to the ID column in the
parent, the database system can enforce certain constraints against illegal operations.
For example, it can prevent you from creating a child row with an ID not present in the
parent or from deleting parent rows without also deleting the corresponding child rows
first. A foreign key implementation may also offer cascaded delete and update: if you
delete or update a parent row, the database engine cascades the effect of the delete or
update to any child tables and automatically deletes or updates the child rows for you.
The InnoDB storage engine in MySQL supports foreign keys and cascaded deletes and
updates.

14.4. Comparing a Table to Itself
Problem
You want to compare rows in a table to other rows in the same table. For example, you
want to find all paintings in your collection by the artist who painted The Potato Eat‐
ers. Or you want to know which states listed in the states table joined the Union in the
same year as New York. Or you want to know which states did not join the Union in the
same year as any other state.

Solution
Problems that require comparing a table to itself involve an operation known as a self-
join. It’s performed much like other joins, except that you must use table aliases so that
you can refer to the same table different ways within the statement.

Discussion
A special case of joining one table to another occurs when both tables are the same. This
is called a self-join. This may be confusing or strange to think about at first, but it’s
perfectly legal. You’ll likely find yourself using self-joins quite often because they are so
important.

490 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

A tip-off that a self-join is required is that you want to know which pairs of rows in a
table satisfy some condition. Suppose that your favorite painting is The Potato Eaters,
and you want to identify all items in your collection that were painted by the same artist.
The artist ID and painting titles that we begin with look like this:

mysql> SELECT a_id, title FROM painting ORDER BY a_id;
+------+-------------------+
| a_id | title |
+------+-------------------+
1	The Last Supper
1	Mona Lisa
3	Starry Night
3	The Potato Eaters
4	Les Deux Soeurs
+------+-------------------+

Solve the problem as follows:

1. Identify which painting table row contains the title The Potato Eaters, so that you
can refer to its a_id value.

2. Match other rows in the table that have the same a_id value.
3. Display the titles from those matching rows.

The trick lies in using the proper notation. First attempts at joining a table to itself often
look something like this:

mysql> SELECT title
 -> FROM painting INNER JOIN painting
 -> ON a_id = a_id;
 -> WHERE title = 'The Potato Eaters';
ERROR 1066 (42000): Not unique table/alias: 'painting'

The column references in that statement are ambiguous because MySQL cannot tell
which instance of the painting table any given column name refers to. The solution is
to alias at least one instance of the table so that you can distinguish column references
by using different table qualifiers. The following statement shows how to do this, using
the aliases p1 and p2 to refer to the painting table different ways:

mysql> SELECT p2.title
 -> FROM painting AS p1 INNER JOIN painting AS p2
 -> ON p1.a_id = p2.a_id
 -> WHERE p1.title = 'The Potato Eaters';
+-------------------+
| title |
+-------------------+
| Starry Night |
| The Potato Eaters |
+-------------------+

14.4. Comparing a Table to Itself | 491

www.it-ebooks.info

http://www.it-ebooks.info/

The statement output illustrates something typical of self-joins: when you begin with a
reference value in one table instance (The Potato Eaters) to find matching rows in a
second table instance (paintings by the same artist), the output includes the reference
value. That makes sense: after all, the reference matches itself. To find only other paint‐
ings by the same artist, explicitly exclude the reference value from the output:

mysql> SELECT p2.title
 -> FROM painting AS p1 INNER JOIN painting AS p2
 -> ON p1.a_id = p2.a_id
 -> WHERE p1.title = 'The Potato Eaters' AND p2.title <> p1.title
+--------------+
| title |
+--------------+
| Starry Night |
+--------------+

The preceding statements use ID value comparisons to match rows in the two table
instances, but any kind of value can be used. For example, to use the states table to
answer the question “Which states joined the Union in the same year as New York?”
perform a temporal pairwise comparison based on the year part of the dates in the table’s
statehood column:

mysql> SELECT s2.name, s2.statehood
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
 -> WHERE s1.name = 'New York'
 -> ORDER BY s2.name;
+----------------+------------+
| name | statehood |
+----------------+------------+
Connecticut	1788-01-09
Georgia	1788-01-02
Maryland	1788-04-28
Massachusetts	1788-02-06
New Hampshire	1788-06-21
South Carolina	1788-05-23
Virginia	1788-06-25
+----------------+------------+

Now suppose that you want to find every pair of states that joined the Union in the same
year. In this case, the output potentially can include any pair of rows from the states
table. A self-join is perfect for this problem:

mysql> SELECT YEAR(s1.statehood) AS year,
 -> s1.name AS name1, s1.statehood AS statehood1,
 -> s2.name AS name2, s2.statehood AS statehood2
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
 -> ORDER BY year, name1, name2;
+------+----------------+------------+----------------+------------+
| year | name1 | statehood1 | name2 | statehood2 |

492 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

+------+----------------+------------+----------------+------------+
1787	Delaware	1787-12-07	New Jersey	1787-12-18
1787	Delaware	1787-12-07	Pennsylvania	1787-12-12
1787	New Jersey	1787-12-18	Delaware	1787-12-07
1787	New Jersey	1787-12-18	Pennsylvania	1787-12-12
1787	Pennsylvania	1787-12-12	Delaware	1787-12-07
1787	Pennsylvania	1787-12-12	New Jersey	1787-12-18
…				
1912	Arizona	1912-02-14	New Mexico	1912-01-06
1912	New Mexico	1912-01-06	Arizona	1912-02-14
1959	Alaska	1959-01-03	Hawaii	1959-08-21
1959	Hawaii	1959-08-21	Alaska	1959-01-03
+------+----------------+------------+----------------+------------+

The condition in the ON clause that requires state pair names not to be identical elimi‐
nates the trivially duplicate rows showing that each state joined the Union in the same
year as itself. But you’ll notice that each remaining pair of states still appears twice. For
example, there is one row that lists Delaware and New Jersey, and another that lists New
Jersey and Delaware. This is often the case with self-joins: they produce pairs of rows
that contain the same values, but for which the values are not in the same order.

Because the values are not listed in the same order within the rows, they are not identical
and you can’t get rid of these “near duplicates” by adding DISTINCT to the statement. To
solve this problem, select rows in such a way that only one row from each pair ever
appears in the query result. Slightly modify the ON clause, from:

ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name

to:
ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name < s2.name

Using < rather than <> selects only those rows in which the first state name is lexically
less than the second, and eliminates rows in which the names appear in opposite order
(as well as rows in which the state names are identical). The resulting query produces
the desired output without duplicates:

mysql> SELECT YEAR(s1.statehood) AS year,
 -> s1.name AS name1, s1.statehood AS statehood1,
 -> s2.name AS name2, s2.statehood AS statehood2
 -> FROM states AS s1 INNER JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name < s2.name
 -> ORDER BY year, name1, name2;
+------+----------------+------------+----------------+------------+
| year | name1 | statehood1 | name2 | statehood2 |
+------+----------------+------------+----------------+------------+
1787	Delaware	1787-12-07	New Jersey	1787-12-18
1787	Delaware	1787-12-07	Pennsylvania	1787-12-12
1787	New Jersey	1787-12-18	Pennsylvania	1787-12-12
…				
1912	Arizona	1912-02-14	New Mexico	1912-01-06

14.4. Comparing a Table to Itself | 493

www.it-ebooks.info

http://www.it-ebooks.info/

| 1959 | Alaska | 1959-01-03 | Hawaii | 1959-08-21 |
+------+----------------+------------+----------------+------------+

For self-join problems of the “Which values are not matched by other rows in the
table?” variety, use a LEFT JOIN rather than an INNER JOIN. An instance of this is the
question “Which states did not join the Union in the same year as any other state?” In
this case, the solution uses a LEFT JOIN of the states table to itself:

mysql> SELECT s1.name, s1.statehood
 -> FROM states AS s1 LEFT JOIN states AS s2
 -> ON YEAR(s1.statehood) = YEAR(s2.statehood) AND s1.name <> s2.name
 -> WHERE s2.name IS NULL
 -> ORDER BY s1.name;
+----------------+------------+
| name | statehood |
+----------------+------------+
Alabama	1819-12-14
Arkansas	1836-06-15
California	1850-09-09
Colorado	1876-08-01
Illinois	1818-12-03
Indiana	1816-12-11
Iowa	1846-12-28
Kansas	1861-01-29
Kentucky	1792-06-01
…	
Tennessee	1796-06-01
Utah	1896-01-04
Vermont	1791-03-04
West Virginia	1863-06-20
Wisconsin	1848-05-29
+----------------+------------+

For each row in the states table, the statement selects rows for which the state has a
statehood value in the same year, not including that state itself. For rows having no
such match, the LEFT JOIN forces the output to contain a row anyway, with all the s2
columns set to NULL. Those rows identify the states with no other state that joined the
Union in the same year.

14.5. Producing Master-Detail Lists and Summaries
Problem
Two tables have a master-detail relationship, and you want to produce a list that shows
each master row with its detail rows or a list that produces a summary of the detail rows
for each master row.

494 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
This is a one-to-many relationship. The solution to this problem involves a join, but the
type of join depends on the question you want answered. To produce a list containing
only master rows for which some detail row exists, use an inner join based on the
primary key in the master table. To produce a list that includes all master rows, even
those with no detail rows, use an outer join.

Discussion
To produce a list from two tables that have a master-detail or parent-child relationship,
a given row in one table might be matched by several rows in the other. These relation‐
ships occur frequently. For example, in business contexts, one-to-many relationships
involve invoices per customer or items per invoice.

This section suggests some master-detail questions that you can ask (and answer) using
the artist and painting tables from earlier in the chapter.

One form of master-detail question for these tables is, “Which paintings did each artist
paint?” This is a simple inner join (see Recipe 14.1). Match each artist row to its
corresponding painting rows based on the artist ID values:

mysql> SELECT artist.name, painting.title
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> ORDER BY name, title;
+----------+-------------------+
| name | title |
+----------+-------------------+
Da Vinci	Mona Lisa
Da Vinci	The Last Supper
Renoir	Les Deux Soeurs
Van Gogh	Starry Night
Van Gogh	The Potato Eaters
+----------+-------------------+

To also list artists for whom you have no paintings, the join output should include rows
in one table that have no match in the other. That’s a form of “find the nonmatching
rows” problem that requires an outer join (see Recipe 14.2). Thus, to list each artist
row, whether or not any painting rows match, use a LEFT JOIN:

mysql> SELECT artist.name, painting.title
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> ORDER BY name, title;
+----------+-------------------+
| name | title |
+----------+-------------------+
Da Vinci	Mona Lisa
Da Vinci	The Last Supper
Monet	NULL
Renoir	Les Deux Soeurs

14.5. Producing Master-Detail Lists and Summaries | 495

www.it-ebooks.info

http://www.it-ebooks.info/

| Van Gogh | Starry Night |
| Van Gogh | The Potato Eaters |
+----------+-------------------+

Rows in the result that have NULL in the title column correspond to artists listed in
the artist table for whom you have no paintings.

The same principles apply when producing summaries using master and detail tables.
For example, to summarize your art collection by number of paintings per artist, you
might ask, “How many paintings are there per artist in the painting table?” To find the
answer based on artist ID but display artist name (from the artist table), count the
paintings with this statement:

mysql> SELECT artist.name, COUNT(painting.a_id) AS paintings
 -> FROM artist INNER JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Renoir	1
Van Gogh	2
+----------+-----------+

On the other hand, you might ask, “How many paintings did each artist paint?” This is
the same question as the previous one (and the same statement answers it), as long as
every artist in the artist table has at least one corresponding painting table row. But
if you have artists in the artist table not yet represented by any paintings in your
collection, they do not appear in the statement output. To produce a summary that also
includes artists with no paintings in the painting table, use a LEFT JOIN:

mysql> SELECT artist.name, COUNT(painting.a_id) AS paintings
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Monet	0
Renoir	1
Van Gogh	2
+----------+-----------+

Beware of a subtle error that is easy to make when writing that kind of statement. Sup‐
pose that you write the COUNT() function slightly differently, like so:

mysql> SELECT artist.name, COUNT(*) AS paintings
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;

496 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

+----------+-----------+
| name | paintings |
+----------+-----------+
Da Vinci	2
Monet	1
Renoir	1
Van Gogh	2
+----------+-----------+

Now every artist appears to have at least one painting. Why the difference? The problem
is the use of COUNT(*) rather than COUNT(painting.a_id). The way LEFT JOIN works
for unmatched rows in the left table is that it generates a row with all the columns from
the right table set to NULL. In the example, the right table is painting. The statement
that uses COUNT(painting.a_id) works correctly because COUNT(expr) counts only
non-NULL values. The statement that uses COUNT(*) is incorrect because it counts
rows, including those containing NULL that correspond to missing artists.

LEFT JOIN is suitable for other types of summaries as well. To produce additional col‐
umns showing the total and average prices of the paintings for each artist in the ar
tist table, use this statement:

mysql> SELECT artist.name,
 -> COUNT(painting.a_id) AS 'number of paintings',
 -> SUM(painting.price) AS 'total price',
 -> AVG(painting.price) AS 'average price'
 -> FROM artist LEFT JOIN painting ON artist.a_id = painting.a_id
 -> GROUP BY artist.name;
+----------+---------------------+-------------+---------------+
| name | number of paintings | total price | average price |
+----------+---------------------+-------------+---------------+
Da Vinci	2	121	60.5000
Monet	0	NULL	NULL
Renoir	1	64	64.0000
Van Gogh	2	115	57.5000
+----------+---------------------+-------------+---------------+

Note that COUNT() is zero for artists that are not represented, but SUM() and AVG() are
NULL. The latter two functions return NULL when applied to a set of values with no non-
NULL values. To display a sum or average value of zero in that case, replace SUM(expr)
and AVG(expr) with IFNULL(SUM(expr),0) and IFNULL(AVG(expr),0).

14.6. Enumerating a Many-to-Many Relationship
Problem
You want to display a relationship between tables when any row in either table might
be matched by multiple rows in the other.

14.6. Enumerating a Many-to-Many Relationship | 497

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
This is a many-to-many relationship. It requires a third table for associating your two
primary tables and a three-way join to produce the correspondences between them.

Discussion
The artist and painting tables used in earlier sections have a one-to-many relation‐
ship: a given artist may have produced many paintings, but each painting was created
by only one artist. One-to-many relationships are relatively simple and the two related
tables can be joined using a column that is common to both.

A many-to-many relationship between tables is more complex. It occurs when a row in
one table may have many matches in the other, and vice versa. An example is the rela‐
tionship between movies and actors: each movie may have multiple actors, and each
actor may have appeared in multiple movies. One way to represent this relationship
uses a table structured as follows, with a row for each movie-actor combination:

mysql> SELECT * FROM movies_actors ORDER BY year, movie, actor;
+------+----------------------------+---------------+
| year | movie | actor |
+------+----------------------------+---------------+
1997	The Fifth Element	Bruce Willis
1997	The Fifth Element	Gary Oldman
1997	The Fifth Element	Ian Holm
1999	The Phantom Menace	Ewan McGregor
1999	The Phantom Menace	Liam Neeson
2001	The Fellowship of the Ring	Elijah Wood
2001	The Fellowship of the Ring	Ian Holm
2001	The Fellowship of the Ring	Ian McKellen
2001	The Fellowship of the Ring	Orlando Bloom
2005	Kingdom of Heaven	Liam Neeson
2005	Kingdom of Heaven	Orlando Bloom
2010	Red	Bruce Willis
2010	Red	Helen Mirren
2011	Unknown	Diane Kruger
2011	Unknown	Liam Neeson
+------+----------------------------+---------------+

The table captures the nature of this many-to-many relationship, but it’s also in non‐
normal form because it unnecessarily stores repetitive information. For example, in‐
formation for each movie is recorded multiple times. To better represent this many-to-
many relationship, use multiple tables:

• Store each movie year and name once in a table named movies.
• Store each actor name once in a table named actors.
• Create a third table, movies_actors_link, that stores movie-actor associations and

serves as a link, or bridge, between the two primary tables. To minimize the infor‐

498 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

mation stored in this table, assign unique IDs to each movie and actor within their
respective tables, and store only those IDs in the movies_actors_link table.

The resulting movie and actor tables look like this:
mysql> SELECT * FROM movies ORDER BY id;
+----+------+----------------------------+
| id | year | movie |
+----+------+----------------------------+
1	1997	The Fifth Element
2	1999	The Phantom Menace
3	2001	The Fellowship of the Ring
4	2005	Kingdom of Heaven
5	2010	Red
6	2011	Unknown
+----+------+----------------------------+		
mysql> SELECT * FROM actors ORDER BY id;		
+----+---------------+		
id	actor	
+----+---------------+		
1	Bruce Willis	
2	Diane Kruger	
3	Elijah Wood	
4	Ewan McGregor	
5	Gary Oldman	
6	Helen Mirren	
7	Ian Holm	
8	Ian McKellen	
9	Liam Neeson	
10	Orlando Bloom	
+----+---------------+

The movies_actors_link table associates movies and actors as follows:
mysql> SELECT * FROM movies_actors_link ORDER BY movie_id, actor_id;
+----------+----------+
| movie_id | actor_id |
+----------+----------+
1	1
1	5
1	7
2	4
2	9
3	3
3	7
3	8
3	10
4	9
4	10
5	1
5	6
6	2

14.6. Enumerating a Many-to-Many Relationship | 499

www.it-ebooks.info

http://www.it-ebooks.info/

| 6 | 9 |
+----------+----------+

You’ll surely notice that the content of the movies_actors_link table is entirely mean‐
ingless from a human perspective. That’s okay: we need never display it explicitly. Its
utility derives from its ability to link the two primary tables in queries, without appearing
in query output itself. The next few examples illustrate this principle. They answer
questions about the movies or actors, using three-way joins that relate the two primary
tables using the link table.

• List all the pairings that show each movie and who acted in it. This statement enu‐
merates all the correspondences between the movie and actor tables and repro‐
duces the information that was originally in the nonnormal movies_actors table:

mysql> SELECT m.year, m.movie, a.actor
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> ORDER BY m.year, m.movie, a.actor;
+------+----------------------------+---------------+
| year | movie | actor |
+------+----------------------------+---------------+
1997	The Fifth Element	Bruce Willis
1997	The Fifth Element	Gary Oldman
1997	The Fifth Element	Ian Holm
1999	The Phantom Menace	Ewan McGregor
1999	The Phantom Menace	Liam Neeson
2001	The Fellowship of the Ring	Elijah Wood
2001	The Fellowship of the Ring	Ian Holm
2001	The Fellowship of the Ring	Ian McKellen
2001	The Fellowship of the Ring	Orlando Bloom
2005	Kingdom of Heaven	Liam Neeson
2005	Kingdom of Heaven	Orlando Bloom
2010	Red	Bruce Willis
2010	Red	Helen Mirren
2011	Unknown	Diane Kruger
2011	Unknown	Liam Neeson
+------+----------------------------+---------------+

• List the actors in a given movie:
mysql> SELECT a.actor
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> WHERE m.movie = 'The Fellowship of the Ring'
 -> ORDER BY a.actor;
+---------------+
| actor |
+---------------+
| Elijah Wood |
| Ian Holm |

500 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

| Ian McKellen |
| Orlando Bloom |
+---------------+

• List the movies in which a given actor has acted:
mysql> SELECT m.year, m.movie
 -> FROM movies AS m INNER JOIN movies_actors_link AS l
 -> INNER JOIN actors AS a
 -> ON m.id = l.movie_id AND a.id = l.actor_id
 -> WHERE a.actor = 'Liam Neeson'
 -> ORDER BY m.year, m.movie;
+------+--------------------+
| year | movie |
+------+--------------------+
1999	The Phantom Menace
2005	Kingdom of Heaven
2011	Unknown
+------+--------------------+

14.7. Finding Per-Group Minimum or Maximum Values
Problem
You want to find which row within each group of rows in a table contains the maximum
or minimum value for a given column. For example, you want to determine the most
expensive painting in your collection for each artist.

Solution
Create a temporary table to hold the per-group maximum or minimum values, then
join the temporary table with the original one to pull out the matching row for each
group. If you prefer a single-query solution, use a subquery in the FROM clause rather
than a temporary table.

Discussion
Many questions involve finding largest or smallest values in a particular table column,
but it’s also common to want to know other values in the row that contains the value.
For example, using the artist and painting tables with the techniques from
Recipe 8.3, it’s possible to answer questions such as “What is the most expensive painting
in the collection, and who painted it?” One solution is to store the highest price in a
user-defined variable, then use the variable to identify the row containing the price so
that you can retrieve other columns from it:

mysql> SET @max_price = (SELECT MAX(price) FROM painting);
mysql> SELECT artist.name, painting.title, painting.price

14.7. Finding Per-Group Minimum or Maximum Values | 501

www.it-ebooks.info

http://www.it-ebooks.info/

 -> FROM artist INNER JOIN painting
 -> ON painting.a_id = artist.a_id
 -> WHERE painting.price = @max_price;
+----------+-----------+-------+
| name | title | price |
+----------+-----------+-------+
| Da Vinci | Mona Lisa | 87 |
+----------+-----------+-------+

The same thing can be done by creating a temporary table to hold the maximum price
and joining it with the other tables:

CREATE TABLE tmp SELECT MAX(price) AS max_price FROM painting;
SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN tmp
ON painting.a_id = artist.a_id
AND painting.price = tmp.max_price;

On the face of it, using a temporary table and a join is just a more complicated way of
answering the question than with a user-defined variable. Does this technique have any
practical value? Yes, it does, because it leads to a more general technique for answering
more difficult questions. The previous statements show information only for the single
most expensive painting in the entire painting table. What if your question is, “What
is the most expensive painting for each artist?” You can’t use a user-defined variable to
answer that question because the answer requires finding one price per artist, and a
variable holds only a single value. But the technique of using a temporary table works
well because the table can hold multiple rows, and a join can find matches for all of
them.

To answer the question, select each artist ID and the corresponding maximum painting
price into a temporary table. This table contains not only the maximum painting price
but the maximum within each group, where “group” is defined as “paintings by a given
artist.” Then use the artist IDs and prices stored in the temporary table to match rows
in the painting table, and join the result with the artist table to get the artist names:

mysql> CREATE TABLE tmp
 -> SELECT a_id, MAX(price) AS max_price FROM painting GROUP BY a_id;
mysql> SELECT artist.name, painting.title, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN tmp
 -> ON painting.a_id = artist.a_id
 -> AND painting.a_id = tmp.a_id
 -> AND painting.price = tmp.max_price;
+----------+-------------------+-------+
| name | title | price |
+----------+-------------------+-------+
Da Vinci	Mona Lisa	87
Van Gogh	The Potato Eaters	67
Renoir	Les Deux Soeurs	64
+----------+-------------------+-------+

502 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

To obtain the same result with a single statement, use a subquery in the FROM clause that
retrieves the same rows contained in the temporary table:

SELECT artist.name, painting.title, painting.price
FROM artist INNER JOIN painting INNER JOIN
(SELECT a_id, MAX(price) AS max_price FROM painting GROUP BY a_id) AS tmp
ON painting.a_id = artist.a_id
AND painting.a_id = tmp.a_id
AND painting.price = tmp.max_price;

Yet another way to answer maximum-per-group questions is to use a LEFT JOIN that
joins a table to itself. The following statement identifies the highest-priced painting per
artist ID (use IS NULL to select all the rows from p1 for which there is no row in p2 with
a higher price):

mysql> SELECT p1.a_id, p1.title, p1.price
 -> FROM painting AS p1 LEFT JOIN painting AS p2
 -> ON p1.a_id = p2.a_id AND p1.price < p2.price
 -> WHERE p2.a_id IS NULL;
+------+-------------------+-------+
| a_id | title | price |
+------+-------------------+-------+
1	Mona Lisa	87
3	The Potato Eaters	67
4	Les Deux Soeurs	64
+------+-------------------+-------+

To display artist names rather than ID values, join the result of the LEFT JOIN to the
artist table:

mysql> SELECT artist.name, p1.title, p1.price
 -> FROM painting AS p1 LEFT JOIN painting AS p2
 -> ON p1.a_id = p2.a_id AND p1.price < p2.price
 -> INNER JOIN artist ON p1.a_id = artist.a_id
 -> WHERE p2.a_id IS NULL;
+----------+-------------------+-------+
| name | title | price |
+----------+-------------------+-------+
Da Vinci	Mona Lisa	87
Van Gogh	The Potato Eaters	67
Renoir	Les Deux Soeurs	64
+----------+-------------------+-------+

The self-LEFT JOIN method is perhaps less intuitive than using a temporary table or a
subquery.

Which technique is better: the temporary table or the subquery in the FROM clause? For
small tables, there might not be much difference either way. If the temporary table or
subquery result is large, a general advantage of the temporary table is that you can index
it after creating it and before using it in a join. However, as of MySQL 5.6, the optimizer
automatically adds an index to subquery results in the FROM clause if it estimates that

14.7. Finding Per-Group Minimum or Maximum Values | 503

www.it-ebooks.info

http://www.it-ebooks.info/

will speed up query execution. Thus, the disadvantage of the subquery goes away and
you can use it freely without concern over whether to use the temporary table instead.

See Also
This section shows how to answer maximum-per-group questions by selecting sum‐
mary information into a temporary table and joining that table to the original one or
by using a subquery in the FROM clause. These techniques have application in many
contexts. One of them is calculation of team standings, where the standings for each
group of teams are determined by comparing each team in the group to the team with
the best record. Recipe 15.12 discusses how to do this.

14.8. Using a Join to Fill or Identify Holes in a List
Problem
You want to produce a summary by category, but some categories are missing from the
data to be summarized. Consequently, the summary has missing categories as well.

Solution
Create a reference table that lists each category and produce the summary based on a
LEFT JOIN between the list and the table containing your data. Every category in the
reference table will appear in the result, even those not present in the data to be sum‐
marized.

Discussion
A summary query normally produces entries only for categories actually present in the
data. Suppose that you want to summarize the driver_log table (introduced in Chap‐
ter 7), to determine how many drivers were on the road each day. The table has these
rows:

mysql> SELECT * FROM driver_log ORDER BY rec_id;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79

504 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

| 10 | Henry | 2014-07-30 | 203 |
+--------+-------+------------+-------+

A simple summary showing the number of active drivers per day looks like this:
mysql> SELECT trav_date, COUNT(trav_date) AS drivers
 -> FROM driver_log GROUP BY trav_date ORDER BY trav_date;
+------------+---------+
| trav_date | drivers |
+------------+---------+
2014-07-26	1
2014-07-27	1
2014-07-29	3
2014-07-30	2
2014-08-01	1
2014-08-02	2
+------------+---------+

Here, the summary category is date, but the summary is “incomplete” in the sense that
it includes entries only for dates represented in the driver_log table. To produce a
summary that includes all categories (all dates within the date range represented in the
table), including those for which no driver was active, create a reference table that lists
each date:

mysql> CREATE TABLE dates (d DATE);
mysql> INSERT INTO dates (d)
 -> VALUES('2014-07-26'),('2014-07-27'),('2014-07-28'),
 -> ('2014-07-29'),('2014-07-30'),('2014-07-31'),
 -> ('2014-08-01'),('2014-08-02');

Then join the reference table to the driver_log table using a LEFT JOIN:
mysql> SELECT dates.d, COUNT(driver_log.trav_date) AS drivers
 -> FROM dates LEFT JOIN driver_log ON dates.d = driver_log.trav_date
 -> GROUP BY d ORDER BY d;
+------------+---------+
| d | drivers |
+------------+---------+
2014-07-26	1
2014-07-27	1
2014-07-28	0
2014-07-29	3
2014-07-30	2
2014-07-31	0
2014-08-01	1
2014-08-02	2
+------------+---------+

Now the summary includes a row for every date in the range because the LEFT JOIN
forces the output to include a row for every date in the reference table, even those missing
from the driver_log table.

14.8. Using a Join to Fill or Identify Holes in a List | 505

www.it-ebooks.info

http://www.it-ebooks.info/

The example just shown uses the reference table with a LEFT JOIN to fill holes in the
summary. It’s also possible to use the reference table to detect holes in the dataset—that
is, to determine which categories are not present in the data to be summarized. The
following statement shows those dates on which no driver was active by looking for
reference rows for which no driver_log table rows have a matching category value:

mysql> SELECT dates.d
 -> FROM dates LEFT JOIN driver_log ON dates.d = driver_log.trav_date
 -> WHERE driver_log.trav_date IS NULL;
+------------+
| d |
+------------+
| 2014-07-28 |
| 2014-07-31 |
+------------+

Reference tables that contain a list of categories are quite useful in summary context, as
just shown. But creating such tables manually is mind-numbing and error-prone. A
stored procedure that uses the endpoints of the range of category values to generate the
reference table for you helps automate the process. In essence, this type of procedure
acts as an iterator that generates a row for each value in the range. The following pro‐
cedure, make_date_list(), shows an example of this approach. It creates a reference
table containing a row for every date in a particular date range. It also indexes the table
so that it will be fast in large joins:

CREATE PROCEDURE make_date_list(db_name TEXT, tbl_name TEXT, col_name TEXT,
 min_date DATE, max_date DATE)
BEGIN
 DECLARE i, days INT;
 SET i = 0, days = DATEDIFF(max_date,min_date)+1;

 # Make identifiers safe for insertion into SQL statements. Use db_name
 # and tbl_name to create qualified table name.
 SET tbl_name = CONCAT(quote_identifier(db_name),'.',
 quote_identifier(tbl_name));
 SET col_name = quote_identifier(col_name);
 CALL exec_stmt(CONCAT('DROP TABLE IF EXISTS ',tbl_name));
 CALL exec_stmt(CONCAT('CREATE TABLE ',tbl_name,'(',
 col_name,' DATE NOT NULL, PRIMARY KEY(',
 col_name,'))'));
 WHILE i < days DO
 CALL exec_stmt(CONCAT('INSERT INTO ',tbl_name,'(',col_name,') VALUES(',
 QUOTE(min_date),' + INTERVAL ',i,' DAY)'));
 SET i = i + 1;
 END WHILE;
END;

Use make_date_list() to generate the reference table, dates, like this:
CALL make_date_list('cookbook', 'dates', 'd', '2014-07-26', '2014-08-02');

506 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

Then use the dates table as shown earlier in this section to fill holes in the summary or
to detect holes in the dataset.

You can find the make_date_list() procedure in the joins directory of the recipes
distribution. It requires the exec_stmt() and quote_identifier() helper routines (see
Recipe 9.9), located in the routines directory. The joins directory also contains a Perl
script, make_date_list.pl, that implements an alternate approach; it generates date ref‐
erence tables from the command line.

14.9. Using a Join to Control Query Sort Order
Problem
You want to sort a statement’s output using a characteristic of the output that cannot be
specified using ORDER BY. For example, you want to sort a set of rows by subgroups,
putting first those groups with the most rows and last those groups with the fewest rows.
But “number of rows in each group” is not a property of individual rows, so you can’t
use it for sorting.

Solution
Derive the ordering information and store it in an auxiliary table. Then join the original
table to the auxiliary table, using the auxiliary table to control the sort order.

Discussion
Most of the time you sort a query result using an ORDER BY clause that names which
column or columns to use for sorting. But sometimes the values you want to sort by
aren’t present in the rows to be sorted. This is the case when you want to use group
characteristics to order the rows. The following example uses the driver_log table to
illustrate this. The following query sorts the table using the ID column, which is present
in the rows:

mysql> SELECT * FROM driver_log ORDER BY rec_id;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79

14.9. Using a Join to Control Query Sort Order | 507

www.it-ebooks.info

http://www.it-ebooks.info/

| 10 | Henry | 2014-07-30 | 203 |
+--------+-------+------------+-------+

But what if you want to display a list and sort it on the basis of a summary value not
present in the rows? That’s a little trickier. Suppose that you want to show each driver’s
rows by date, but place those drivers who drive the most miles first. You can’t do this
with a summary query because then you wouldn’t get back the individual driver rows.
But you can’t do it without a summary query, either, because the summary values are
required for sorting. The way out of the dilemma is to create another table containing
the summary value per driver and join it to the original table. That way you can produce
the individual rows and also sort them by the summary values.

To summarize the driver totals into another table, do this:
mysql> CREATE TABLE tmp
 -> SELECT name, SUM(miles) AS driver_miles FROM driver_log GROUP BY name;

That produces the values we need to put the names in the proper total-miles order:
mysql> SELECT * FROM tmp ORDER BY driver_miles DESC;
+-------+--------------+
| name | driver_miles |
+-------+--------------+
Henry	911
Suzi	893
Ben	362
+-------+--------------+

Then use the name values to join the summary table to the driver_log table, and use
the driver_miles values to sort the result:

mysql> SELECT tmp.driver_miles, driver_log.*
 -> FROM driver_log INNER JOIN tmp ON driver_log.name = tmp.name
 -> ORDER BY tmp.driver_miles DESC, driver_log.trav_date;
+--------------+--------+-------+------------+-------+
| driver_miles | rec_id | name | trav_date | miles |
+--------------+--------+-------+------------+-------+
911	6	Henry	2014-07-26	115
911	4	Henry	2014-07-27	96
911	3	Henry	2014-07-29	300
911	10	Henry	2014-07-30	203
911	8	Henry	2014-08-01	197
893	2	Suzi	2014-07-29	391
893	7	Suzi	2014-08-02	502
362	5	Ben	2014-07-29	131
362	1	Ben	2014-07-30	152
362	9	Ben	2014-08-02	79
+--------------+--------+-------+------------+-------+

The preceding statement shows the mileage totals in the result. That’s only to clarify
how the values are being sorted. It’s not actually necessary to display them; they’re
needed only for the ORDER BY clause.

508 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

To avoid using the temporary table, select the same rows using a subquery in the FROM
clause:

SELECT tmp.driver_miles, driver_log.*
FROM driver_log INNER JOIN
(SELECT name, SUM(miles) AS driver_miles
FROM driver_log GROUP BY name) AS tmp
ON driver_log.name = tmp.name
ORDER BY tmp.driver_miles DESC, driver_log.trav_date;

14.10. Referring to Join Output Column Names in
Programs
Problem
You need to process the result of a join from within a program, but column names in
the result set aren’t unique.

Solution
Rewrite the query using column aliases so that each column has a unique name. Alter‐
natively, refer to the columns by position.

Discussion
Joins typically retrieve columns from related tables and it’s not unusual for columns
selected from different tables to have the same names. Consider the following join that
shows the items in your art collection. For each painting, it displays artist name, painting
title, the state in which you acquired the item, and its price:

mysql> SELECT artist.name, painting.title, states.name, painting.price
 -> FROM artist INNER JOIN painting INNER JOIN states
 -> ON artist.a_id = painting.a_id AND painting.state = states.abbrev;
+----------+-------------------+----------+-------+
| name | title | name | price |
+----------+-------------------+----------+-------+
Da Vinci	The Last Supper	Indiana	34
Da Vinci	Mona Lisa	Michigan	87
Van Gogh	Starry Night	Kentucky	48
Van Gogh	The Potato Eaters	Kentucky	67
Renoir	Les Deux Soeurs	Nebraska	64
+----------+-------------------+----------+-------+

The statement uses table qualifiers for each output column, but MySQL doesn’t include
table names in the column headings, so not all column names in the output are distinct.
If you process the join result from within a program and fetch rows into a data structure

14.10. Referring to Join Output Column Names in Programs | 509

www.it-ebooks.info

http://www.it-ebooks.info/

that references column values by name, nonunique column names cause values to be‐
come inaccessible. Suppose that you fetch rows in a Perl DBI script like this:

while (my $ref = $sth->fetchrow_hashref ())
{
 ... process row hash here ...
}

Fetching rows into the hash yields three hash elements (name, title, price); one of the
name elements is lost. To solve this problem, supply aliases that make the column names
unique:

SELECT artist.name AS painter, painting.title,
 states.name AS state, painting.price
FROM artist INNER JOIN painting INNER JOIN states
ON artist.a_id = painting.a_id AND painting.state = states.abbrev;

Now fetching rows into a hash yields four hash elements (painter, title, state, price).

To address the problem without column renaming, fetch the row into something other
than a hash. For example, fetch the row into an array and refer to the columns by ordinal
position within the array:

while (my @val = $sth->fetchrow_array ())
{
 print "painter: $val[0], title: $val[1], "
 . "state: $val[2], price: $val[3]\n";
}

510 | Chapter 14: Using Joins and Subqueries

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Statistical Techniques

15.0. Introduction
This chapter covers several topics that relate to basic statistical techniques. For the most
part, these recipes build on those described in earlier chapters, such as the summary
techniques discussed in Chapter 8, and join techniques from Chapter 14. The examples
here thus show additional ways to apply the material from those chapters. Broadly
speaking, the topics discussed in this chapter include:

• Techniques for characterizing a dataset, such as calculating descriptive statistics,
generating frequency distributions, counting missing values, and calculating least-
squares regressions or correlation coefficients

• Randomization methods, such as how to generate random numbers and apply them
to randomizing a set of rows or to selecting individual items randomly from the
rows

• Techniques for calculating successive-observation differences, cumulative sums,
and running averages.

• Methods for producing rank assignments and generating team standings

Statistics covers such a large and diverse array of topics that this chapter necessarily only
scratches the surface and simply illustrates a few of the potential areas in which MySQL
may be applied to statistical analysis. Note that some statistical measures can be defined
in different ways (for example, do you calculate standard deviation based on n degrees
of freedom, or n–1?). If the definition I use for a given term doesn’t match the one you
prefer, adapt the queries or algorithms shown here appropriately.

You can find scripts related to the examples discussed here in the stats directory of the
recipes distribution, and scripts for creating example tables in the tables directory.

511

www.it-ebooks.info

http://www.it-ebooks.info/

15.1. Calculating Descriptive Statistics
Problem
You want to characterize a dataset by computing general descriptive or summary sta‐
tistics.

Solution
Many common descriptive statistics, such as mean and standard deviation, are obtained
by applying aggregate functions to your data. Others, such as median or mode, are
calculated based on counting queries.

Discussion
Suppose that a testscore table contains observations representing subject ID, age, sex,
and test score:

mysql> SELECT subject, age, sex, score FROM testscore ORDER BY subject;
+---------+-----+-----+-------+
| subject | age | sex | score |
+---------+-----+-----+-------+
1	5	M	5
2	5	M	4
3	5	F	6
4	5	F	7
5	6	M	8
6	6	M	9
7	6	F	4
8	6	F	6
9	7	M	8
10	7	M	6
11	7	F	9
12	7	F	7
13	8	M	9
14	8	M	6
15	8	F	7
16	8	F	10
17	9	M	9
18	9	M	7
19	9	F	10
20	9	F	9
+---------+-----+-----+-------+

A good first step in analyzing a set of observations is to generate some descriptive sta‐
tistics that summarize their general characteristics as a whole. Common statistical values
of this kind include:

• The number of observations, their sum, and their range (minimum and maximum)

512 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

• Measures of central tendency, such as mean, median, and mode
• Measures of variation, such as standard deviation and variance

Aside from the median and mode, all of these can be calculated easily by invoking
aggregate functions:

mysql> SELECT COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore;
+----+------+---------+---------+--------+-----------+----------+
| n | sum | minimum | maximum | mean | std. dev. | variance |
+----+------+---------+---------+--------+-----------+----------+
| 20 | 146 | 4 | 10 | 7.3000 | 1.8382 | 3.3789 |
+----+------+---------+---------+--------+-----------+----------+

The STDDEV_SAMP() and VAR_SAMP() functions produce sample measures rather than
population measures. That is, for a set of n values, they produce a result that is based on
n–1 degrees of freedom. For the population measures, which are based on n degrees of
freedom, use STDDEV_POP() and VAR_POP() instead. STDDEV() and VARIANCE() are
synonyms for STDDEV_POP() and VAR_POP().

Standard deviation can be used to identify outliers—values that are uncharacteristically
far from the mean. For example, to select values that lie more than three standard de‐
viations from the mean, do this:

SELECT @mean := AVG(score), @std := STDDEV_SAMP(score) FROM testscore;
SELECT score FROM testscore WHERE ABS(score-@mean) > @std * 3;

MySQL has no built-in function for computing the mode or median of a set of values,
but you can compute them yourself. To determine the mode (the value that occurs most
frequently), count each value and see which is most common:

mysql> SELECT score, COUNT(score) AS frequency
 -> FROM testscore GROUP BY score ORDER BY frequency DESC;
+-------+-----------+
| score | frequency |
+-------+-----------+
9	5
6	4
7	4
4	2
8	2
10	2
5	1
+-------+-----------+

15.1. Calculating Descriptive Statistics | 513

www.it-ebooks.info

http://www.it-ebooks.info/

1. The definition of median given here isn’t fully general; it doesn’t address what to do if the middle values in
the dataset are duplicated.

In this case, 9 is the modal score value.

The median of a set of ordered values can be calculated like this:1

• If the number of values is odd, the median is the middle value.
• If the number of values is even, the median is the average of the two middle values.

Based on that definition, use the following procedure to determine the median of a set
of observations stored in the database:

1. Issue a query to count the number of observations. From the count, you can de‐
termine whether the median calculation requires one or two values, and what their
indexes are within the ordered set of observations.

2. Issue a query that includes an ORDER BY clause to sort the observations and a LIM
IT clause to pull out the middle value or values.

3. If there is a single middle value, it is the median. Otherwise, take the average of the
middle values.

Suppose that a table t contains a score column with 37 values (an odd number). To get
the median, select a single value using a statement like this:

SELECT score FROM t ORDER BY score LIMIT 18,1

If the column contains 38 values (an even number), select two values:
SELECT score FROM t ORDER BY score LIMIT 18,2

Then take the values returned by the statement and compute the median from their
average.

The following Perl function implements a median calculation. It takes a database handle
and the names of the database, table, and column that contain the set of observations.
Then it generates the statement that retrieves the relevant values and returns their aver‐
age:

sub median
{
my ($dbh, $db_name, $tbl_name, $col_name) = @_;
my ($count, $limit);

 $db_name = $dbh->quote_identifier ($db_name);
 $tbl_name = $dbh->quote_identifier ($tbl_name);
 $col_name = $dbh->quote_identifier ($col_name);

 $count = $dbh->selectrow_array (qq{

514 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

 SELECT COUNT($col_name) FROM $db_name.$tbl_name
 });
 return undef unless $count > 0;
 if ($count % 2 == 1) # odd number of values; select middle value
 {
 $limit = sprintf ("LIMIT %d,1", ($count-1)/2);
 }
 else # even number of values; select middle two values
 {
 $limit = sprintf ("LIMIT %d,2", $count/2 - 1);
 }

 my $sth = $dbh->prepare (qq{
 SELECT $col_name FROM $db_name.$tbl_name ORDER BY $col_name $limit
 });
 $sth->execute ();
 my ($n, $sum) = (0, 0);
 while (my $ref = $sth->fetchrow_arrayref ())
 {
 ++$n;
 $sum += $ref->[0];
 }
 return $sum / $n;
}

The preceding technique works for a set of values stored in the database. If you have
already fetched an ordered set of values into an array @val, compute the median like
this instead:

if (@val == 0) # array is empty, median is undefined
{
 $median = undef;
}
elsif (@val % 2 == 1) # array size is odd, median is middle number
{
 $median = $val[(@val-1)/2];
}
else # array size is even; median is average
{ # of two middle numbers
 $median = ($val[@val/2 - 1] + $val[@val/2]) / 2;
}

The code works for arrays that have an initial subscript of 0; for languages that use 1-
based array indexes, adjust the algorithm accordingly.

15.2. Per-Group Descriptive Statistics
Problem
You want to produce descriptive statistics for each subgroup of a set of observations.

15.2. Per-Group Descriptive Statistics | 515

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use aggregate functions, but employ a GROUP BY clause to arrange observations into the
appropriate groups.

Discussion
Recipe 15.1 shows how to compute descriptive statistics for the entire set of scores in
the testscore table. To be more specific, use GROUP BY to divide the observations into
groups and calculate statistics for each of them. For example, the subjects in the test
score table are listed by age and sex, so it’s possible to calculate similar statistics by age
or sex (or both) by application of appropriate GROUP BY clauses.

Here’s how to calculate by age:
mysql> SELECT age, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY age;
+-----+---+------+---------+---------+--------+-----------+----------+
| age | n | sum | minimum | maximum | mean | std. dev. | variance |
+-----+---+------+---------+---------+--------+-----------+----------+
5	4	22	4	7	5.5000	1.2910	1.6667
6	4	27	4	9	6.7500	2.2174	4.9167
7	4	30	6	9	7.5000	1.2910	1.6667
8	4	32	6	10	8.0000	1.8257	3.3333
9	4	35	7	10	8.7500	1.2583	1.5833
+-----+---+------+---------+---------+--------+-----------+----------+

By sex:
mysql> SELECT sex, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY sex;
+-----+----+------+---------+---------+--------+-----------+----------+
| sex | n | sum | minimum | maximum | mean | std. dev. | variance |
+-----+----+------+---------+---------+--------+-----------+----------+
| M | 10 | 71 | 4 | 9 | 7.1000 | 1.7920 | 3.2111 |
| F | 10 | 75 | 4 | 10 | 7.5000 | 1.9579 | 3.8333 |
+-----+----+------+---------+---------+--------+-----------+----------+

516 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

By age and sex:
mysql> SELECT age, sex, COUNT(score) AS n,
 -> SUM(score) AS sum,
 -> MIN(score) AS minimum,
 -> MAX(score) AS maximum,
 -> AVG(score) AS mean,
 -> STDDEV_SAMP(score) AS 'std. dev.',
 -> VAR_SAMP(score) AS 'variance'
 -> FROM testscore
 -> GROUP BY age, sex;
+-----+-----+---+------+---------+---------+--------+-----------+----------+
| age | sex | n | sum | minimum | maximum | mean | std. dev. | variance |
+-----+-----+---+------+---------+---------+--------+-----------+----------+
5	M	2	9	4	5	4.5000	0.7071	0.5000
5	F	2	13	6	7	6.5000	0.7071	0.5000
6	M	2	17	8	9	8.5000	0.7071	0.5000
6	F	2	10	4	6	5.0000	1.4142	2.0000
7	M	2	14	6	8	7.0000	1.4142	2.0000
7	F	2	16	7	9	8.0000	1.4142	2.0000
8	M	2	15	6	9	7.5000	2.1213	4.5000
8	F	2	17	7	10	8.5000	2.1213	4.5000
9	M	2	16	7	9	8.0000	1.4142	2.0000
9	F	2	19	9	10	9.5000	0.7071	0.5000
+-----+-----+---+------+---------+---------+--------+-----------+----------+

15.3. Generating Frequency Distributions
Problem
You want to know the frequency of occurrence for each value in a table.

Solution
Derive a frequency distribution that summarizes the contents of your dataset.

Discussion
A common application for per-group summary techniques is to generate a frequency
distribution that shows how often each value occurs. For the testscore table, the fre‐
quency distribution looks like this:

mysql> SELECT score, COUNT(score) AS counts
 -> FROM testscore GROUP BY score;
+-------+--------+
| score | counts |
+-------+--------+
4	2
5	1
6	4

15.3. Generating Frequency Distributions | 517

www.it-ebooks.info

http://www.it-ebooks.info/

7	4
8	2
9	5
10	2
+-------+--------+

Expressing the results in percentages rather than counts yields relative frequency dis‐
tribution. To show each count as a percentage of the total, use one query to get the total
number of observations and another to calculate the percentages for each group:

mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT score, (COUNT(score)*100)/@n AS percent
 -> FROM testscore GROUP BY score;
+-------+---------+
| score | percent |
+-------+---------+
4	10.0000
5	5.0000
6	20.0000
7	20.0000
8	10.0000
9	25.0000
10	10.0000
+-------+---------+

The distributions just shown summarize the number of values for individual scores.
However, if the dataset contains a large number of distinct values and you want a dis‐
tribution that shows only a small number of categories, you may want to lump values
into categories and produce a count for each category. Recipe 8.10 discusses “lump‐
ing” techniques.

One typical use of frequency distributions is to export the results for use in a graphing
program. But MySQL itself can generate a simple ASCII chart as a visual representation
of the distribution. To display an ASCII bar chart of the test score counts, convert the
counts to strings of * characters:

mysql> SELECT score, REPEAT('*',COUNT(score)) AS 'count histogram'
 -> FROM testscore GROUP BY score;
+-------+-----------------+
| score | count histogram |
+-------+-----------------+
4	**
5	*
6	****
7	****
8	**
9	*****
10	**
+-------+-----------------+

To chart the relative frequency distribution instead, use the percentage values:

518 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT score,
 -> REPEAT('*',(COUNT(score)*100)/@n) AS 'percent histogram'
 -> FROM testscore GROUP BY score;
+-------+---------------------------+
| score | percent histogram |
+-------+---------------------------+
4	**********
5	*****
6	********************
7	********************
8	**********
9	*************************
10	**********
+-------+---------------------------+

The ASCII chart method is crude, obviously, but it’s a quick way to get a picture of the
distribution of observations and requires no other tools.

If you generate a frequency distribution for a range of categories where some of the
categories are not represented in your observations, the missing categories do not appear
in the output. To force each category to be displayed, use a reference table and a LEFT
JOIN (a technique discussed in Recipe 14.8). For the testscore table, the possible scores
range from 0 to 10, so a reference table should contain each of those values:

mysql> CREATE TABLE ref (score INT);
mysql> INSERT INTO ref (score)
 -> VALUES(0),(1),(2),(3),(4),(5),(6),(7),(8),(9),(10);

Then join the reference table to the test scores to generate the frequency distribution.
This query shows the counts as well as the histogram:

mysql> SELECT ref.score, COUNT(testscore.score) AS counts,
 -> REPEAT('*',COUNT(testscore.score)) AS 'count histogram'
 -> FROM ref LEFT JOIN testscore ON ref.score = testscore.score
 -> GROUP BY ref.score;
+-------+--------+-----------+
| score | counts | histogram |
+-------+--------+-----------+
0	0	
1	0	
2	0	
3	0	
4	2	**
5	1	*
6	4	****
7	4	****
8	2	**
9	5	*****
10	2	**
+-------+--------+-----------+

15.3. Generating Frequency Distributions | 519

www.it-ebooks.info

http://www.it-ebooks.info/

This distribution includes rows for scores 0 through 3, none of which appear in the
frequency distribution shown earlier.

The same principle applies to relative frequency distributions:
mysql> SET @n = (SELECT COUNT(score) FROM testscore);
mysql> SELECT ref.score, (COUNT(testscore.score)*100)/@n AS percent,
 -> REPEAT('*',(COUNT(testscore.score)*100)/@n) AS 'percent histogram'
 -> FROM ref LEFT JOIN testscore ON ref.score = testscore.score
 -> GROUP BY ref.score;
+-------+---------+---------------------------+
| score | percent | percent histogram |
+-------+---------+---------------------------+
0	0.0000	
1	0.0000	
2	0.0000	
3	0.0000	
4	10.0000	**********
5	5.0000	*****
6	20.0000	********************
7	20.0000	********************
8	10.0000	**********
9	25.0000	*************************
10	10.0000	**********
+-------+---------+---------------------------+

15.4. Counting Missing Values
Problem
A set of observations is incomplete. You want to find out how much so.

Solution
Count the number of NULL values in the set.

Discussion
Values can be missing from a set of observations for any number of reasons: a test may
not yet have been administered, something may have gone wrong during the test that
requires invalidating the observation, and so forth. You can represent such observations
in a dataset as NULL values to signify that they’re missing or otherwise invalid, then use
summary statements to characterize the completeness of the dataset.

If a table t contains values to be summarized along a single dimension, a simple sum‐
mary suffices to characterize the missing values. Suppose that t looks like this:

520 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT subject, score FROM t ORDER BY subject;
+---------+-------+
| subject | score |
+---------+-------+
1	38
2	NULL
3	47
4	NULL
5	37
6	45
7	54
8	NULL
9	40
10	49
+---------+-------+

COUNT(*) counts the total number of rows, and COUNT(score) counts the number of
nonmissing scores. The difference between the two values is the number of missing
scores, and that difference in relation to the total provides the percentage of missing
scores. Perform these calculations as follows:

mysql> SELECT COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> COUNT(*) - COUNT(score) AS 'n (missing)',
 -> ((COUNT(*) - COUNT(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM t;
+-----------+----------------+-------------+-----------+
| n (total) | n (nonmissing) | n (missing) | % missing |
+-----------+----------------+-------------+-----------+
| 10 | 7 | 3 | 30.0000 |
+-----------+----------------+-------------+-----------+

As an alternative to counting NULL values as the difference between counts, count them
directly using SUM(ISNULL(score)). The ISNULL() function returns 1 if its argument
is NULL, zero otherwise:

mysql> SELECT COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> SUM(ISNULL(score)) AS 'n (missing)',
 -> (SUM(ISNULL(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM t;
+-----------+----------------+-------------+-----------+
| n (total) | n (nonmissing) | n (missing) | % missing |
+-----------+----------------+-------------+-----------+
| 10 | 7 | 3 | 30.0000 |
+-----------+----------------+-------------+-----------+

If values are arranged in groups, occurrences of NULL values can be assessed on a per-
group basis. Suppose that t contains scores for subjects that are distributed among
conditions for two factors A and B, each of which has two levels:

15.4. Counting Missing Values | 521

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT subject, A, B, score FROM t ORDER BY subject;
+---------+------+------+-------+
| subject | A | B | score |
+---------+------+------+-------+
1	1	1	18
2	1	1	NULL
3	1	1	23
4	1	1	24
5	1	2	17
6	1	2	23
7	1	2	29
8	1	2	32
9	2	1	17
10	2	1	NULL
11	2	1	NULL
12	2	1	25
13	2	2	NULL
14	2	2	33
15	2	2	34
16	2	2	37
+---------+------+------+-------+

To produce a summary for each combination of conditions, use a GROUP BY clause:
mysql> SELECT A, B, COUNT(*) AS 'n (total)',
 -> COUNT(score) AS 'n (nonmissing)',
 -> COUNT(*) - COUNT(score) AS 'n (missing)',
 -> ((COUNT(*) - COUNT(score)) * 100) / COUNT(*) AS '% missing'
 -> FROM t
 -> GROUP BY A, B;
+------+------+-----------+----------------+-------------+-----------+
| A | B | n (total) | n (nonmissing) | n (missing) | % missing |
+------+------+-----------+----------------+-------------+-----------+
1	1	4	3	1	25.0000
1	2	4	4	0	0.0000
2	1	4	2	2	50.0000
2	2	4	3	1	25.0000
+------+------+-----------+----------------+-------------+-----------+

15.5. Calculating Linear Regressions or Correlation
Coefficients
Problem
You want to calculate the least-squares regression line for two variables or the correlation
coefficient that expresses the strength of the relationship between them.

Solution
Apply summary functions to calculate the necessary terms.

522 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

2. To see where these terms come from, consult any standard statistics text.

Discussion
When the data values for two variables X and Y are stored in a database, the least-squares
regression for them can be calculated easily using aggregate functions. The same is true
for the correlation coefficient. The two calculations are actually fairly similar, and many
terms for performing the computations are common to the two procedures.

Suppose that you want to calculate a least-squares regression using the age and test score
values for the observations in the testscore table:

mysql> SELECT age, score FROM testscore;
+-----+-------+
| age | score |
+-----+-------+
5	5
5	4
5	6
5	7
6	8
6	9
6	4
6	6
7	8
7	6
7	9
7	7
8	9
8	6
8	7
8	10
9	9
9	7
9	10
9	9
+-----+-------+

The following equation expresses the regression line, where a and b are the intercept
and slope of the line:

Y = bX + a

Letting age be X and score be Y, begin by computing the terms needed for the regression
equation. These include the number of observations; the means, sums, and sums of
squares for each variable; and the sum of the products of each variable:2

mysql> SELECT
 -> @n := COUNT(score) AS N,
 -> @meanX := AVG(age) AS 'X mean',
 -> @sumX := SUM(age) AS 'X sum',

15.5. Calculating Linear Regressions or Correlation Coefficients | 523

www.it-ebooks.info

http://www.it-ebooks.info/

 -> @sumXX := SUM(age*age) AS 'X sum of squares',
 -> @meanY := AVG(score) AS 'Y mean',
 -> @sumY := SUM(score) AS 'Y sum',
 -> @sumYY := SUM(score*score) AS 'Y sum of squares',
 -> @sumXY := SUM(age*score) AS 'X*Y sum'
 -> FROM testscore\G
*************************** 1. row ***************************
 N: 20
 X mean: 7.000000000
 X sum: 140
X sum of squares: 1020
 Y mean: 7.300000000
 Y sum: 146
Y sum of squares: 1130
 X*Y sum: 1053

From those terms, calculate the regression slope and intercept as follows:
mysql> SET @b := (@n*@sumXY - @sumX*@sumY) / (@n*@sumXX - @sumX*@sumX);
mysql> SET @a := (@meanY - @b*@meanX);
mysql> SELECT @b AS slope, @a AS intercept;
+-------------+----------------------+
| slope | intercept |
+-------------+----------------------+
| 0.775000000 | 1.875000000000000000 |
+-------------+----------------------+

The regression equation then is:
mysql> SELECT CONCAT('Y = ',@b,'X + ',@a) AS 'least-squares regression';
+---+
| least-squares regression |
+---+
| Y = 0.775000000X + 1.875000000000000000 |
+---+

To compute the correlation coefficient, use many of the same terms:
mysql> SELECT
 -> (@n*@sumXY - @sumX*@sumY)
 -> / SQRT((@n*@sumXX - @sumX*@sumX) * (@n*@sumYY - @sumY*@sumY))
 -> AS correlation;
+--------------------+
| correlation |
+--------------------+
| 0.6117362044219903 |
+--------------------+

524 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

15.6. Generating Random Numbers
Problem
You need a source of random numbers.

Solution
Use the RAND() function.

Discussion
MySQL has a RAND() function that produces random numbers between 0 and 1:

mysql> SELECT RAND(), RAND(), RAND();
+---------------------+--------------------+---------------------+
| RAND() | RAND() | RAND() |
+---------------------+--------------------+---------------------+
| 0.37415416573561183 | 0.9068914557871329 | 0.41199481246247405 |
+---------------------+--------------------+---------------------+

When invoked with an integer argument, RAND() uses that value to seed the random
number generator. You can use this feature to produce a repeatable series of numbers
for a column of a query result. The following example shows that RAND() without an
argument produces a different column of values per query, whereas RAND(N) produces
a repeatable column:

mysql> SELECT i, RAND(), RAND(10), RAND(20) FROM t;
+------+---------------------+---------------------+---------------------+
| i | RAND() | RAND(10) | RAND(20) |
+------+---------------------+---------------------+---------------------+
1	0.00708185882035816	0.6570515219653505	0.15888261251047497
2	0.5417692908474889	0.12820613023657923	0.6355305003333189
3	0.6876009085100152	0.6698761160204896	0.7010046948688149
4	0.8126967007412544	0.9647622201263553	0.5984320040777623
+------+---------------------+---------------------+---------------------+			
mysql> SELECT i, RAND(), RAND(10), RAND(20) FROM t;			
+------+----------------------+---------------------+---------------------+			
i	RAND()	RAND(10)	RAND(20)
+------+----------------------+---------------------+---------------------+			
1	0.059957268703689115	0.6570515219653505	0.15888261251047497
2	0.9068000166740269	0.12820613023657923	0.6355305003333189
3	0.35412830799271194	0.6698761160204896	0.7010046948688149
4	0.050241520675124156	0.9647622201263553	0.5984320040777623
+------+----------------------+---------------------+---------------------+

To seed RAND() randomly, pick a seed value based on a source of entropy. Possible
sources are the current timestamp or connection identifier, alone or perhaps in com‐
bination:

15.6. Generating Random Numbers | 525

www.it-ebooks.info

http://www.it-ebooks.info/

RAND(UNIX_TIMESTAMP())
RAND(CONNECTION_ID())
RAND(UNIX_TIMESTAMP()+CONNECTION_ID())

However, it’s probably better to use other seed value sources if you have them. For
example, if your system has a /dev/random or /dev/urandom device, read the device and
use it to generate a value for seeding RAND().

How Random Is RAND()?
Does the RAND() function generate evenly distributed numbers? Check it out for yourself
with the following Python script, rand_test.py, from the stats directory of the recipes
distribution. (That directory also contains equivalent scripts in other languages.) The
script uses RAND() to generate random numbers and constructs a frequency distribution
from them, using 10 categories (“buckets”). This provides a means of assessing how
evenly distributed the values are:

#!/usr/bin/python
rand_test.pl: create a frequency distribution of RAND() values.
This provides a test of the randomness of RAND().

Method: Draw random numbers in the range from 0 to 1.0,
and count how many of them occur in .1-sized intervals

import cookbook

npicks = 1000 # number of times to pick a number
bucket = [0] * 10 # buckets for counting picks in each interval

conn = cookbook.connect()
cursor = conn.cursor()

for i in range(0, npicks):
 cursor.execute("SELECT RAND()")
 (val,) = cursor.fetchone()
 slot = int(val * 10)
 if slot > 9:
 slot = 9 # put 1.0 in last slot
 bucket[slot] += 1

cursor.close()
conn.close()

Print the resulting frequency distribution

for slot, val in enumerate(bucket):
 print("%2d %d" % (slot+1, val))

526 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

15.7. Randomizing a Set of Rows
Problem
You want to randomize a set of rows or values.

Solution
Use ORDER BY RAND().

Discussion
MySQL’s RAND() function can be used to randomize the order in which a query returns
its rows. Somewhat paradoxically, this randomization is achieved by adding an ORDER
BY clause to the query. The technique is roughly equivalent to a spreadsheet randomi‐
zation method. Suppose that a spreadsheet contains this set of values:

Patrick
Penelope
Pertinax
Polly

To place these in random order, first add another column that contains randomly chosen
numbers:

Patrick .73
Penelope .37
Pertinax .16
Polly .48

Then sort the rows according to the values of the random numbers:
Pertinax .16
Penelope .37
Polly .48
Patrick .73

At this point, the original values have been placed in random order; the effect of sorting
the random numbers is to randomize the values associated with them. To rerandomize
the values, choose another set of random numbers, and sort the rows again.

In MySQL, achieve a similar effect by associating a set of random numbers with a query
result and sorting the result by those numbers. To do this, add an ORDER BY RAND() clause:

mysql> SELECT name FROM t ORDER BY RAND();
+----------+
| name |
+----------+
| Pertinax |
| Patrick |
| Polly |

15.7. Randomizing a Set of Rows | 527

www.it-ebooks.info

http://www.it-ebooks.info/

| Penelope |
+----------+
mysql> SELECT name FROM t ORDER BY RAND();
+----------+
| name |
+----------+
| Polly |
| Pertinax |
| Penelope |
| Patrick |
+----------+

Applications for randomizing a set of rows include any scenario that uses selection
without replacement (choosing each item from a set of items until there are no more
items left). Some examples of this are:

• Determining the starting order for participants in an event. List the participants in
a table, and select them in random order.

• Assigning starting lanes or gates to participants in a race. List the lanes in a table,
and select a random lane order.

• Choosing the order in which to present a set of quiz questions.
• Shuffling a deck of cards. Represent each card by a row in a table, and shuffle the

deck by selecting the rows in random order. Deal them one by one until the deck
is exhausted.

To use the last example as an illustration, let’s implement a card deck-shuffling algo‐
rithm. Shuffling and dealing cards is randomization plus selection without replacement:
each card is dealt once before any is dealt twice; when the deck is used up, it is reshuffled
to rerandomize it for a new dealing order. Within a program, this task can be performed
with MySQL using a table named deck that has 52 rows, assuming a set of cards with
each combination of 13 face values and 4 suits:

1. Select the entire table, and store it into an array.
2. Each time a card is needed, take the next element from the array.
3. When the array is exhausted, all the cards have been dealt. “Reshuffle” the table to

generate a new card order.

Setting up the deck table is a tedious task if you insert the 52 card records by writing all
the INSERT statements manually. The deck contents can be generated more easily in
combinatorial fashion within a program by generating each pairing of face value with
suit. Here’s some PHP code that creates a deck table with face and suit columns, then
populates the table using nested loops to generate the pairings for the INSERT statements:

$sth = $dbh->exec ("DROP TABLE IF EXISTS deck");

528 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

$sth = $dbh->exec ("
 CREATE TABLE deck
 (
 face ENUM('A', 'K', 'Q', 'J', '10', '9', '8',
 '7', '6', '5', '4', '3', '2') NOT NULL,
 suit ENUM('hearts', 'diamonds', 'clubs', 'spades') NOT NULL
)
");

$face_array = array ("A", "K", "Q", "J", "10", "9", "8",
 "7", "6", "5", "4", "3", "2");
$suit_array = array ("hearts", "diamonds", "clubs", "spades");

insert a "card" into the deck for each combination of suit and face

$sth = $dbh->prepare ("INSERT INTO deck (face,suit) VALUES(?,?)");
foreach ($face_array as $face)
 foreach ($suit_array as $suit)
 $sth->execute (array ($face, $suit));

Shuffling the cards is a matter of issuing this statement:
SELECT face, suit FROM deck ORDER BY RAND();

To do that and store the results in an array within a script, write a shuffle_deck()
function that issues the query and returns the resulting values in an array (again shown
in PHP):

function shuffle_deck ($dbh)
{
 $sth = $dbh->query ("SELECT face, suit FROM deck ORDER BY RAND()");
 $sth->setFetchMode (PDO::FETCH_OBJ);
 return ($sth->fetchAll ());
}

Deal the cards by keeping a counter that ranges from 0 to 51 to indicate which card to
select. When the counter reaches 52, the deck is exhausted and should be shuffled again.

15.8. Selecting Random Items from a Set of Rows
Problem
You want to pick an item or items randomly from a set of values.

Solution
Randomize the values, then pick the first one (or the first few, if you need more than
one).

15.8. Selecting Random Items from a Set of Rows | 529

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
If a set of items is stored in MySQL, choose one at random as follows:

1. Select the items in the set in random order, using ORDER BY RAND() as described in
Recipe 15.7.

2. Add LIMIT 1 to the query to pick the first item.

For example, to perform a simple simulation of tossing a die, create a die table con‐
taining rows with values from 1 to 6 corresponding to the six faces of a die cube:

CREATE TABLE die (n INT);

Then pick rows from the table at random:
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 6 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 4 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 5 |
+------+
mysql> SELECT n FROM die ORDER BY RAND() LIMIT 1;
+------+
| n |
+------+
| 4 |
+------+

As you repeat this operation, you pick a random sequence of items from the set. This
is a form of selection with replacement: an item is chosen from a pool of items and then
returned to the pool for the next pick. Because items are replaced, it’s possible to pick
the same item multiple times when making successive choices this way. Other examples
of selection with replacement include:

• Selecting a banner ad to display on a web page
• Picking a row for a “quote of the day” application

530 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

• “Pick a card, any card” magic tricks that begin with a full deck of cards each time

To pick more than one item, change the LIMIT argument. For example, to draw five
winning entries at random from a table named drawing that contains contest entries,
use RAND() in combination with LIMIT:

SELECT * FROM drawing ORDER BY RAND() LIMIT 5;

A special case occurs when you pick a single row from a table that you know contains
a column with values in the range from 1 to n in unbroken sequence. Under these
circumstances, it’s possible to avoid performing an ORDER BY operation on the entire
table. Pick a random number in that range and select the matching row:

SET @id = FLOOR(RAND()*n)+1;
SELECT ... FROM tbl_name WHERE id = @id;

This is much quicker than ORDER BY RAND() LIMIT 1 as the table size increases.

15.9. Calculating Successive-Row Differences
Problem
A table contains successive cumulative values in its rows, and you want to compute the
differences between pairs of successive rows.

Solution
Use a self-join that matches pairs of adjacent rows and calculates the differences between
members of each pair.

Discussion
Self-joins are useful when you have a set of absolute (or cumulative) values that you
want to convert to relative values representing the differences between successive pairs
of rows. For example, if you take an automobile trip and write down the total miles
traveled at each stopping point, you can compute the difference between successive
points to determine the distance from one stop to the next. Here is such a table that
shows the stops for a trip from San Antonio, Texas to Madison, Wisconsin. Each row
shows the total miles driven as of each stop:

mysql> SELECT seq, city, miles FROM trip_log ORDER BY seq;
+-----+------------------+-------+
| seq | city | miles |
+-----+------------------+-------+
1	San Antonio, TX	0
2	Dallas, TX	263
3	Benton, AR	566
4	Memphis, TN	745

15.9. Calculating Successive-Row Differences | 531

www.it-ebooks.info

http://www.it-ebooks.info/

5	Portageville, MO	878
6	Champaign, IL	1164
7	Madison, WI	1412
+-----+------------------+-------+

A self-join can convert these cumulative values to successive differences that represent
the distances from each city to the next. The following statement shows how to use the
sequence numbers in the rows to match pairs of successive rows and compute the dif‐
ferences between each pair of mileage values:

mysql> SELECT t1.seq AS seq1, t2.seq AS seq2,
 -> t1.city AS city1, t2.city AS city2,
 -> t1.miles AS miles1, t2.miles AS miles2,
 -> t2.miles-t1.miles AS dist
 -> FROM trip_log AS t1 INNER JOIN trip_log AS t2
 -> ON t1.seq+1 = t2.seq
 -> ORDER BY t1.seq;
+------+------+------------------+------------------+--------+--------+------+
| seq1 | seq2 | city1 | city2 | miles1 | miles2 | dist |
+------+------+------------------+------------------+--------+--------+------+
1	2	San Antonio, TX	Dallas, TX	0	263	263
2	3	Dallas, TX	Benton, AR	263	566	303
3	4	Benton, AR	Memphis, TN	566	745	179
4	5	Memphis, TN	Portageville, MO	745	878	133
5	6	Portageville, MO	Champaign, IL	878	1164	286
6	7	Champaign, IL	Madison, WI	1164	1412	248
+------+------+------------------+------------------+--------+--------+------+

The presence of the seq column in the trip_log table is important for calculating suc‐
cessive difference values. It’s needed for establishing which row precedes another and
matching each row n with row n+1. The implication is that to perform relative-difference
calculations using a table of absolute or cumulative values, it must include a sequence
column that has no gaps. If the table contains a sequence column but there are gaps,
renumber it (see Recipe 13.5). If the table contains no such column, add one (see
Recipe 13.9).

A more complex situation occurs when you compute successive differences for more
than one column and use the results in a calculation. The following table, play
er_stats, shows some cumulative numbers for a baseball player at the end of each
month of his season. ab indicates the total at-bats, and h the total hits the player has had
as of a given date. (The first row indicates the starting point of the player’s season, which
is why the ab and h values are zero.)

mysql> SELECT id, date, ab, h, TRUNCATE(IFNULL(h/ab,0),3) AS ba
 -> FROM player_stats ORDER BY id;
+----+------------+-----+----+-------+
| id | date | ab | h | ba |
+----+------------+-----+----+-------+
| 1 | 2013-04-30 | 0 | 0 | 0.000 |
| 2 | 2013-05-31 | 38 | 13 | 0.342 |

532 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

3	2013-06-30	109	31	0.284
4	2013-07-31	196	49	0.250
5	2013-08-31	304	98	0.322
+----+------------+-----+----+-------+

The last column of the query result also shows the player’s batting average as of each
date. This column is not stored in the table but is easily computed as the ratio of hits to
at-bats. The result provides a general idea of how the player’s hitting performance
changed over the course of the season, but it provides no picture of how the player did
during each individual month. To determine that, calculate relative differences between
pairs of rows. This is easily done with a self-join that matches row n with row n+1 to
calculate differences between pairs of at-bats and hits values. These differences enable
computation of batting average during each month:

mysql> SELECT
 -> t1.id AS id1, t2.id AS id2,
 -> t2.date,
 -> t1.ab AS ab1, t2.ab AS ab2,
 -> t1.h AS h1, t2.h AS h2,
 -> t2.ab-t1.ab AS abdiff,
 -> t2.h-t1.h AS hdiff,
 -> TRUNCATE(IFNULL((t2.h-t1.h)/(t2.ab-t1.ab),0),3) AS ba
 -> FROM player_stats AS t1 INNER JOIN player_stats AS t2
 -> ON t1.id+1 = t2.id
 -> ORDER BY t1.id;
+-----+-----+------------+-----+-----+----+----+--------+-------+-------+
| id1 | id2 | date | ab1 | ab2 | h1 | h2 | abdiff | hdiff | ba |
+-----+-----+------------+-----+-----+----+----+--------+-------+-------+
1	2	2013-05-31	0	38	0	13	38	13	0.342
2	3	2013-06-30	38	109	13	31	71	18	0.253
3	4	2013-07-31	109	196	31	49	87	18	0.206
4	5	2013-08-31	196	304	49	98	108	49	0.453
+-----+-----+------------+-----+-----+----+----+--------+-------+-------+

These results show much more clearly than the original table that the player started off
well but had a slump in the middle of the season, particularly in July. They also indicate
just how strong his performance was in August.

15.10. Finding Cumulative Sums and Running Averages
Problem
You have a set of observations measured over time and want to compute the cumulative
sum of the observations at each measurement point. Or you want to compute a running
average at each point.

15.10. Finding Cumulative Sums and Running Averages | 533

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use a self-join to produce the sets of successive observations at each measurement point,
then apply aggregate functions to each set of values to compute its sum or average.

Discussion
Recipe 15.9 illustrates how a self-join can produce relative values from absolute values.
A self-join can do the opposite as well, producing cumulative values at each successive
stage of a set of observations. The following table shows a set of rainfall measurements
taken over a series of days. The values in each row show the observation date and pre‐
cipitation in inches:

mysql> SELECT date, precip FROM rainfall ORDER BY date;
+------------+--------+
| date | precip |
+------------+--------+
2014-06-01	1.50
2014-06-02	0.00
2014-06-03	0.50
2014-06-04	0.00
2014-06-05	1.00
+------------+--------+

To calculate cumulative rainfall for a given day, add that day’s precipitation value to the
values for all the previous days. For example, determine the cumulative rainfall as of
2014-06-03 like this:

mysql> SELECT SUM(precip) FROM rainfall WHERE date <= '2014-06-03';
+-------------+
| SUM(precip) |
+-------------+
| 2.00 |
+-------------+

To get the cumulative figures for all days represented in the table, it’s tedious to compute
the value separately for each day. A self-join can do this for all days with a single state‐
ment. Use one instance of the rainfall table as a reference, and determine for the date
in each row the sum of the precip values in all rows occurring up through that date in
another instance of the table. The following statement shows the daily and cumulative
precipitation for each day:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+
| date | daily precip | cum. precip |
+------------+--------------+-------------+

534 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

2014-06-01	1.50	1.50
2014-06-02	0.00	1.50
2014-06-03	0.50	2.00
2014-06-04	0.00	2.00
2014-06-05	1.00	3.00
+------------+--------------+-------------+

The self-join can be extended to display the number of days elapsed at each date, as well
as the running averages for amount of precipitation each day:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> COUNT(t2.precip) AS 'days elapsed',
 -> AVG(t2.precip) AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------------+
| date | daily precip | cum. precip | days elapsed | avg. precip |
+------------+--------------+-------------+--------------+-------------+
2014-06-01	1.50	1.50	1	1.500000
2014-06-02	0.00	1.50	2	0.750000
2014-06-03	0.50	2.00	3	0.666667
2014-06-04	0.00	2.00	4	0.500000
2014-06-05	1.00	3.00	5	0.600000
+------------+--------------+-------------+--------------+-------------+

In the preceding statement, the number of days elapsed and the precipitation running
averages can be computed easily using COUNT() and AVG() because there are no missing
days in the table. If missing days are permitted, the calculation becomes more compli‐
cated because the number of days elapsed for each calculation is no longer the same as
the number of rows. You can see this by deleting the rows for the days that had no
precipitation to produce “holes” in the table:

mysql> DELETE FROM rainfall WHERE precip = 0;
mysql> SELECT date, precip FROM rainfall ORDER BY date;
+------------+--------+
| date | precip |
+------------+--------+
2014-06-01	1.50
2014-06-03	0.50
2014-06-05	1.00
+------------+--------+

Deleting those rows doesn’t change the cumulative sum or running average for the dates
that remain, but it does change how they must be calculated. If you execute the self-join
again, it yields incorrect results for the days-elapsed and average precipitation columns:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> COUNT(t2.precip) AS 'days elapsed',
 -> AVG(t2.precip) AS 'avg. precip'

15.10. Finding Cumulative Sums and Running Averages | 535

www.it-ebooks.info

http://www.it-ebooks.info/

 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------------+
| date | daily precip | cum. precip | days elapsed | avg. precip |
+------------+--------------+-------------+--------------+-------------+
2014-06-01	1.50	1.50	1	1.500000
2014-06-03	0.50	2.00	2	1.000000
2014-06-05	1.00	3.00	3	1.000000
+------------+--------------+-------------+--------------+-------------+

To fix the problem, determine the number of days elapsed a different way. Take the
minimum and maximum date involved in each sum and calculate a days-elapsed value
from them:

DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1

That value must be used for the days-elapsed column and for computing the running
averages. The resulting statement is as follows:

mysql> SELECT t1.date, t1.precip AS 'daily precip',
 -> SUM(t2.precip) AS 'cum. precip',
 -> DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1 AS 'days elapsed',
 -> SUM(t2.precip) / (DATEDIFF(MAX(t2.date),MIN(t2.date)) + 1)
 -> AS 'avg. precip'
 -> FROM rainfall AS t1 INNER JOIN rainfall AS t2
 -> ON t1.date >= t2.date
 -> GROUP BY t1.date;
+------------+--------------+-------------+--------------+-------------+
| date | daily precip | cum. precip | days elapsed | avg. precip |
+------------+--------------+-------------+--------------+-------------+
2014-06-01	1.50	1.50	1	1.500000
2014-06-03	0.50	2.00	3	0.666667
2014-06-05	1.00	3.00	5	0.600000
+------------+--------------+-------------+--------------+-------------+

As this example illustrates, calculation of cumulative values from relative values requires
only a column that enables rows to be placed into the proper order. (For the rainfall
table, that’s the date column.) Values in the column need not be sequential, or even
numeric. This differs from calculations that produce difference values from cumulative
values (see Recipe 15.9), which require a table that has a column containing an unbroken
sequence.

The running averages in the rainfall examples are based on dividing cumulative pre‐
cipitation sums by number of days elapsed as of each day. When the table has no gaps,
the number of days is the same as the number of values summed, making it easy to find
successive averages. When rows are missing, the calculations become more complex.
This demonstrates that it’s necessary to consider the nature of your data and calculate
averages appropriately. The next example is conceptually similar to the previous ones

536 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

in that it calculates cumulative sums and running averages, but performs the compu‐
tations yet another way.

The following table shows a marathon runner’s performance at each stage of a 26-
kilometer run. The values in each row show the length of each stage in kilometers and
how long the runner took to complete the stage. In other words, the values pertain to
intervals within the marathon and thus are relative to the whole:

mysql> SELECT stage, km, t FROM marathon ORDER BY stage;
+-------+----+----------+
| stage | km | t |
+-------+----+----------+
1	5	00:15:00
2	7	00:19:30
3	9	00:29:20
4	5	00:17:50
+-------+----+----------+

To calculate cumulative distance in kilometers at each stage, use a self-join like this:
mysql> SELECT t1.stage, t1.km, SUM(t2.km) AS 'cum. km'
 -> FROM marathon AS t1 INNER JOIN marathon AS t2
 -> ON t1.stage >= t2.stage
 -> GROUP BY t1.stage;
+-------+----+---------+
| stage | km | cum. km |
+-------+----+---------+
1	5	5
2	7	12
3	9	21
4	5	26
+-------+----+---------+

Cumulative distances are easy to compute because they can be summed directly. The
calculation for accumulating time values is more involved: convert times to seconds,
total the resulting values, and convert the sum back to a time value. To compute the
runner’s average speed at the end of each stage, take the ratio of cumulative distance
over cumulative time. Putting all this together yields the following statement:

mysql> SELECT t1.stage, t1.km, t1.t,
 -> SUM(t2.km) AS 'cum. km',
 -> SEC_TO_TIME(SUM(TIME_TO_SEC(t2.t))) AS 'cum. t',
 -> SUM(t2.km)/(SUM(TIME_TO_SEC(t2.t))/(60*60)) AS 'avg. km/hour'
 -> FROM marathon AS t1 INNER JOIN marathon AS t2
 -> ON t1.stage >= t2.stage
 -> GROUP BY t1.stage;
+-------+----+----------+---------+----------+--------------+
| stage | km | t | cum. km | cum. t | avg. km/hour |
+-------+----+----------+---------+----------+--------------+
1	5	00:15:00	5	00:15:00	20.0000
2	7	00:19:30	12	00:34:30	20.8696
3	9	00:29:20	21	01:03:50	19.7389

15.10. Finding Cumulative Sums and Running Averages | 537

www.it-ebooks.info

http://www.it-ebooks.info/

| 4 | 5 | 00:17:50 | 26 | 01:21:40 | 19.1020 |
+-------+----+----------+---------+----------+--------------+

We can see from this that the runner’s average pace increased a little during the second
stage of the race but then decreased thereafter, presumably as a result of fatigue.

15.11. Assigning Ranks
Problem
You want to assign ranks to a set of values.

Solution
Decide on a ranking method, then put the values in the desired order and apply the
method to them.

Discussion
Some kinds of statistical tests require assignment of ranks. This section describes three
ranking methods and shows how each can be implemented by using user-defined vari‐
ables. The examples assume that a table t contains the following scores, which are to be
ranked with the values in descending order:

mysql> SELECT score FROM t ORDER BY score DESC;
+-------+
| score |
+-------+
| 5 |
| 4 |
| 4 |
| 3 |
| 2 |
| 2 |
| 2 |
| 1 |
+-------+

Before you use the ideas presented here, be aware that the queries use
the unsanctioned technique of getting and setting the same user-
defined variable within the same statement and therefore might break
some day. An alternative (also illustrated here) is to pull the observa‐
tions into a program that does the ranking calculations.

One type of ranking simply assigns each value its row number within the ordered set
of values. To produce such rankings, keep track of the row number and use it for the
current rank:

538 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SET @rownum := 0;
mysql> SELECT @rownum := @rownum + 1 AS rank, score
 -> FROM t ORDER BY score DESC;
+------+-------+
| rank | score |
+------+-------+
1	5
2	4
3	4
4	3
5	2
6	2
7	2
8	1
+------+-------+

That kind of ranking doesn’t take into account the possibility of ties (instances of values
that are the same). A second ranking method does so by advancing the rank only when
values change:

mysql> SET @rank = 0, @prev_val = NULL;
mysql> SELECT @rank := IF(@prev_val=score,@rank,@rank+1) AS rank,
 -> @prev_val := score AS score
 -> FROM t ORDER BY score DESC;
+------+-------+
| rank | score |
+------+-------+
1	5
2	4
2	4
3	3
4	2
4	2
4	2
5	1
+------+-------+

A third ranking method is something of a combination of the other two methods. It
ranks values by row number, except when ties occur. In that case, the tied values each
get a rank equal to the row number of the first of the values. To implement this method,
keep track of the row number and the previous value, advancing the rank to the current
row number when the value changes:

mysql> SET @rownum = 0, @rank = 0, @prev_val = NULL;
mysql> SELECT @rownum := @rownum + 1 AS row,
 -> @rank := IF(@prev_val<>score,@rownum,@rank) AS rank,
 -> @prev_val := score AS score
 -> FROM t ORDER BY score DESC;
+------+------+-------+
| row | rank | score |
+------+------+-------+
| 1 | 1 | 5 |

15.11. Assigning Ranks | 539

www.it-ebooks.info

http://www.it-ebooks.info/

2	2	4
3	2	4
4	4	3
5	5	2
6	5	2
7	5	2
8	8	1
+------+------+-------+

Ranks are easy to assign within a program as well. For example, the following Ruby
fragment ranks the scores in t using the third ranking method:

dbh.execute("SELECT score FROM t ORDER BY score DESC") do |sth|
 rownum = 0
 rank = 0
 prev_score = nil
 puts "Row\tRank\tScore\n"
 sth.fetch do |row|
 score = row[0]
 rownum += 1
 rank = rownum if rownum == 1 || prev_score != score
 prev_score = score
 puts "#{rownum}\t#{rank}\t#{score}"
 end
end

The third type of ranking is commonly used for sporting events. The following table
contains the American League pitchers who won 15 or more games during the 2001
baseball season:

mysql> SELECT name, wins FROM al_winner ORDER BY wins DESC, name;
+----------------+------+
| name | wins |
+----------------+------+
Mulder, Mark	21
Clemens, Roger	20
Moyer, Jamie	20
Garcia, Freddy	18
Hudson, Tim	18
Abbott, Paul	17
Mays, Joe	17
Mussina, Mike	17
Sabathia, C.C.	17
Zito, Barry	17
Buehrle, Mark	16
Milton, Eric	15
Pettitte, Andy	15
Radke, Brad	15
Sele, Aaron	15
+----------------+------+

These pitchers can be assigned ranks using the third method as follows:

540 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SET @rownum = 0, @rank = 0, @prev_val = NULL;
mysql> SELECT @rownum := @rownum + 1 AS row,
 -> @rank := IF(@prev_val<>wins,@rownum,@rank) AS rank,
 -> name,
 -> @prev_val := wins AS wins
 -> FROM al_winner ORDER BY wins DESC;
+------+------+----------------+------+
| row | rank | name | wins |
+------+------+----------------+------+
1	1	Mulder, Mark	21
2	2	Clemens, Roger	20
3	2	Moyer, Jamie	20
4	4	Garcia, Freddy	18
5	4	Hudson, Tim	18
6	6	Zito, Barry	17
7	6	Sabathia, C.C.	17
8	6	Mussina, Mike	17
9	6	Mays, Joe	17
10	6	Abbott, Paul	17
11	11	Buehrle, Mark	16
12	12	Milton, Eric	15
13	12	Pettitte, Andy	15
14	12	Radke, Brad	15
15	12	Sele, Aaron	15
+------+------+----------------+------+

15.12. Computing Team Standings
Problem
You want to compute team standings from their win-loss records, including the games-
behind (GB) values.

Solution
Determine which team is in first place, then join that result to the original rows.

Discussion
Standings for sports teams that compete against each other is a ranking problem, but
ranks are not based on a single measure as in Recipe 15.11. Standings are based on two
values, wins and losses. Teams are ranked according to which has the best win-loss
record, and teams not in first place are assigned a “games-behind” value indicating how
many games out of first place they are. This section shows how to calculate those values.
The first example uses a table containing a single set of team records to illustrate the
logic of the calculations. The second example uses a table containing several sets of
records (that is, the records for all teams in both divisions of a league, for both halves

15.12. Computing Team Standings | 541

www.it-ebooks.info

http://www.it-ebooks.info/

of the season). In this case, it’s necessary to use a join to perform the calculations inde‐
pendently for each group of teams.

Consider the following table, standings1, which contains a single set of baseball team
records representing the final standings for the Northern League in the year 1902:

mysql> SELECT team, wins, losses FROM standings1
 -> ORDER BY wins-losses DESC;
+-------------+------+--------+
| team | wins | losses |
+-------------+------+--------+
Winnipeg	37	20
Crookston	31	25
Fargo	30	26
Grand Forks	28	26
Devils Lake	19	31
Cavalier	15	32
+-------------+------+--------+

The rows are sorted by the win-loss differential, which is how to place teams in order
from first place to last place. But displays of team standings typically include each team’s
winning percentage and a figure indicating how many games behind the leader all the
other teams are. So let’s add that information to the output. Calculating the percentage
is easy. It’s the ratio of wins to total games played and can be determined using this
expression:

wins / (wins + losses)

This expression involves division by zero when a team has not played any games yet.
For simplicity, I’ll assume a nonzero number of games. To handle this condition, you’d
use a more general expression:

IF(wins=0,0,wins/(wins+losses))

This expression relies on the fact that no division operation is necessary unless the team
has won at least one game.

Determining the games-behind value is a little trickier. It’s based on the relationship of
the win-loss records for two teams, calculated as the average of two values:

• How many more wins the first-place team has than the second-place team
• How many fewer losses the first-place team has than the second-place team

Suppose that two teams A and B have the following win-loss records:
+------+------+--------+
| team | wins | losses |
+------+------+--------+
| A | 17 | 11 |
| B | 14 | 12 |
+------+------+--------+

542 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

Here, team B has to win three more games, and team A has to lose one more game for
the teams to be even. The average of three and one is two, thus B is two games behind
A. Mathematically, the games-behind calculation for the two teams is:

((winsA - winsB) + (lossesB - lossesA)) / 2

With a little rearrangement of terms, the expression becomes:
((winsA - lossesA) - (winsB - lossesB)) / 2

The second expression is equivalent to the first, but it has each factor written as a single
team’s win-loss differential, rather than as a comparison between teams. That makes it
easier to work with because each factor can be determined independently from a single
team record. The first factor represents the first-place team’s win-loss differential, so if
we calculate that value first, the other team GB values can be determined in relation to
it.

The first-place team is the one with the largest win-loss differential. To find that value
and save it in a variable, use this statement:

mysql> SET @wl_diff = (SELECT MAX(wins-losses) FROM standings1);

Then use the differential as follows to produce team standings that include winning
percentage and GB values:

mysql> SELECT team, wins AS W, losses AS L,
 -> wins/(wins+losses) AS PCT,
 -> (@wl_diff - (wins-losses)) / 2 AS GB
 -> FROM standings1
 -> ORDER BY wins-losses DESC, PCT DESC;
+-------------+------+------+--------+---------+
| team | W | L | PCT | GB |
+-------------+------+------+--------+---------+
Winnipeg	37	20	0.6491	0.0000
Crookston	31	25	0.5536	5.5000
Fargo	30	26	0.5357	6.5000
Grand Forks	28	26	0.5185	7.5000
Devils Lake	19	31	0.3800	14.5000
Cavalier	15	32	0.3191	17.0000
+-------------+------+------+--------+---------+

There are a couple minor formatting issues to address at this point. Typically, standings
listings display percentages to three decimal places, and the GB value to one decimal
place (except that the GB value for the first-place team is displayed as -). To display n
decimal places, use TRUNCATE(expr,n). To display the GB value for the first-place team
appropriately, use an IF() expression that maps 0 to a dash:

mysql> SELECT team, wins AS W, losses AS L,
 -> TRUNCATE(wins/(wins+losses),3) AS PCT,
 -> IF(@wl_diff = wins-losses,
 -> '-',TRUNCATE((@wl_diff - (wins-losses))/2,1)) AS GB
 -> FROM standings1

15.12. Computing Team Standings | 543

www.it-ebooks.info

http://www.it-ebooks.info/

 -> ORDER BY wins-losses DESC, PCT DESC;
+-------------+------+------+-------+------+
| team | W | L | PCT | GB |
+-------------+------+------+-------+------+
Winnipeg	37	20	0.649	-
Crookston	31	25	0.553	5.5
Fargo	30	26	0.535	6.5
Grand Forks	28	26	0.518	7.5
Devils Lake	19	31	0.380	14.5
Cavalier	15	32	0.319	17.0
+-------------+------+------+-------+------+

These statements order the teams by win-loss differential, using winning percentage as
a tie-breaker in case there are teams with the same differential value. It’s simpler to sort
by percentage, of course, but then you wouldn’t always get the correct ordering. It’s a
curious fact that a team with a lower winning percentage can actually be higher in the
standings than a team with a higher percentage. (This generally occurs early in the
season, when teams may have played highly disparate numbers of games, relatively
speaking.) Consider the case in which two teams, A and B, have the following rows:

+------+------+--------+
| team | wins | losses |
+------+------+--------+
| A | 4 | 1 |
| B | 2 | 0 |
+------+------+--------+

Applying the GB and percentage calculations to these team records yields the following
result, in which the first-place team actually has a lower winning percentage than the
second-place team:

+------+------+------+-------+------+
| team | W | L | PCT | GB |
+------+------+------+-------+------+
| A | 4 | 1 | 0.800 | - |
| B | 2 | 0 | 1.000 | 0.5 |
+------+------+------+-------+------+

The standings calculations shown thus far can be done without a join. They involve only
a single set of team records, so the first-place team’s win-loss differential can be stored
in a variable. A more complex situation occurs when a dataset includes several sets of
team records. For example, the 1997 Northern League had two divisions (Eastern and
Western). In addition, separate standings were maintained for the first and second
halves of the season because season-half winners in each division played each other for
the right to compete in the league championship. The following table, standings2,
shows what these rows look like, ordered by season half, division, and win-loss differ‐
ential:

mysql> SELECT half, division, team, wins, losses FROM standings2
 -> ORDER BY half, division, wins-losses DESC;

544 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

+------+----------+-----------------+------+--------+
| half | division | team | wins | losses |
+------+----------+-----------------+------+--------+
1	Eastern	St. Paul	24	18
1	Eastern	Thunder Bay	18	24
1	Eastern	Duluth-Superior	17	24
1	Eastern	Madison	15	27
1	Western	Winnipeg	29	12
1	Western	Sioux City	28	14
1	Western	Fargo-Moorhead	21	21
1	Western	Sioux Falls	15	27
2	Eastern	Duluth-Superior	22	20
2	Eastern	St. Paul	21	21
2	Eastern	Madison	19	23
2	Eastern	Thunder Bay	18	24
2	Western	Fargo-Moorhead	26	16
2	Western	Winnipeg	24	18
2	Western	Sioux City	22	20
2	Western	Sioux Falls	16	26
+------+----------+-----------------+------+--------+

Generating the standings for these rows requires computing the GB values separately
for each of the four combinations of season half and division. First, calculate the win-
loss differential for the first-place team in each group and save the values into a separate
firstplace table:

mysql> CREATE TEMPORARY TABLE firstplace
 -> SELECT half, division, MAX(wins-losses) AS wl_diff
 -> FROM standings2
 -> GROUP BY half, division;

Then join the firstplace table to the original standings, associating each team record
with the proper win-loss differential to compute its GB value:

mysql> SELECT wl.half, wl.division, wl.team, wl.wins AS W, wl.losses AS L,
 -> TRUNCATE(wl.wins/(wl.wins+wl.losses),3) AS PCT,
 -> IF(fp.wl_diff = wl.wins-wl.losses,
 -> '-',TRUNCATE((fp.wl_diff - (wl.wins-wl.losses)) / 2,1)) AS GB
 -> FROM standings2 AS wl INNER JOIN firstplace AS fp
 -> ON wl.half = fp.half AND wl.division = fp.division
 -> ORDER BY wl.half, wl.division, wl.wins-wl.losses DESC, PCT DESC;
+------+----------+-----------------+------+------+-------+------+
| half | division | team | W | L | PCT | GB |
+------+----------+-----------------+------+------+-------+------+
1	Eastern	St. Paul	24	18	0.571	-
1	Eastern	Thunder Bay	18	24	0.428	6.0
1	Eastern	Duluth-Superior	17	24	0.414	6.5
1	Eastern	Madison	15	27	0.357	9.0
1	Western	Winnipeg	29	12	0.707	-
1	Western	Sioux City	28	14	0.666	1.5
1	Western	Fargo-Moorhead	21	21	0.500	8.5
1	Western	Sioux Falls	15	27	0.357	14.5
2	Eastern	Duluth-Superior	22	20	0.523	-

15.12. Computing Team Standings | 545

www.it-ebooks.info

http://www.it-ebooks.info/

2	Eastern	St. Paul	21	21	0.500	1.0
2	Eastern	Madison	19	23	0.452	3.0
2	Eastern	Thunder Bay	18	24	0.428	4.0
2	Western	Fargo-Moorhead	26	16	0.619	-
2	Western	Winnipeg	24	18	0.571	2.0
2	Western	Sioux City	22	20	0.523	4.0
2	Western	Sioux Falls	16	26	0.380	10.0
+------+----------+-----------------+------+------+-------+------+

That output is difficult to read, however. To make it easier to understand, you might
execute the statement from within a program and reformat its results to display each
set of team records separately. Here’s some Perl code that does that by beginning a new
output group each time it encounters a new group of standings. The code assumes that
the join statement has just been executed and that its results are available through the
statement handle $sth:

my ($cur_half, $cur_div) = ("", "");
while (my ($half, $div, $team, $wins, $losses, $pct, $gb)
 = $sth->fetchrow_array ())
{
 if ($cur_half ne $half || $cur_div ne $div) # new group of standings?
 {
 # print standings header and remember new half/division values
 print "\n$div Division, season half $half\n";
 printf "%-20s %3s %3s %5s %s\n", "Team", "W", "L", "PCT", "GB";
 $cur_half = $half;
 $cur_div = $div;
 }
 printf "%-20s %3d %3d %5s %s\n", $team, $wins, $losses, $pct, $gb;
}

The reformatted output looks like this:
Eastern Division, season half 1
Team W L PCT GB
St. Paul 24 18 0.571 -
Thunder Bay 18 24 0.428 6.0
Duluth-Superior 17 24 0.414 6.5
Madison 15 27 0.357 9.0

Western Division, season half 1
Team W L PCT GB
Winnipeg 29 12 0.707 -
Sioux City 28 14 0.666 1.5
Fargo-Moorhead 21 21 0.500 8.5
Sioux Falls 15 27 0.357 14.5

Eastern Division, season half 2
Team W L PCT GB
Duluth-Superior 22 20 0.523 -
St. Paul 21 21 0.500 1.0
Madison 19 23 0.452 3.0

546 | Chapter 15: Statistical Techniques

www.it-ebooks.info

http://www.it-ebooks.info/

Thunder Bay 18 24 0.428 4.0

Western Division, season half 2
Team W L PCT GB
Fargo-Moorhead 26 16 0.619 -
Winnipeg 24 18 0.571 2.0
Sioux City 22 20 0.523 4.0
Sioux Falls 16 26 0.380 10.0

The code just shown comes from the calc_standings.pl script in the stats directory of
the recipes distribution. That directory also contains a PHP script, calc_stand‐
ings.php, that produces output in the form of HTML tables, which you might prefer for
generating standings in a web environment.

15.12. Computing Team Standings | 547

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Handling Duplicates

16.0. Introduction
Tables or result sets sometimes contain duplicate rows. In some cases this is acceptable.
For example, if you conduct a web poll that records date and client IP number along
with the votes, duplicate rows may be permitted because it’s possible for large numbers
of votes to appear to originate from the same IP number for an Internet service that
routes traffic from its customers through a single proxy host. In other cases, duplicates
are unacceptable, and you’ll want to take steps to avoid them. Operations involved in
handling duplicate rows include the following:

• Preventing duplicates from being created in the first place. If each row in a table is
intended to represent a single entity (such as a person, an item in a catalog, or a
specific observation in an experiment), the occurrence of duplicates presents sig‐
nificant difficulties in using it that way. Duplicates make it impossible to refer to
each row unambiguously, so it’s best to make sure duplicates never occur.

• Counting the number of duplicates to determine whether they are present and to
what extent.

• Identifying duplicated values (or the rows containing them) so you can see where
they occur.

• Eliminating duplicates to ensure that each row is unique. This may involve remov‐
ing rows from a table to leave only unique rows or selecting a result set in such a
way that no duplicates appear in the output. For example, to display a list of the
states in which you have customers, you probably don’t want a long list of state
names from all customer records. A list showing each state name only once suffices
and is easier to understand.

Several tools are at your disposal for dealing with duplicate rows. Choose them accord‐
ing to the objective that you want to achieve:

549

www.it-ebooks.info

http://www.it-ebooks.info/

• When you create a table, include a primary key or unique index to prevent dupli‐
cates from being added to the table. MySQL uses the index as a constraint to enforce
the requirement that each row in the table contains a unique key in the indexed
column or columns.

• In conjunction with a unique index, the INSERT IGNORE and REPLACE statements
enable you to handle insertion of duplicate rows gracefully without generating er‐
rors. For bulk-loading operations, the same options are available in the form of the
IGNORE or REPLACE modifiers for the LOAD DATA statement.

• To determine whether a table contains duplicates, use GROUP BY to categorize rows
into groups, and COUNT() to see how many rows are in each group. Chapter 8
describes these techniques in the context of producing summaries, but they’re useful
for duplicate counting and identification as well. A counting summary groups val‐
ues into categories to determine how frequently each one occurs.

• SELECT DISTINCT removes duplicate rows from a result set (see Recipe 3.4 for more
information). For an existing table that already contains duplicates, you can select
unique rows into a second table and use it to replace the original table. Or, if you
determine that there are n identical rows in a table, you can use DELETE … LIMIT
to eliminate n–1 instances from that specific set of rows.

Scripts related to the examples shown in this chapter are located in the dups directory
of the recipes distribution. For scripts that create the tables used here, look in the tables
directory.

16.1. Preventing Duplicates from Occurring in a Table
Problem
You want to prevent a table from ever containing duplicates.

Solution
Use a PRIMARY KEY or a UNIQUE index.

Discussion
To ensure that rows in a table are unique, some column or combination of columns
must be required to contain unique values in each row. When this requirement is sat‐
isfied, you can refer to any row in the table unambiguously by using its unique identifier.
To make sure a table has this characteristic, include a PRIMARY KEY or UNIQUE index in
the table structure. The following table contains no such index, so it permits duplicate
rows:

550 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE person
(
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40)
);

To prevent multiple rows with the same first and last name values from being created
in this table, add a PRIMARY KEY to its definition. When you do this, the indexed columns
must be NOT NULL, because a PRIMARY KEY prohibits NULL values:

CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 PRIMARY KEY (last_name, first_name)
);

The presence of a unique index in a table normally causes an error to occur if you insert
a row into the table that duplicates an existing row in the column or columns that define
the index. Recipe 16.2 discusses how to handle such errors or modify MySQL’s duplicate-
handling behavior.

Another way to enforce uniqueness is to add a UNIQUE index rather than a PRIMARY KEY
to a table. The two types of indexes are similar, but a UNIQUE index can be created on
columns that permit NULL values. For the person table, it’s likely that you’d require both
the first and last names to be filled in. If so, you still declare the columns as NOT NULL,
and the following table definition is effectively equivalent to the preceding one:

CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 UNIQUE (last_name, first_name)
);

If a UNIQUE index does happen to permit NULL values, NULL is special because it is the
one value that can occur multiple times. The rationale for this is that it is not possible
to know whether one unknown value is the same as another, so multiple unknown values
are permitted.

Of course, you might want the person table to reflect the real world, in which people
do sometimes have the same name. In this case, you cannot set up a unique index based
on the name columns, because duplicate names must be permitted. Instead, each person
must be assigned some sort of unique identifier, which becomes the value that distin‐
guishes one row from another. In MySQL, it’s common to accomplish this by using an
AUTO_INCREMENT column:

16.1. Preventing Duplicates from Occurring in a Table | 551

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE person
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40),
 PRIMARY KEY (id)
);

In this case, when you create a row with an id value of NULL, MySQL assigns that column
a unique ID automatically. Another possibility is to assign identifiers externally and use
those IDs as unique keys. For example, citizens in a given country might have unique
taxpayer ID numbers. If so, those numbers can serve as the basis for a unique index:

CREATE TABLE person
(
 tax_id INT UNSIGNED NOT NULL,
 last_name CHAR(20),
 first_name CHAR(20),
 address CHAR(40),
 PRIMARY KEY (tax_id)
);

See Also
If an existing table already contains duplicate rows that you want to remove, see
Recipe 16.4. Chapter 13 further discusses AUTO_INCREMENT columns.

16.2. Dealing with Duplicates When Loading Rows into a
Table
Problem
You’ve created a table with a unique index to prevent duplicate values in the indexed
column or columns. But this results in an error if you attempt to insert a duplicate row,
and you want to avoid having to deal with such errors.

Solution
One approach is to just ignore the error. Another is to use an INSERT IGNORE, REPLACE,
or INSERT … ON DUPLICATE KEY UPDATE statement, each of which modifies MySQL’s
duplicate-handling behavior. For bulk-loading operations, LOAD DATA has modifiers that
enable you to specify how to handle duplicates.

552 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
By default, MySQL generates an error when you insert a row that duplicates an existing
unique key value. Suppose that the person table has the following structure, with a
unique index on the last_name and first_name columns:

CREATE TABLE person
(
 last_name CHAR(20) NOT NULL,
 first_name CHAR(20) NOT NULL,
 address CHAR(40),
 PRIMARY KEY (last_name, first_name)
);

An attempt to insert a row with duplicate values in the indexed columns results in an
error:

mysql> INSERT INTO person (last_name, first_name)
 -> VALUES('X1','Y1');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO person (last_name, first_name)
 -> VALUES('X1','Y1');
ERROR 1062 (23000): Duplicate entry 'X1-Y1' for key 'PRIMARY'

If you issue the statements from the mysql program interactively, you can simply say,
“Okay, that didn’t work,” ignore the error, and continue. But if you write a program to
insert the rows, an error may terminate the program. One way to avoid this is to modify
the program’s error-handling behavior to trap the error and then ignore it. See Recipe 2.2
for information about error-handling techniques.

To prevent the error from occurring in the first place, you might consider using a two-
query method to solve the duplicate-row problem:

• Issue a SELECT to check whether the row is already present.
• Issue an INSERT if the row is not present.

But that doesn’t really work: another client might insert the same row after the SELECT
and before the INSERT, in which case the error would still occur for your INSERT. To
make sure that doesn’t happen, you could use a transaction or lock the tables, but then
you’ve gone from two statements to four. MySQL provides three single-query solutions
to the problem of handling duplicate rows. Choose from among them depending on
the duplicate-handling behavior you want:

• To keep the original row when a duplicate occurs, use INSERT IGNORE rather than
INSERT. If the row duplicates no existing row, MySQL inserts it as usual. If the row
is a duplicate, the IGNORE keyword tells MySQL to discard it silently without gen‐
erating an error:

16.2. Dealing with Duplicates When Loading Rows into a Table | 553

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> INSERT IGNORE INTO person (last_name, first_name)
 -> VALUES('X2','Y2');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT IGNORE INTO person (last_name, first_name)
 -> VALUES('X2','Y2');
Query OK, 0 rows affected (0.00 sec)

The row count value indicates whether the row was inserted or ignored. From
within a program, you can obtain this value by checking the rows-affected function
provided by your API (see Recipes 2.4 and 10.1).

• To replace the original row with the new one when a duplicate occurs, use RE
PLACE rather than INSERT. If the row is new, it’s inserted just as with INSERT. If it’s
a duplicate, the new row replaces the old one:

mysql> REPLACE INTO person (last_name, first_name)
 -> VALUES('X3','Y3');
Query OK, 1 row affected (0.00 sec)
mysql> REPLACE INTO person (last_name, first_name)
 -> VALUES('X3','Y3');
Query OK, 2 rows affected (0.00 sec)

The rows-affected value in the second case is 2 because the original row is deleted
and the new row is inserted in its place.

• To modify columns of an existing row when a duplicate occurs, use INSERT … ON
DUPLICATE KEY UPDATE. If the row is new, it’s inserted. If it’s a duplicate, the ON
DUPLICATE KEY UPDATE clause indicates how to modify the existing row in the table.
In other words, this statement can insert or update a row as necessary. The rows-
affected count indicates what happened: 1 for an insert, 2 for an update.

INSERT IGNORE is more efficient than REPLACE because it doesn’t actually insert dupli‐
cates. Thus, it’s most applicable when you just want to make sure a copy of a given row
is present in a table. REPLACE, on the other hand, is often more appropriate for tables in
which other nonkey columns need to be replaced. INSERT … ON DUPLICATE KEY UP
DATE is appropriate when you must insert a record if it doesn’t exist, but just update
some of its columns if the new record is a duplicate in the indexed columns.

Suppose that you maintain a table named passtbl for a web application that contains
email addresses and password hash values, and that is indexed by email address:

CREATE TABLE passtbl
(
 email VARCHAR(60) NOT NULL,
 password VARBINARY(60) NOT NULL,
 PRIMARY KEY (email)
);

How do you create new rows for new users, but change passwords of existing rows for
existing users? Here’s a typical algorithm for handling row maintenance:

554 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

1. Issue a SELECT to check whether a row already exists with a given email value.
2. If no such row exists, add a new one with INSERT.
3. If the row does exist, update it with UPDATE.

These steps must be performed within a transaction or with the tables locked to prevent
other users from changing the tables while you’re using them. In MySQL, you can use
REPLACE to simplify both cases to the same single-statement operation:

REPLACE INTO passtbl (email,password) VALUES(address,hash_value);

If no row with the given email address exists, MySQL creates a new one. Otherwise,
MySQL replaces it, in effect updating the password column of the row associated with
the address.

INSERT IGNORE and REPLACE are useful when you know exactly what values should be
stored in the table when you attempt to insert a row. That’s not always the case. For
example, you might want to insert a row if it doesn’t exist, but update only certain parts
of it otherwise. This commonly occurs when you use a table for counting. Suppose that
you record votes for candidates in polls, using the following table:

CREATE TABLE poll_vote
(
 poll_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 candidate_id INT UNSIGNED,
 vote_count INT UNSIGNED,
 PRIMARY KEY (poll_id, candidate_id)
);

The primary key is the combination of poll and candidate number. The table should be
used like this:

• For the first vote received for a given poll candidate, insert a new row with a vote
count of 1.

• For subsequent votes for that candidate, increment the vote count of the existing
record.

Neither INSERT IGNORE nor REPLACE are appropriate here because for all votes except
the first, you don’t know what the vote count should be. INSERT … ON DUPLICATE KEY
UPDATE works better here. The following example shows how it works, beginning with
an empty table:

mysql> SELECT * FROM poll_vote;
Empty set (0.00 sec)
mysql> INSERT INTO poll_vote (poll_id,candidate_id,vote_count) VALUES(14,3,1)
 -> ON DUPLICATE KEY UPDATE vote_count = vote_count + 1;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM poll_vote;

16.2. Dealing with Duplicates When Loading Rows into a Table | 555

www.it-ebooks.info

http://www.it-ebooks.info/

+---------+--------------+------------+
| poll_id | candidate_id | vote_count |
+---------+--------------+------------+
| 14 | 3 | 1 |
+---------+--------------+------------+
1 row in set (0.00 sec)
mysql> INSERT INTO poll_vote (poll_id,candidate_id,vote_count) VALUES(14,3,1)
 -> ON DUPLICATE KEY UPDATE vote_count = vote_count + 1;
Query OK, 2 rows affected (0.00 sec)
mysql> SELECT * FROM poll_vote;
+---------+--------------+------------+
| poll_id | candidate_id | vote_count |
+---------+--------------+------------+
| 14 | 3 | 2 |
+---------+--------------+------------+
1 row in set (0.00 sec)

For the first INSERT, no row for the candidate exists, so the row is inserted. For the
second INSERT, the row exists, so MySQL just updates the vote count. With INSERT …
ON DUPLICATE KEY UPDATE, you need not check whether the row exists; MySQL does it
for you. The row count indicates what action the INSERT statement performs: 1 for a
new row and 2 for an update to an existing row.

The techniques just described have the benefit of eliminating overhead that might
otherwise be required for a transaction. But this benefit comes at the price of portability
because they all involve MySQL-specific syntax. If portability is a high priority, you
might prefer to use a transactional approach.

See Also
For bulk record-loading operations in which you use the LOAD DATA statement to load
a set of rows from a file into a table, control duplicate-row handling using the statement’s
IGNORE and REPLACE modifiers. These produce behavior analogous to that of the IN
SERT IGNORE and REPLACE statements. For more information, see Recipe 11.1.

Recipes 13.12 and 20.12 further demonstrate the use of INSERT … ON DUPLICATE KEY
UPDATE for initializing and updating counts.

16.3. Counting and Identifying Duplicates
Problem
You want to determine whether a table contains duplicates, and to what extent they
occur. Or you want to see the rows that contain the duplicated values.

556 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use a counting summary that displays duplicated values. To see the rows in which the
duplicated values occur, join the summary to the original table to display the matching
rows.

Discussion
Suppose that your website has a sign-up page that enables visitors to add themselves to
your mailing list to receive periodic product catalog mailings. But you forgot to include
a unique index in the table when you created it, and now you suspect that some people
are signed up multiple times. Perhaps they forgot they were already on the list, or perhaps
people added friends to the list who were already signed up. Either way, the result of
having duplicate rows is that you mail out duplicate catalogs. This is an additional
expense to you, and it annoys the recipients. This section discusses how to determine
whether there are duplicate rows in a table, how prevalent they are, and how to display
them. (For tables that do contain duplicates, Recipe 16.4 describes how to eliminate
them.)

To determine whether duplicates occur in a table, use a counting summary (a topic
covered in Chapter 8). Summary techniques can be applied to identifying and counting
duplicates by grouping rows with GROUP BY and counting the rows in each group using
COUNT(). For the examples here, assume that catalog recipients are listed in a table named
catalog_list that has the following contents:

+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Isaacson	Jim	515 Fordam St., Apt. 917
Baxter	Wallace	57 3rd Ave.
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
BAXTER	WALLACE	57 3rd Ave.
Brown	Bartholomew	432 River Run
Pinter	Marlene	9 Sunset Trail
Baxter	Wallace	57 3rd Ave., Apt 102
+-----------+-------------+--------------------------+

Suppose that you define “duplicate” using the last_name and first_name columns.
That is, recipients with the same name are assumed to be the same person. The following
statements characterize the table and assess the existence and extent of duplicate values:

• The total number of rows in the table:
mysql> SELECT COUNT(*) AS rows FROM catalog_list;
+------+
| rows |
+------+

16.3. Counting and Identifying Duplicates | 557

www.it-ebooks.info

http://www.it-ebooks.info/

| 8 |
+------+

• The number of distinct names:
mysql> SELECT COUNT(DISTINCT last_name, first_name) AS 'distinct names'
 -> FROM catalog_list;
+----------------+
| distinct names |
+----------------+
| 5 |
+----------------+

• The number of rows containing duplicated names:
mysql> SELECT COUNT(*) - COUNT(DISTINCT last_name, first_name)
 -> AS 'duplicate names'
 -> FROM catalog_list;
+-----------------+
| duplicate names |
+-----------------+
| 3 |
+-----------------+

• The fraction of the rows that contain unique or nonunique names:
mysql> SELECT COUNT(DISTINCT last_name, first_name) / COUNT(*)
 -> AS 'unique',
 -> 1 - (COUNT(DISTINCT last_name, first_name) / COUNT(*))
 -> AS 'nonunique'
 -> FROM catalog_list;
+--------+-----------+
| unique | nonunique |
+--------+-----------+
| 0.6250 | 0.3750 |
+--------+-----------+

Those statements help you characterize the extent of duplicates, but they don’t show
you which values are duplicated. To see the duplicated names in the catalog_list table,
use a summary statement that displays the nonunique values along with the counts:

mysql> SELECT COUNT(*), last_name, first_name
 -> FROM catalog_list
 -> GROUP BY last_name, first_name
 -> HAVING COUNT(*) > 1;
+----------+-----------+------------+
| COUNT(*) | last_name | first_name |
+----------+-----------+------------+
| 3 | Baxter | Wallace |
| 2 | Pinter | Marlene |
+----------+-----------+------------+

558 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

The statement includes a HAVING clause that restricts the output to include only those
names that occur more than once. In general, to identify sets of values that are dupli‐
cated, do the following:

1. Determine which columns contain the values that may be duplicated.
2. List those columns in the column selection list, along with COUNT(*).
3. List the columns in the GROUP BY clause as well.
4. Add a HAVING clause that eliminates unique values by requiring group counts to be

greater than one.

Queries constructed that way have the following form:
SELECT COUNT(*), column_list
FROM tbl_name
GROUP BY column_list
HAVING COUNT(*) > 1

It’s easy to generate duplicate-finding queries like that within a program, given database
and table names and a nonempty set of column names. For example, here is a Perl
function make_dup_count_query() that generates the proper query for finding and
counting duplicated values in the specified columns:

sub make_dup_count_query
{
my ($db_name, $tbl_name, @col_name) = @_;

 return "SELECT COUNT(*)," . join (",", @col_name)
 . "\nFROM $db_name.$tbl_name"
 . "\nGROUP BY " . join (",", @col_name)
 . "\nHAVING COUNT(*) > 1";
}

make_dup_count_query() returns the query as a string. If you invoke it like this:
$str = make_dup_count_query ("cookbook", "catalog_list",
 "last_name", "first_name");

the resulting value of $str is:
SELECT COUNT(*),last_name,first_name
FROM cookbook.catalog_list
GROUP BY last_name,first_name
HAVING COUNT(*) > 1

What you do with the query string is up to you. You can execute it from within the script
that creates it, pass it to another program, or write it to a file for execution later. The
dups directory of the recipes distribution contains a script named dup_count.pl that
you can use to try the function (as well as some translations into other languages).

16.3. Counting and Identifying Duplicates | 559

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 16.4 discusses use of make_dup_count_query() to implement a duplicate-
removal technique.

Summary techniques are useful for assessing the existence of duplicates, how often they
occur, and displaying which values are duplicated. But if duplicates are determined using
only a subset of a table’s columns, a summary in itself cannot display the entire content
of the rows that contain the duplicate values. (For example, the summaries shown thus
far display counts of duplicated names in the catalog_list table or the names them‐
selves, but don’t show the addresses associated with those names.) To see the original
rows containing the duplicate names, join the summary information to the table from
which it’s generated. The following example shows how to do this to display the cata
log_list rows that contain duplicated names. The summary is written to a temporary
table, which then is joined to the catalog_list table to produce the rows that match
those names:

mysql> CREATE TABLE tmp
 -> SELECT COUNT(*) AS count, last_name, first_name FROM catalog_list
 -> GROUP BY last_name, first_name HAVING count > 1;
mysql> SELECT catalog_list.*
 -> FROM tmp INNER JOIN catalog_list USING (last_name, first_name)
 -> ORDER BY last_name, first_name;
+-----------+------------+----------------------+
| last_name | first_name | street |
+-----------+------------+----------------------+
Baxter	Wallace	57 3rd Ave.
BAXTER	WALLACE	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Pinter	Marlene	9 Sunset Trail
Pinter	Marlene	9 Sunset Trail
+-----------+------------+----------------------+

Duplicate Identification and String Case Sensitivity
For strings that have a case-insensitive collation, values that differ only in lettercase are
considered the same for comparison purposes. To treat them as distinct values, compare
them using a case-sensitive or binary collation. Recipe 5.7 shows how to do this.

16.4. Eliminating Duplicates from a Table
Problem
You want to remove duplicate rows from a table, leaving only unique rows.

560 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Select the unique rows from the table into a second table, then use it to replace the
original one. Or use DELETE … LIMIT n to remove all but one instance of a specific set
of duplicate rows.

Discussion
Recipe 16.1 discusses how to prevent duplicates from being added to a table by creating
it with a unique index. However, if you forget to include the index when you create a
table, you may discover later that it contains duplicates and that it’s necessary to apply
some sort of duplicate-removal technique. The catalog_list table used earlier is an
example of this because it contains several instances in which the same person appears
multiple times:

mysql> SELECT * FROM catalog_list ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
BAXTER	WALLACE	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+

To eliminate duplicates, you have a few options:

• Select the table’s unique rows into another table, then use that table to replace the
original one. This works when “duplicate” means “the entire row is the same as
another.”

• To remove duplicates for a specific set of duplicate rows, use DELETE … LIMIT n to
remove all but one row.

This recipe discusses each duplicate-removal method. When you consider which to
choose under various circumstances, the applicability of a given method to a specific
problem is often determined by several factors:

• Does the method require the table to have a unique index?
• If the columns in which duplicate values occur may contain NULL, will the method

remove duplicate NULL values?
• Does the method prevent duplicates from occurring in the future?

16.4. Eliminating Duplicates from a Table | 561

www.it-ebooks.info

http://www.it-ebooks.info/

Removing duplicates using table replacement

If a row is considered to duplicate another only if the entire row is the same, one way
to eliminate duplicates from a table is to select its unique rows into a new table that has
the same structure, and then replace the original table with the new one:

1. Create a new table that has the same structure as the original one. CREATE TABLE …
LIKE is useful for this (see Recipe 4.1):

mysql> CREATE TABLE tmp LIKE catalog_list;

2. Use INSERT INTO … SELECT DISTINCT to select the unique rows from the original
table into the new one:

mysql> INSERT INTO tmp SELECT DISTINCT * FROM catalog_list;

Select rows from the tmp table to verify that the new table contains no duplicates:
mysql> SELECT * FROM tmp ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
Baxter	Wallace	57 3rd Ave., Apt 102
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+

3. After creating the new tmp table that contains unique rows, use it to replace the
original catalog_list table:

mysql> DROP TABLE catalog_list;
mysql> RENAME TABLE tmp TO catalog_list;

The effective result of this procedure is that catalog_list no longer contains duplicates.

This table-replacement method works in the absence of an index (although it might be
slow for large tables). For tables that contain duplicate NULL values, it removes those
duplicates. It does not prevent the occurrence of duplicates in the future.

This method requires rows to be completely identical to be considered duplicates. Thus,
it treats as distinct those rows for Wallace Baxter that have slightly different street
values.

If duplicates are defined only with respect to a subset of the columns in the table, create
a new table that has a unique index for those columns, select rows into it using IN
SERT IGNORE, and replace the original table with the new one:

mysql> CREATE TABLE tmp LIKE catalog_list;
mysql> ALTER TABLE tmp ADD PRIMARY KEY (last_name, first_name);
mysql> INSERT IGNORE INTO tmp SELECT * FROM catalog_list;

562 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT * FROM tmp ORDER BY last_name, first_name;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Baxter	Wallace	57 3rd Ave.
Brown	Bartholomew	432 River Run
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Pinter	Marlene	9 Sunset Trail
+-----------+-------------+--------------------------+
mysql> DROP TABLE catalog_list;
mysql> RENAME TABLE tmp TO catalog_list;

The unique index prevents rows with duplicate key values from being inserted into
tmp, and IGNORE tells MySQL not to stop with an error if a duplicate is found. One
shortcoming of this method is that if the indexed columns can contain NULL values, you
must use a UNIQUE index rather than a PRIMARY KEY, in which case the index will not
remove duplicate NULL keys. (UNIQUE indexes permit multiple NULL values.) This method
does prevent occurrence of duplicates in the future.

Removing duplicates of a particular row

You can use LIMIT to restrict the effect of a DELETE statement to a subset of the rows that
it otherwise would delete. This makes the statement applicable to removing duplicate
rows. Suppose that the original unindexed catalog_list table contains duplicates:

mysql> SELECT COUNT(*), last_name, first_name
 -> FROM catalog_list
 -> GROUP BY last_name, first_name
 -> HAVING COUNT(*) > 1;
+----------+-----------+------------+
| COUNT(*) | last_name | first_name |
+----------+-----------+------------+
| 3 | Baxter | Wallace |
| 2 | Pinter | Marlene |
+----------+-----------+------------+

To remove the extra instances of each name, do this:
mysql> DELETE FROM catalog_list WHERE last_name = 'Baxter'
 -> AND first_name = 'Wallace' LIMIT 2;
mysql> DELETE FROM catalog_list WHERE last_name = 'Pinter'
 -> AND first_name = 'Marlene' LIMIT 1;
mysql> SELECT * FROM catalog_list;
+-----------+-------------+--------------------------+
| last_name | first_name | street |
+-----------+-------------+--------------------------+
Isaacson	Jim	515 Fordam St., Apt. 917
McTavish	Taylor	432 River Run
Brown	Bartholomew	432 River Run
Pinter	Marlene	9 Sunset Trail

16.4. Eliminating Duplicates from a Table | 563

www.it-ebooks.info

http://www.it-ebooks.info/

| Baxter | Wallace | 57 3rd Ave., Apt 102 |
+-----------+-------------+--------------------------+

This technique works in the absence of a unique index, and it eliminates duplicate NULL
values. It’s handy for removing duplicates only for a specific set of rows within a table.
However, if there are many different sets of duplicates to remove, this is not a procedure
you’d want to carry out by hand. The process can be automated by using the techniques
discussed earlier in Recipe 16.3 for determining which values are duplicated. There, we
wrote a make_dup_count_query() function to generate the statement needed to count
the number of duplicate values in a given set of columns in a table. The result of that
statement can be used to generate a set of DELETE … LIMIT n statements that remove
duplicate rows and leave only unique rows. The dups directory of the recipes distri‐
bution contains code that shows how to generate these statements.

In general, using DELETE … LIMIT n is likely to be slower than removing duplicates by
using a second table or by adding a unique index. Those methods keep the data on the
server side and let the server do all the work. DELETE … LIMIT n involves a lot of client-
server interaction because it uses a SELECT statement to retrieve information about
duplicates, followed by several DELETE statements to remove instances of duplicated
rows. Also, this technique does not prevent duplicates from occurring in the future.

564 | Chapter 16: Handling Duplicates

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

Performing Transactions

17.0. Introduction
The MySQL server can handle multiple clients at the same time because it is multi‐
threaded. To deal with contention among clients, the server performs any necessary
locking so that two clients cannot modify the same data at once. However, as the server
executes SQL statements, it’s very possible that successive statements received from a
given client will be interleaved with statements from other clients. If a client executes
multiple statements that are dependent on each other, the fact that other clients may be
updating tables in between those statements can cause difficulties. Statement failures
can be problematic, too, if a multiple-statement operation does not run to completion.
Suppose that a flight table contains information about airline flight schedules and you
want to update the row for Flight 578 by choosing a pilot from among those available.
You might do so using three statements as follows:

SET @p_val = (SELECT pilot_id FROM pilot WHERE available = 'yes' LIMIT 1);
UPDATE pilot SET available = 'no' WHERE pilot_id = @p_val;
UPDATE flight SET pilot_id = @p_val WHERE flight_id = 578;

The first statement chooses an available pilot, the second marks the pilot as unavailable,
and the third assigns the pilot to the flight. That’s straightforward enough in principle,
but in practice there are significant difficulties:
Concurrency issues

If two clients want to schedule pilots, it’s possible for both to run the initial SE
LECT query and retrieve the same pilot ID number before either has a chance to set
the pilot’s status to unavailable. If that happens, the same pilot is scheduled for two
flights at once.

Integrity issues
All three statements must execute successfully as a unit. For example, if the SE
LECT and the first UPDATE run successfully, but the second UPDATE fails, the pilot’s

565

www.it-ebooks.info

http://www.it-ebooks.info/

status is set to unavailable without the pilot being assigned a flight. The database
becomes inconsistent.

To prevent concurrency and integrity problems in these types of situations, transactions
are helpful. A transaction groups a set of statements and guarantees the following prop‐
erties:

• No other client can update the data used in the transaction while the transaction is
in progress; it’s as though you have the server all to yourself. For example, other
clients cannot modify the pilot or flight records while you’re booking a pilot for a
flight. Transactions solve concurrency problems arising from the multiple-client
nature of the MySQL server. In effect, transactions serialize access to a shared re‐
source across multiple-statement operations.

• Statements grouped within a transaction are committed (take effect) as a unit, but
only if they all succeed. If an error occurs, any actions that occurred prior to the
error are rolled back, leaving the relevant tables unaffected as though none of the
statements had been executed. This keeps the database from becoming inconsistent.
For example, if an update to the flights table fails, rollback causes the change to
the pilots table to be undone, leaving the pilot still available. Rollback frees you
from having to figure out how to undo a partially completed operation yourself.

This chapter shows the syntax for the SQL statements that begin and end transactions.
It also describes how to implement transactional operations from within programs,
using error detection to determine whether to commit or roll back.

Scripts related to the examples shown here are located in the transactions directory of
the recipes distribution.

17.1. Choosing a Transactional Storage Engine
Problem
You want to use transactions.

Solution
Check your MySQL server to determine which transactional storage engines it supports.

Discussion
MySQL supports several storage engines, but to use transactions, you must use a
transaction-safe engine. Currently, the transactional engines include InnoDB and NDB.
To see which your MySQL server supports, use this statement:

566 | Chapter 17: Performing Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT ENGINE FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE SUPPORT IN ('YES','DEFAULT') AND TRANSACTIONS='YES';
+--------+
| ENGINE |
+--------+
| InnoDB |
+--------+

If MySQL Cluster is enabled, you’ll also see a line that says ndbcluster.

Transactional engines are those that have a TRANSACTIONS value of YES; those actually
usable have a SUPPORT value of YES or DEFAULT.

After determining which transactional storage engines are available, to create a table
that uses a given engine, add an ENGINE = tbl_engine clause to your CREATE TABLE
statement:

CREATE TABLE t (i INT) ENGINE = InnoDB;

If you need to modify an existing application to perform transactions, but it uses non‐
transactional tables, you can alter the tables to use a transactional storage engine. For
example, MyISAM tables are nontransactional and trying to use them for transactions
will yield incorrect results because they do not support rollback. In this case, you can
use ALTER TABLE to convert the tables to a transactional type. Suppose that t is a MyISAM
table. To make it an InnoDB table, do this:

ALTER TABLE t ENGINE = InnoDB;

One thing to consider before altering a table is that changing it to use a transactional
storage engine may affect its behavior in other ways. For example, the MyISAM engine
provides more flexible handling of AUTO_INCREMENT columns than do other storage
engines. If you rely on MyISAM-only sequence features, changing the storage engine
will cause problems.

17.2. Performing Transactions Using SQL
Problem
A set of statements must succeed or fail as a unit—that is, you require a transaction.

Solution
Manipulate MySQL’s auto-commit mode to enable multiple-statement transactions, and
then commit or roll back the statements depending on whether they succeed or fail.

17.2. Performing Transactions Using SQL | 567

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
This recipe describes the SQL statements that control transactional behavior in MySQL.
The immediately following recipes discuss how to perform transactions from within
programs. Some APIs require that you implement transactions by executing the SQL
statements discussed in this recipe; others provide a special mechanism that enables
transaction management without writing SQL directly. However, even in the latter case,
the API mechanism maps program operations onto transactional SQL statements, so
reading this recipe will give you a better understanding of what the API does on your
behalf.

MySQL normally operates in auto-commit mode, which commits the effect of each
statement as soon as it executes. (In effect, each statement is its own transaction.) To
perform a transaction, you must disable auto-commit mode, execute the statements that
make up the transaction, and then either commit or roll back your changes. In MySQL,
you can do this two ways:

• Execute a START TRANSACTION (or BEGIN) statement to suspend auto-commit mode,
then execute the statements that make up the transaction. If the statements succeed,
record their effect in the database and terminate the transaction by executing a
COMMIT statement:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> START TRANSACTION;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (i) VALUES(2);
mysql> COMMIT;
mysql> SELECT * FROM t;
+------+
| i |
+------+
| 1 |
| 2 |
+------+

If an error occurs, don’t use COMMIT. Instead, cancel the transaction by executing a
ROLLBACK statement. In the following example, t remains empty after the transac‐
tion because the effects of the INSERT statements are rolled back:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> START TRANSACTION;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (x) VALUES(2);
ERROR 1054 (42S22): Unknown column 'x' in 'field list'
mysql> ROLLBACK;
mysql> SELECT * FROM t;
Empty set (0.00 sec)

• Another way to group statements is to turn off auto-commit mode explicitly by
setting the autocommit session variable to 0. After that, each statement you execute

568 | Chapter 17: Performing Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

becomes part of the current transaction. To end the transaction and begin the next
one, execute a COMMIT or ROLLBACK statement:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
mysql> SET autocommit = 0;
mysql> INSERT INTO t (i) VALUES(1);
mysql> INSERT INTO t (i) VALUES(2);
mysql> COMMIT;
mysql> SELECT * FROM t;
+------+
| i |
+------+
| 1 |
| 2 |
+------+

To turn auto-commit mode back on, use this statement:
mysql> SET autocommit = 1;

Transactions have their limits because not all statements can be part
of a transaction. For example, if you execute a DROP DATABASE state‐
ment, don’t expect to restore the database by executing a ROLLBACK.

17.3. Performing Transactions from Within Programs
Problem
You’re writing a program that must implement transactional operations.

Solution
Use the transaction abstraction provided by your language API, if it has such a thing.
If it doesn’t, use the API’s usual statement-execution mechanism to execute the trans‐
actional SQL statements directly.

Discussion
To perform transactional processing from within a program, use your API language to
detect errors and take appropriate action. This recipe provides general background on
doing this. The next recipes provide language-specific details for the MySQL APIs for
Perl, Ruby, PHP, Python, and Java.

Every MySQL API supports transactions, even if only in the sense that you can explicitly
execute transaction-related SQL statements such as START TRANSACTION and COMMIT.

17.3. Performing Transactions from Within Programs | 569

www.it-ebooks.info

http://www.it-ebooks.info/

However, some APIs also provide a transaction abstraction that enables control over
transactional behavior without working directly with SQL. That approach hides the
details and provides better portability to other database engines that have different un‐
derlying transaction SQL syntax. An API abstraction is available for each language that
we use in this book.

The next few recipes each implement the same example to illustrate how to perform
program-based transactions. They use a table t containing the following initial rows
that show how much money two people have:

+------+------+
| name | amt |
+------+------+
| Eve | 10 |
| Ida | 0 |
+------+------+

The sample transaction is a simple financial transfer that uses two UPDATE statements
to give six dollars of Eve’s money to Ida:

UPDATE money SET amt = amt - 6 WHERE name = 'Eve';
UPDATE money SET amt = amt + 6 WHERE name = 'Ida';

The intended result is that the table should look like this:
+------+------+
| name | amt |
+------+------+
| Eve | 4 |
| Ida | 6 |
+------+------+

It’s necessary to execute both statements within a transaction to ensure that both of them
take effect at once. Without a transaction, Eve’s money disappears without being credi‐
ted to Ida if the second statement fails. By using a transaction, the table is left unchanged
if statement failure occurs.

The sample programs for each language are located in the transactions directory of the
recipes distribution. If you compare them, you’ll see that they all employ a similar
framework for performing transactional processing:

• The transaction statements are grouped within a control structure, along with a
commit operation.

• If the status of the control structure indicates that it did not execute successfully to
completion, the transaction is rolled back.

That logic can be expressed as follows, where block represents the control structure
used to group statements:

570 | Chapter 17: Performing Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

block:
 statement 1
 statement 2
 ...
 statement n
 commit
if the block failed:
 roll back

If the statements in the block succeed, you reach the end of the block and perform a
commit. Otherwise, occurrence of an error raises an exception that triggers execution
of the error-handling code where you roll back the transaction.

The benefit of structuring your code as just described is that it minimizes the number
of tests needed to determine whether to roll back. The alternative—checking the result
of each statement within the transaction and rolling back on individual statement errors
—quickly turns your code into an unreadable mess.

A subtle point to be aware of when rolling back within languages that raise exceptions
is that it may be possible for the rollback itself to fail, causing another exception to be
raised. If you don’t deal with that, your program itself may terminate. To handle this,
execute the rollback within another block that has an empty exception handler. The
sample programs do this as necessary.

Those sample programs that disable auto-commit mode explicitly when performing a
transaction enable auto-commit afterward. In applications that perform all database
processing in transactional fashion, it’s unnecessary to do this. Just disable auto-commit
mode once after you connect to the database server, and leave it off.

Checking How API Transaction Abstractions Map onto SQL Statements
For APIs that provide a transaction abstraction, you can see how the interface maps
onto the underlying SQL statements: enable the general query log for your MySQL
server, then watch the log to see what statements the API executes when you run a
transactional program. For instructions on enabling the log, see Recipe 22.3.

17.4. Using Transactions in Perl Programs
Problem
You want to perform a transaction in a Perl DBI script.

Solution
Use the standard DBI transaction support mechanism.

17.4. Using Transactions in Perl Programs | 571

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The Perl DBI transaction mechanism is based on explicit manipulation of auto-commit
mode:

1. Turn on the RaiseError attribute if it’s not enabled and disable PrintError if it’s
on. You want errors to raise exceptions without printing anything, and leaving
PrintError enabled can interfere with failure detection in some cases.

2. Disable the AutoCommit attribute so that a commit will be done only when you say
so.

3. Execute the statements that make up the transaction within an eval block so that
errors raise an exception and terminate the block. The last thing in the block should
be a call to commit(), which commits the transaction if all its statements completed
successfully.

4. After the eval executes, check the $@ variable. If $@ contains the empty string, the
transaction succeeded. Otherwise, the eval will have failed due to the occurrence
of some error and $@ will contain an error message. Invoke rollback() to cancel
the transaction. To display an error message, print $@ before calling rollback().

5. If desired, restore the original values of the RaiseError and PrintError attributes.

Because it can be messy to change and restore the error-handling and auto-commit
attributes if an application performs multiple transactions, let’s put the code to begin
and end a transaction into convenience functions that handle the processing that occurs
before and after the eval:

sub transaction_init
{
my $dbh = shift;
my $attr_ref = {}; # create hash in which to save attributes

 $attr_ref->{RaiseError} = $dbh->{RaiseError};
 $attr_ref->{PrintError} = $dbh->{PrintError};
 $attr_ref->{AutoCommit} = $dbh->{AutoCommit};
 $dbh->{RaiseError} = 1; # raise exception if an error occurs
 $dbh->{PrintError} = 0; # don't print an error message
 $dbh->{AutoCommit} = 0; # disable auto-commit
 return $attr_ref; # return attributes to caller
}

sub transaction_finish
{
my ($dbh, $attr_ref, $error) = @_;

 if ($error) # an error occurred
 {
 print "Transaction failed, rolling back. Error was:\n$error\n";

572 | Chapter 17: Performing Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

 # roll back within eval to prevent rollback
 # failure from terminating the script
 eval { $dbh->rollback (); };
 }
 # restore error-handling and auto-commit attributes
 $dbh->{AutoCommit} = $attr_ref->{AutoCommit};
 $dbh->{PrintError} = $attr_ref->{PrintError};
 $dbh->{RaiseError} = $attr_ref->{RaiseError};
}

By using those two functions, our sample transaction can be performed easily as follows:
$ref = transaction_init ($dbh);
eval
{
 # move some money from one person to the other
 $dbh->do ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 $dbh->do ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");
 # all statements succeeded; commit transaction
 $dbh->commit ();
};
transaction_finish ($dbh, $ref, $@);

In Perl DBI, an alternative to manipulating the AutoCommit attribute manually is to
begin a transaction by invoking begin_work(). This method disables AutoCommit and
causes it to be enabled again automatically when you invoke commit() or rollback()
later.

17.5. Using Transactions in Ruby Programs
Problem
You want to perform a transaction in a Ruby DBI script.

Solution
Use the standard DBI transaction support mechanism. Actually, Ruby provides two
mechanisms.

Discussion
The Ruby DBI module provides two ways to perform transactions, although both of
them rely on manipulation of auto-commit mode. One approach uses a begin/
rescue block, and you invoke the commit and rollback methods explicitly:

begin
 dbh['AutoCommit'] = false
 dbh.do("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'")
 dbh.do("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'")

17.5. Using Transactions in Ruby Programs | 573

www.it-ebooks.info

http://www.it-ebooks.info/

 dbh.commit
 dbh['AutoCommit'] = true
rescue DBI::DatabaseError => e
 puts "Transaction failed, rolling back. Error was:"
 puts "#{e.err}: #{e.errstr}"
 begin # empty exception handler in case rollback fails
 dbh.rollback
 dbh['AutoCommit'] = true
 rescue
 end
end

Ruby also supports a transaction method, which is associated with a code block and
commits or rolls back automatically depending on whether the code block succeeds or
fails:

begin
 dbh['AutoCommit'] = false
 dbh.transaction do |dbh|
 dbh.do("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'")
 dbh.do("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'")
 end
 dbh['AutoCommit'] = true
rescue DBI::DatabaseError => e
 puts "Transaction failed, rolling back. Error was:"
 puts "#{e.err}: #{e.errstr}"
 dbh['AutoCommit'] = true
end

With the transaction method, there is no need to invoke commit or rollback explicitly.
transaction does raise an exception if it rolls back, so the example still uses a begin/
rescue block for error detection.

17.6. Using Transactions in PHP Programs
Problem
You want to perform a transaction in a PHP script.

Solution
Use the standard PDO transaction support mechanism.

Discussion
The PDO extension supports a transaction abstraction that can be used to perform
transactions. To begin a transaction, use the beginTransaction() method. Then, after
executing your statements, invoke either commit() or rollback() to commit or roll

574 | Chapter 17: Performing Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

back the transaction. The following code illustrates this. It uses exceptions to detect
transaction failure, so it assumes that exceptions are enabled for PDO errors:

try
{
 $dbh->beginTransaction ();
 $dbh->exec ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 $dbh->exec ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");
 $dbh->commit ();
}
catch (Exception $e)
{
 print ("Transaction failed, rolling back. Error was:\n");
 print ($e->getMessage () . "\n");
 # empty exception handler in case rollback fails
 try
 {
 $dbh->rollback ();
 }
 catch (Exception $e2) { }
}

17.7. Using Transactions in Python Programs
Problem
You want to perform a transaction in a DB API script.

Solution
Use the standard DB API transaction support mechanism.

Discussion
The Python DB API abstraction provides transaction processing control through con‐
nection object methods. The DB API specification indicates that database connections
should begin with auto-commit mode disabled. Therefore, when you open a connection
to the database server, Connector/Python disables auto-commit mode, which implicitly
begins a transaction. End each transaction with either commit() or rollback(). The
commit() call occurs within a try statement, and the rollback() occurs within the
except clause to cancel the transaction if an error occurs:

try:
 cursor = conn.cursor()
 # move some money from one person to the other
 cursor.execute("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'")
 cursor.execute("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'")
 cursor.close()
 conn.commit()

17.7. Using Transactions in Python Programs | 575

www.it-ebooks.info

http://www.it-ebooks.info/

except mysql.connector.Error as e:
 print("Transaction failed, rolling back. Error was:")
 print(e)
 try: # empty exception handler in case rollback fails
 conn.rollback()
 except:
 pass

17.8. Using Transactions in Java Programs
Problem
You want to perform a transaction in a JDBC application.

Solution
Use the standard JDBC transaction support mechanism.

Discussion
To perform transactions in Java, use your Connection object to turn off auto-commit
mode. Then, after executing your statements, use the object’s commit() method to com‐
mit the transaction or rollback() to cancel it. Typically, you execute the statements for
the transaction in a try block, with commit() at the end of the block. To handle failures,
invoke rollback() in the corresponding exception handler:

try
{
 conn.setAutoCommit (false);
 Statement s = conn.createStatement ();
 // move some money from one person to the other
 s.executeUpdate ("UPDATE money SET amt = amt - 6 WHERE name = 'Eve'");
 s.executeUpdate ("UPDATE money SET amt = amt + 6 WHERE name = 'Ida'");
 s.close ();
 conn.commit ();
 conn.setAutoCommit (true);
}
catch (SQLException e)
{
 System.err.println ("Transaction failed, rolling back. Error was:");
 Cookbook.printErrorMessage (e);
 // empty exception handler in case rollback fails
 try
 {
 conn.rollback ();
 conn.setAutoCommit (true);
 }
 catch (Exception e2) { }
}

576 | Chapter 17: Performing Transactions

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

Introduction to MySQL on the Web

18.0. Introduction
This chapter and the next few discuss how MySQL helps you build a better website. One
significant benefit is a more interactive site; MySQL makes it easier to provide dynamic
content rather than static content. Static content exists as pages in the web server’s
document tree that are served exactly as is. Visitors can access only the documents that
you place in the tree, and changes occur only when you add, modify, or delete those
documents. By contrast, dynamic content is created on demand. Rather than opening
a file and serving its contents directly to the client, the web server executes a script that
generates the page and sends the resulting output. For example, a script can process a
keyword request and return a page that lists items in a catalog that match the keyword.
Each time a keyword is submitted, the script produces a result appropriate for the re‐
quest. And that’s just for starters; web scripts have access to the power of the program‐
ming language in which they’re written, so the actions they perform to generate pages
can be quite extensive. For example, web scripts are important for form processing, and
a single script may be responsible for generating a form and sending it to the user,
processing the contents of the form when the user submits it later, and storing the
contents in a database. Scripts that operate this way interact with visitors to your website
and tailor the information provided according to what they want to see.

This chapter covers the introductory aspects of writing scripts that use MySQL in a web
environment. It establishes the groundwork for using your database within the context
of web programming. The topics covered here include:

• How web scripting differs from writing static HTML documents or scripts intended
to be executed from the command line.

• Prerequisites for running web scripts. In particular, you must have a web server
installed and it must be set up to recognize your scripts as programs to be executed,
rather than as static files to be served without change over the network.

577

www.it-ebooks.info

http://www.it-ebooks.info/

• How to use each of our API languages to write a short web script that queries the
MySQL server and displays the results in a web page.

• How to properly encode output. HTML consists of text to be displayed interspersed
with special markup constructs. If the text contains special characters, you must
encode them to avoid generating malformed web pages. Each API provides a way
to do this.

The following chapters go into more detail on topics such as displaying query results
in various formats (paragraphs, lists, tables, and so forth), working with images, form
processing, and tracking a user across the course of several page requests as part of a
single user session.

This book uses the Apache web server for Perl, Ruby, PHP, and Python scripts. It uses
the Tomcat server for Java scripts written using JSP notation. Apache and Tomcat are
available from the Apache Software Foundation.

Recipe 18.2 discusses how to configure Apache for Perl, Ruby, PHP, and Python, and
how to write a short web script in each language. Recipe 18.3 discusses JSP script writing
using Tomcat. Because Apache installations are prevalent, I assume that it’s already
installed on your system and you just need to configure it. Tomcat is less frequently
preinstalled; for additional installation and setup information, read “JSP, JSTL, and
Tomcat Primer” on the compnaion website (see the Preface). You can use servers other
than Apache and Tomcat, if you adapt the instructions given here.

Scripts for examples in this chapter are located in the recipes distribution under the
directories named for the servers used to run them. For Perl, Ruby, PHP, and Python
examples, look under the apache directory. For Java (JSP) examples, look under the
tomcat directory.

I assume here that you have some basic familiarity with HTML. For Tomcat, it’s also
helpful to know something about XML because Tomcat’s configuration files are written
as XML documents, and JSP pages contain elements written using XML syntax. In
general, the web scripts in this book produce output that is valid not only as HTML,
but as XHTML, the transitional format between HTML and XML. (That’s another rea‐
son to be familiar with XML.) For example, XHTML requires closing tags, so paragraphs
are written with a closing </p> tag following the paragraph body. Uses of this output
style will be obvious for scripts written using languages like PHP in which the HTML
tags are included literally in the script. For interfaces that generate HTML for you,
XHTML conformance is a matter of whether the module itself produces XHTML. For
example, the Perl CGI.pm module generates XHTML; the Ruby cgi module does not.

578 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://httpd.apache.org
http://tomcat.apache.org
http://www.apache.org
http://www.it-ebooks.info/

18.1. Basic Principles of Web Page Generation
Problem
You want to produce a web page from a script, not write a static page manually.

Solution
Write a program that generates the page when it executes. This gives you more control
over what is sent to the client than when you write a static page, but may also require
that you provide more parts of the response. For example, it may be necessary to write
the headers that precede the page body.

Discussion
HTML is a markup language—that’s what the “ML” stands for. HTML consists of a mix
of plain text to be displayed and special markup indicators or constructs that control
how the plain text is displayed. Here is a very simple HTML page that specifies a title
in the page header, and a body containing a single paragraph:

<html>
<head><title>Web Page Title</title></head>
<body>
<p>Web page body.</p>
</body>
</html>

It’s possible to write a script that produces that same page, but doing so differs from
writing a static page. For one thing, you’re writing in two languages at once: the script
is written in your programming language, and the script itself writes HTML. Another
difference is that you may have to produce more of the response that is sent to the client.
When a web server sends a static page to a client, it sends a set of one or more header
lines first that provide additional information about the page. For example, an HTML
document is preceded by a Content-Type: header that lets the client know what kind
of information to expect, and a blank line that separates any headers from the page body:

Content-Type: text/html

<html>
<head><title>Web Page Title</title></head>
<body>
<p>Web page body.</p>
</body>
</html>

To indicate a particular character set encoding, add it to the Content-Type: header. For
good measure, specify it in a <meta> tag as well:

18.1. Basic Principles of Web Page Generation | 579

www.it-ebooks.info

http://www.it-ebooks.info/

Content-Type: text/html; charset=UTF-8

<html>
<head>
…
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
…
</head>
…

For static HTML pages, the web server produces header information automatically.
When you write a web script, you may need to provide the header information yourself.
Some APIs (such as PHP) send a content-type header automatically, but enable you to
override the default type. For example, if your script sends a JPEG image to the client
instead of an HTML page, the script should change the content type from text/html
to image/jpeg.

Writing web scripts also differs from writing command-line scripts, for both input and
output. On the input side, the information given to a web script is provided by the web
server rather than by input entered at the command line. This means your scripts do
not obtain data using input statements. Instead, the web server puts information into
the execution environment of the script, which then extracts that information from its
environment and acts on it.

On the output side, command-line scripts typically produce plain-text output. Web
scripts can do that, too, or instead produce HTML, images, audio, and so forth. Such
output produced in a web environment usually must be highly structured to ensure that
it can be understood by the receiving client program.

Any programming language enables output generation using print statements. Some
languages also offer special assistance for producing web pages, typically by means of
special modules:

• For Perl scripts, a popular module is CGI.pm. It provides features for generating
HTML markup, form processing, and more.

• In Ruby, the cgi module provides capabilities similar to CGI.pm.
• PHP scripts are written as a mix of HTML and embedded PHP code. That is, you

write HTML literally into the script, and then drop into “program mode” whenever
you need to generate output by executing code. PHP replaces the code by its output
in the resulting page that is sent to the client.

• Python has cgi and urllib modules that help perform web programming tasks.
• Java scripts written according to the JSP specification can use scripting directives

and code embedded within web pages. This is similar to how PHP works.

580 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Before you can run any scripts in a web environment, your web server must be set up
properly. Recipes 18.2 and 18.3 provide information about doing this for Apache and
Tomcat.

If you run multiple web servers on the same host, they must listen for requests on
different port numbers. In a typical configuration, Apache listens on the default HTTP
port (80) and Tomcat listens on another port such as 8080. The examples here use a
server hostname of localhost to represent URLs for scripts processed using Apache and
Tomcat. The examples use a different port (8080) for Tomcat scripts. Typical forms for
URLs that you’ll see in this book are as follows:

http://localhost/cgi-bin/my_perl_script.pl
http://localhost/cgi-bin/my_ruby_script.rb
http://localhost/cgi-bin/my_python_script.py
http://localhost/mcb/my_php_script.php
http://localhost:8080/mcb/my_jsp_script.jsp

Change the hostname and port number as necessary for pages served by your own web
servers.

18.2. Using Apache to Run Web Scripts
Problem
You want to run Perl, Ruby, PHP, or Python programs in a web environment.

Solution
Execute them using the Apache server.

Discussion
This recipe describes how to configure Apache for running Perl, Ruby, PHP, and Python
scripts. It also illustrates how to write web-based scripts in each language.

There are typically several directories under the Apache root directory. Here I’ll assume
that directory to be /usr/local/apache, although it might differ on your system. For ex‐
ample, on Windows, you might find Apache under C:\Program Files. The directories
under the Apache root include bin (which contains httpd—that is, Apache itself—and
other Apache-related executable programs), conf (for configuration files, notably
httpd.conf, the primary file used by Apache), htdocs (the root of the document tree),
and logs (for logfiles). The layout might differ on your system. For example, you might
find the configuration files in /etc/httpd and the logs under /var/log/httpd. Adjust the
following instructions accordingly.

18.2. Using Apache to Run Web Scripts | 581

www.it-ebooks.info

http://www.it-ebooks.info/

To configure Apache for script execution, edit the httpd.conf file in the conf directory.
Typically, executable scripts are identified either by location or by filename suffix. A
location can be either language-neutral or language-specific.

Apache configurations often have a cgi-bin directory under the Apache root directory
in which you can install scripts that should run as external programs. It’s configured
using a ScriptAlias directive:

ScriptAlias /cgi-bin/ /usr/local/apache/cgi-bin/

The second argument is the actual location of the script directory in your filesystem,
and the first is the pathname in URLs that corresponds to that directory. Thus, the
directive just shown associates scripts located in /usr/local/apache/cgi-bin with URLs
that have cgi-bin following the hostname. If the Ruby script myscript.rb is installed in
the directory /usr/local/apache/cgi-bin on the local host, request it with this URL:

http://localhost/cgi-bin/myscript.rb

When configured this way, the cgi-bin directory can contain scripts written in any lan‐
guage. Because of this, the directory is language-neutral, so each script must indicate
which language processor executes it. To provide this information, the first line of a
script should begin with #! followed by the pathname to the appropriate program. For
example, a script that begins with the following line is run by Perl:

#!/usr/bin/perl

Under Unix, you must also make the script executable (use chmod +x), or it won’t run
properly. The #! line just shown is appropriate for a system that has Perl installed
as /usr/bin/perl. If your Perl interpreter is installed somewhere else, modify the line
accordingly. If you’re on a Windows machine with Perl installed as C:\Perl\bin
\perl.exe, the #! line looks like this:

#!C:\Perl\bin\perl

For Windows, a simpler option is to set up a filename extension association between
script names that end with a .pl suffix and the Perl interpreter. Then invoking a script
with that suffix causes it to be executed by Perl without naming the interpreter.

Directories used only for scripts generally are placed outside of your Apache document
tree. As an alternative to using specific directories for scripts, you can identify scripts
by filename extension, so that Apache associates files with a particular suffix with a
specific language processor. In this case, you can place them anywhere in the document
tree. This is the most common way to use PHP. For example, if you have Apache con‐
figured with PHP support built in using the mod_php module, you can tell it that scripts
having names ending with .php should be interpreted as PHP scripts. To do so, add this
line to httpd.conf:

AddType application/x-httpd-php .php

582 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

You may also have to add a LoadModule directive for php.

With PHP enabled, you can install a PHP script myscript.php under htdocs (the Apache
document root directory). The URL for invoking the script becomes:

http://localhost/myscript.php

If PHP runs as an external standalone program, you must tell Apache where to find it.
For example, if you run Windows and you have PHP installed as C:\Php\php.exe, put
the following lines in httpd.conf (note the use of forward slashes in the pathnames rather
than backslashes):

ScriptAlias /php/ "C:/Php/"
AddType application/x-httpd-php .php
Action application/x-httpd-php /php/php.exe

For purposes of showing URLs in examples, I’ll assume that Perl, Ruby, and Python
scripts are in your cgi-bin directory, and that PHP scripts are in the mcb directory of
your document tree, identified by the .php extension. That means the URLs for scripts
in these languages look like this:

http://localhost/cgi-bin/myscript.pl
http://localhost/cgi-bin/myscript.rb
http://localhost/cgi-bin/myscript.py
http://localhost/mcb/myscript.php

Adjust the pathnames as necessary for your own system.

If you plan to use a similar setup, make sure to have a cgi-bin directory that Apache
knows about, and an mcb directory under your Apache document root. Then, to deploy
Perl, Ruby, or Python web scripts, install them in the cgi-bin directory. To deploy PHP
scripts, install them in the mcb directory.

Some of the scripts use modules or library files that are specific to this book. If you have
these files installed in a library directory that your language processors search by default,
they should be found automatically. Otherwise, you must indicate where the files are
located. An easy way to do this is by using SetEnv directives in your httpd.conf file to
set environment variables that can be seen by your scripts when Apache invokes them.
(To use the SetEnv directive, the mod_env Apache module must be enabled.) For ex‐
ample, if you install library files in /usr/local/lib/mcb, the following directives enable
Perl, Ruby, and Python scripts to find them:

SetEnv PERL5LIB /usr/local/lib/mcb
SetEnv RUBYLIB /usr/local/lib/mcb
SetEnv PYTHONPATH /usr/local/lib/mcb

For PHP, add /usr/local/lib/mcb to the value of include_path in your php.ini configu‐
ration file.

18.2. Using Apache to Run Web Scripts | 583

www.it-ebooks.info

http://www.it-ebooks.info/

For background information on library-related environment variables and the php.ini
file, see Recipe 2.3.

After configuring Apache to support script execution, restart it. Then you can begin to
write scripts that generate web pages. The remainder of this section describes how to
do so for Perl, Ruby, PHP, and Python. The example for each language connects to the
MySQL server, runs a simple query, and displays the results in a web page. The scripts
shown here indicate whether any additional modules or libraries are typically required.
(Later sections generally assume that the proper modules have been included and show
only script fragments.)

Before we proceed further, here are some debugging tips:

• If you request a web script and get an error page in response, the Apache error log
is a useful source of diagnostic information. A common name for this log is er
ror_log in the logs directory. If you don’t find any such file, check httpd.conf for an
ErrorLog directive to see where Apache logs errors.

• Sometimes it’s helpful to directly examine the output that a web script generates.
To do this, invoke the script from the command line. You’ll see the HTML produced
by the script, as well as any error messages that it might print. Some web modules
expect to see a parameter string, and might even prompt you for one when you
invoke the script at the command line. When this is the case, you might be able to
supply the parameters as an argument on the command line to avoid the prompt.
For example, the Ruby cgi module expects to see parameters, and prompts you if
they are missing:

% myscript.rb
(offline mode: enter name=value pairs on standard input)

At the prompt, enter the parameter values and then enter Ctrl-D (EOF). To avoid
the prompt, supply the parameters on the command line:

% myscript.rb "param1=val1;param2=val2;param3=val3"

To specify “no parameters” explicitly, provide an empty argument:
% myscript.rb ""

Web Security Note
Under Unix, scripts are associated with particular user and group IDs when they execute.
Scripts that you execute from the command line run with your own user and group IDs,
and have the filesystem privileges associated with your account. Scripts executed by a
web server don’t run with your user and group ID, nor will they have your privileges.
Instead, they run under the user and group ID of the account the web server has been
set to run as, and with that account’s privileges. (To determine what account this is, look

584 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

for User and Group directives in the httpd.conf configuration file.) If you expect web
scripts to read and write files, those files must be accessible to the account used to run
the web server. For example, if your server runs under the nobody account and you want
a script to be able to store uploaded image files into a directory called uploads in the
document tree, that directory must be readable and writable by the nobody user.

Another implication is that if other people can write scripts to be executed by your web
server, those scripts too run as nobody and they can read and write the same files as your
own scripts. That is, files used by your scripts cannot be considered private only to your
scripts. A solution to this problem is to use the Apache suEXEC mechanism. (If you use
an ISP for web hosting, suEXEC might be enabled already.)

Perl

Our first web-based Perl script retrieves and displays a list of tables in the cookbook
database. It produces HTML elements using the CGI.pm module, which makes it easy
to write web scripts without writing literal HTML tags. CGI.pm provides an object-
oriented interface and a function call interface, so you can use it to write web pages in
either of two styles. Here’s a script, show_tables_oo.pl, that produces the table listing
using the object-oriented interface:

#!/usr/bin/perl
show_tables_oo.pl: Display names of tables in cookbook database
(uses the CGI.pm object-oriented interface)

use strict;
use warnings;
use CGI;
use Cookbook;

Create CGI object for accessing CGI.pm methods

my $cgi = new CGI;

Print header, blank line, and initial part of page

print $cgi->header ();
print $cgi->start_html (-title => "Tables in cookbook Database");

print $cgi->p ("Tables in cookbook database:");

Connect to database, display table list, disconnect

my $dbh = Cookbook::connect ();
my $stmt = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
while (my @row = $sth->fetchrow_array ())

18.2. Using Apache to Run Web Scripts | 585

www.it-ebooks.info

http://www.it-ebooks.info/

{
 print $row[0], $cgi->br ();
}
$dbh->disconnect ();

Print page trailer

print $cgi->end_html ();

To try the script, install it in your cgi-bin directory and request it from your browser as
follows:

http://localhost/cgi-bin/show_tables_oo.pl

The script includes the CGI.pm module with a use CGI statement, and then creates a
CGI object, $cgi, through which it invokes the various HTML-generation calls. head
er() generates the Content-Type: header and start_html() produces the initial page
tags up through the opening <body> tag. After generating the first part of the page,
show_tables_oo.pl retrieves and displays information from the server. Each table name
is followed by a
 tag, produced by invoking the br() method. end_html() pro‐
duces the closing </body> and </html> tags.

CGI.pm calls often take multiple parameters, many of which are optional. To enable
you to specify just those parameters you need, CGI.pm understands -name => value
notation in parameter lists. For example, in the start_html() call, the title parameter
sets the page title. The -name => value notation also permits parameters to be specified
in any order.

To use the CGI.pm function call interface rather than the object-oriented interface, write
scripts a little differently. The use line that references CGI.pm should import the method
names into your script’s namespace so that you can invoke them directly as functions
without having to create a CGI object. For example, to import the most commonly used
methods, the script should include this statement:

use CGI qw(:standard);

The following script, show_tables_fc.pl, is the function call equivalent of the
show_tables_oo.pl script just shown. It uses the same CGI.pm calls, but invokes them
as standalone functions rather than through a $cgi object:

#!/usr/bin/perl
show_tables_fc.pl: Display names of tables in cookbook database
(use the CGI.pm function-call interface)

use strict;
use warnings;
use CGI qw(:standard); # import standard method names into script namespace
use Cookbook;

Print header, blank line, and initial part of page

586 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

print header ();
print start_html (-title => "Tables in cookbook Database");

print p ("Tables in cookbook database:");

Connect to database, display table list, disconnect

my $dbh = Cookbook::connect ();
my $stmt = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
while (my @row = $sth->fetchrow_array ())
{
 print $row[0], br ();
}
$dbh->disconnect ();

Print page trailer

print end_html ();

Install the show_tables_fc.pl script in your cgi-bin directory and request it from your
browser to verify that it produces the same output as show_tables_oo.pl.

This book uses the CGI.pm function call interface for Perl-based web scripts from this
point on. You can get more information about CGI.pm at the command line by using
the following commands to read the installed documentation:

% perldoc CGI
% perldoc CGI::Carp

Documentation is also available online from CPAN.

Ruby

The Ruby cgi module provides an interface to HTML-generating methods. To use it,
create a CGI object and invoke its methods to produce HTML page elements. Method
names correspond to the HTML elements they produce. Their invocation syntax follows
these principles:

• If an element should have attributes, pass them as arguments to the method.
• If the element has body content, specify the content in a code block associated with

the method call.

For example, the following method call produces a <P> element that includes an align
attribute and content of “This is a sentence”:

cgi.p("align" => "left") { "This is a sentence." }

18.2. Using Apache to Run Web Scripts | 587

www.it-ebooks.info

http://search.cpan.org/dist/CGI
http://www.it-ebooks.info/

The output looks like this:
<P align="left">This is a sentence.</P>

To display generated HTML content, pass it in a code block to the cgi.out method. The
following Ruby script, show_tables.rb, retrieves a list of tables in the cookbook database
and displays them as an HTML document:

#!/usr/bin/ruby -w
show_tables.rb: Display names of tables in cookbook database

require "cgi"
require "Cookbook"

Connect to database, generate table list, disconnect

dbh = Cookbook.connect
stmt = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME"
rows = dbh.select_all(stmt)
dbh.disconnect

cgi = CGI.new("html4")

cgi.out {
 cgi.html {
 cgi.head {
 cgi.title { "Tables in cookbook Database" }
 } +
 cgi.body() {
 cgi.p { "Tables in cookbook Database:" } +
 rows.collect { |row| row[0] + cgi.br }.join
 }
 }
}

The collect method iterates through the row array containing the table names and
produces a new array containing each name with a
 appended to it. The join
method concatenates the strings in the resulting array.

The script includes no explicit code for producing the Content-Type: header because
cgi.out generates one.

Install the script in your cgi-bin directory and request it from your browser as follows:

http://localhost/cgi-bin/show_tables.rb

If you invoke Ruby web scripts from the command line so that you can examine the
generated HTML, you’ll see that the HTML is all on one line and is difficult to read. To
make the output easier to understand, process it through the CGI.pretty utility method,
which adds line breaks and indentation. Suppose that your page output call looks like
this:

588 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

cgi.out {
 page content here
}

To change the call to use CGI.pretty, write it like this:
cgi.out {
 CGI.pretty(page content here)
}

PHP

PHP doesn’t provide much in the way of tag shortcuts, which is surprising given that
language’s web orientation. On the other hand, because PHP is an embedded language,
you can simply write your HTML literally in your script without using print statements.
Here’s a show_tables.php script that shifts back and forth between HTML mode and
PHP mode:

<?php
show_tables.php: Display names of tables in cookbook database

require_once "Cookbook.php";
?>

<html>
<head><title>Tables in cookbook Database</title></head>
<body>

<p>Tables in cookbook database:</p>

<?php
Connect to database, display table list, disconnect
$dbh = Cookbook::connect ();
$stmt = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME";
$sth = $dbh->query ($stmt);
while (list ($tbl_name) = $sth->fetch (PDO::FETCH_NUM))
 print ($tbl_name . "
");
$dbh = NULL;
?>

</body>
</html>

To try the script, put it in the mcb directory of your web server’s document tree and
request it from your browser as follows:

http://localhost/mcb/show_tables.php

The PHP script includes no code to produce the Content-Type: header because PHP
produces one automatically. (To override this behavior and produce your own headers,
consult the header() function section in the PHP manual.)

18.2. Using Apache to Run Web Scripts | 589

www.it-ebooks.info

http://www.it-ebooks.info/

Except for the break tags, show_tables.php includes HTML content by writing it outside
of the <?php and ?> tags so that the PHP interpreter simply writes it without interpre‐
tation. Here’s a different version that produces all the HTML using print statements:

<?php
show_tables_print.php: Display names of tables in cookbook database
using print() to generate all HTML

require_once "Cookbook.php";

print ("<html>");
print ("<head><title>Tables in cookbook Database</title></head>");
print ("<body>");
print ("<p>Tables in cookbook database:</p>");

Connect to database, display table list, disconnect
$dbh = Cookbook::connect ();
$stmt = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME";
$sth = $dbh->query ($stmt);
while (list ($tbl_name) = $sth->fetch (PDO::FETCH_NUM))
 print ($tbl_name . "
");
$dbh = NULL;

print ("</body>");
print ("</html>");
?>

Sometimes it makes sense to use one approach, sometimes the other—and sometimes
both within the same script. If a section of HTML contains no references to variable or
expression values, it can be clearer to write it in HTML mode. Otherwise it may be
clearer to write it using print or echo statements, to avoid switching between HTML
and PHP modes frequently.

Python

A standard installation of Python includes cgi and urllib modules that are useful for
web programming. However, we don’t actually need them yet because the only web-
related activity of our first Python web script is to generate some simple HTML. Here’s
a Python version of the MySQL table-display script:

#!/usr/bin/python
show_tables.py: Display names of tables in cookbook database

import cookbook

Print header, blank line, and initial part of page

print('''Content-Type: text/html

<html>

590 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

<head><title>Tables in cookbook Database</title></head>
<body>

<p>Tables in cookbook database:</p>
''')

Connect to database, display table list, disconnect

conn = cookbook.connect()
cursor = conn.cursor()
stmt = '''
 SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME
'''
cursor.execute(stmt)
for (tbl_name,) in cursor:
 print("%s
" % tbl_name)
cursor.close()
conn.close()

Print page trailer
print('''
</body>
</html>
''')

Put the script in Apache’s cgi-bin directory and request it from your browser like this:

http://localhost/cgi-bin/show_tables.py

18.3. Using Tomcat to Run Web Scripts
Problem
You want to run Java-based programs in a web environment.

Solution
Write programs using JSP notation and execute them using a servlet container such as
Tomcat.

Discussion
As described in Recipe 18.2, Apache can be used to run Perl, Ruby, PHP, and Python
scripts. Java requires a different approach because Apache doesn’t serve JSP pages.
Instead, we’ll use Tomcat, a server designed for processing Java in a web environment.
Apache and Tomcat are very different servers, but there is a familial relationship—like
Apache, Tomcat is a development effort of the Apache Software Foundation.

18.3. Using Tomcat to Run Web Scripts | 591

www.it-ebooks.info

http://www.it-ebooks.info/

Java JSP scripts are compiled into Java servlets and run inside a process known as a
servlet container. The first time a client requests a given JSP page, the container compiles
the page into a servlet in the form of executable Java byte code before loading and
running it. The container caches the byte code so that the script can run directly with
no compilation phase for subsequent requests. If you modify the script, the container
notices this when the next request arrives, recompiles the script into a new servlet, and
reloads it. The JSP approach provides a significant advantage over writing servlets di‐
rectly, because you need not compile code yourself or handle servlet loading and un‐
loading. Tomcat handles the responsibilities of both the servlet container and the web
server that communicates with the container.

This section provides an overview of JSP programming with Tomcat, but makes several
assumptions:

• You are familiar with the concepts underlying JavaServer Pages, such as what a
servlet container is, what an application context is, and what the basic JSP scripting
elements are.

• The Tomcat server has been installed so that you can execute JSP pages, and you
know how to start and stop it.

• You are familiar with the Tomcat webapps directory and how Tomcat applications
are structured.

• You know what a tag library is, how to use one, and are familiar with the JSP Stan‐
dard Tag Library (JSTL).

I recognize that is a lot to assume. If you’re unfamiliar with JSP or JSTL, or need in‐
structions for installing Tomcat, read “JSP, JSTL, and Tomcat Primer” on the companion
website for the necessary background information (see the Preface).

Once you have Tomcat in place, install the following components so that you can work
through the JSP examples in this book:

• The mcb sample application. This is located in the tomcat directory of the rec
ipes distribution.

• A MySQL JDBC driver. You might already have one installed for use with the scripts
in earlier chapters, but Tomcat needs a copy, too. This book uses MySQL Connector/
J.

• The JSTL tag library, which contains tags for performing database activities, con‐
ditional testing, and iterative operations within JSP pages.

This section discusses how to install these components and describes how to write the
JSP equivalent of the MySQL table-display script that was implemented in Recipe 18.2
using Perl, Ruby, PHP, and Python.

592 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Installing the mcb application

Web applications for Tomcat typically are packaged as WAR (web archive) files and
installed under its webapps directory, which is roughly analogous to Apache’s htdocs
document root directory. The recipes distribution includes a sample application
named mcb to use for the JSP examples described here. Look in the distribution’s tom
cat directory, where you will find a file named mcb.war. Copy that file to Tomcat’s
webapps directory and restart Tomcat.

As distributed, Tomcat is configured by default to look for WAR files under webapps
when it starts and automatically unpack any that have not already been unpacked. This
means that restarting Tomcat after copying mcb.war to the webapps directory should
be enough to unpack the mcb application. When Tomcat finishes its startup sequence,
look under webapps and you should see a new mcb directory under which are all the
files contained in mcb.war. Explore the mcb directory if you like. It should contain
several files that clients can request using a browser. There should also be a WEB-INF
subdirectory, which is used for information that is private—that is, available for use by
scripts in the mcb directory, but not directly accessible by clients.

Next, to verify that Tomcat can serve pages from the mcb application context, request
some of them from your browser. The main mcb page is:

http://localhost:8080/mcb/

The following URLs request in turn a simple static HTML page, servlet, and JSP page
(each is available from the main page):

http://localhost:8080/mcb/simple.html
http://localhost:8080/mcb/servlet/SimpleServlet
http://localhost:8080/mcb/simple.jsp

Adjust the hostname and port number in the URLs appropriately for your installation.

Installing the JDBC driver

Some JSP pages in the mcb application need a JDBC driver for connecting to the cook
book database. This book uses the MySQL Connector/J driver.

To install Connector/J for use by Tomcat applications, place a copy of it in Tomcat’s
directory tree. Assuming that the driver is packaged as a JAR file (as is the case for
Connector/J), there are different places under the Tomcat root directory where you can
install it, depending on how visible you want the driver to be:

• To make the driver available only to the mcb application, place it in the mcb/WEB-
INF/lib directory under Tomcat’s webapps directory.

• To make the driver available both to Tomcat and to applications, place it in the lib
directory under the Tomcat root.

18.3. Using Tomcat to Run Web Scripts | 593

www.it-ebooks.info

http://www.it-ebooks.info/

I recommend installing the driver in the lib directory. That gives it the most global
visibility (accessible by Tomcat and by applications), and you need install it only once.
If you enable the driver only for the mcb application by placing a copy in mcb/WEB-
INF/lib, but then develop other applications that use MySQL, you must either copy the
driver into those applications or move it to a more global location.

Making the driver more globally accessible also is useful if you think that at some point
you may elect to use JDBC-based session management (seeRecipe 21.4) or realm au‐
thentication. Those activities are handled by Tomcat itself above the application level,
so Tomcat needs access to the driver to carry them out.

After installing Connector/J, restart Tomcat. Then request the following mcb application
page to verify that Tomcat can find and use Connector/J:

http://localhost:8080/mcb/jdbc_test.jsp

You might need to modify jdbc_test.jsp to change the connection parameters.

Installing the JSTL distribution

Many of the scripts that are part of the mcb sample application use JSTL, a popular tag
library. It’s necessary to install JSTL or those scripts won’t work. To install a tag library
into an application context, copy the library’s JAR file or files into the application’s WEB-
INF/lib directory. The following instructions describe how to install JSTL for use with
the mcb application:

1. Make sure that the mcb.war file has been unpacked to create the mcb application
directory hierarchy under the Tomcat webapps directory. (Refer back to “Installing
the mcb application.”) The JSTL files must be installed under the mcb directory,
which does not exist until mcb.war has been unpacked.

2. Get JSTL from the Apache Standard Taglibs project page, which has a download
link from which you can get a binary JSTL distribution. Get version 1.1.2 or higher.

3. Unpack the JSTL distribution into some convenient location, preferably outside of
the Tomcat hierarchy. If you use a ZIP archive, you can unpack it with the jar utility
or any other program that understands ZIP format (such as the Windows Win‐
Zip application). For example, with jar, use the following command, adjusting the
filename as necessary:

% jar xf jakarta-taglibs-standard.zip

4. Unpacking the distribution creates a directory containing several directories and
files. Change location into the lib directory and copy the jstl.jar and standard.jar
JAR files to the mcb/WEB-INF/lib directory. Those files contain the classes that
implement the JSTL tag actions, and tag library descriptor files that define the in‐
terface for the actions implemented by the classes.

594 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://bit.ly/taglibs
http://www.it-ebooks.info/

5. The mcb/WEB-INF directory contains a file named jstl-mcb-setup.inc. This file is
not part of JSTL itself, but it contains a JSTL <sql:setDataSource> tag used by
many of the mcb JSP pages to set up a data source for connecting to the cookbook
database. The file looks like this:

<sql:setDataSource
 var="conn"
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost/cookbook"
 user="cbuser"
 password="cbpass"
/>

Edit the url, user, and password tag attributes if necessary to change the connection
parameters to those that you use for accessing the cookbook database. Do not change
the var attribute, which names the variable to associate with the connection. By
convention, mcb JSP pages in MySQL Cookbook use the variable conn; tags occurring
later in the page that require a data source refer to the connection using the ex‐
pression ${conn}.

6. The JSTL distribution also includes WAR files containing documentation and ex‐
amples (standard-doc.war and standard-examples.war). If you want to install these,
copy them into Tomcat’s webapps directory. (I recommand that you install the doc‐
umentation so that you can access it locally from your own server. It’s useful to
install the examples as well because they provide helpful demonstrations showing
how to use JSTL tags in JSP pages.)

7. Restart Tomcat so it notices the changes you just made to the mcb application and
unpacks the WAR files containing the JSTL documentation and examples.

After installing JSTL and restarting Tomcat, request the following mcb application page
to verify that Tomcat can find and use the JSTL tag library properly:

http://localhost:8080/mcb/jdbc_jstl_test.jsp

Use these URLs to access the documentation and examples:
http://localhost:8080/standard-doc/
http://localhost:8080/standard-examples/

Writing a MySQL script using JSP and JSTL

Recipe 18.2 shows how to write Perl, Ruby, PHP, and Python versions of a script to
display the names of the tables in the cookbook database. With the JSTL tags, we can
write a corresponding JSP page that provides that information:

<%-- show_tables.jsp: Display names of tables in cookbook database --%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="sql" uri="http://java.sun.com/jsp/jstl/sql" %>
<%@ include file="/WEB-INF/jstl-mcb-setup.inc" %>

18.3. Using Tomcat to Run Web Scripts | 595

www.it-ebooks.info

http://www.it-ebooks.info/

<html>
<head><title>Tables in cookbook Database</title></head>
<body>

<p>Tables in cookbook database:</p>

<sql:query dataSource="${conn}" var="rs">
 SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME
</sql:query>

<c:forEach items="${rs.rowsByIndex}" var="row">
 <c:out value="${row[0]}"/>

</c:forEach>

</body>
</html>

The taglib directives identify which tag libraries the page uses, and the include di‐
rective pulls in the code that sets up a data source for accessing the cookbook database.
The rest of the script generates the page content.

Assuming that you’ve installed the mcb.war file in your Tomcat server’s webapps direc‐
tory as described earlier, you should find the show_tables.jsp script in the mcb subdir‐
ectory. Request it from your browser as follows:

http://localhost:8080/mcb/show_tables.jsp

The JSP script does not produce any Content-Type: header explicitly. The JSP engine
produces a default header with a content type of text/html automatically.

18.4. Encoding Special Characters in Web Output
Problem
Certain characters are special in web pages and must be encoded if you want to display
them literally. Because database content often contains instances of these characters,
scripts that include query results in web pages should encode those results to prevent
browsers from misinterpreting the information.

Solution
Use the methods provided by your API for performing HTML-encoding and URL-
encoding.

596 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
HTML is a markup language: it uses certain characters as markers that have a special
meaning. To include literal instances of these characters in a page, you must encode
them so that they are not interpreted as having their special meanings. For example,
encode < as < to keep a browser from interpreting it as the beginning of a tag. Fur‐
thermore, there are actually two kinds of encoding, depending on the context in which
you use a character. One encoding is appropriate for HTML text, another is used for
text that is part of a URL in a hyperlink.

The MySQL table-display scripts shown in Recipes 18.2 and 18.3 are simple demon‐
strations of how to produce web pages using programs. But with one exception, the
scripts have a common failing: they take no care to properly encode special characters
that occur in the information retrieved from the MySQL server. (The exception is the
JSP version of the script. The <c:out> tag used there handles encoding automatically,
as we’ll discuss shortly.)

As it happens, I deliberately chose information to display that is unlikely to contain any
special characters, so the scripts should work properly even in the absence of any en‐
coding. However, in the general case, it’s unsafe to assume that a query result contains
no special characters, so you must be prepared to encode it for display in a web page.
Neglecting to do this may result in scripts generating pages containing malformed
HTML that displays incorrectly.

This recipe describes how to handle special characters, beginning with some general
principles, then discusses how each API implements encoding support. The API-
specific examples show how to process information drawn from a database table, but
they can be adapted to any content you include in a web page, no matter its source.

General encoding principles

One form of encoding applies to characters used in writing HTML constructs; another
applies to text included in URLs. It’s important to understand this distinction to avoid
encoding text the wrong way.

Encoding text for inclusion in a web page is an entirely different issue
from encoding special characters in data values for inclusion in an
SQL statement. Recipe 2.5 discusses the latter technique.

Encoding characters that are special in HTML. HTML markup uses < and > characters to
begin and end tags, & to begin special entity names (such as to signify a non‐
breaking space), and " to quote attribute values in tags (such as <p align="left">).
Consequently, to display literal instances of these characters, you should encode them

18.4. Encoding Special Characters in Web Output | 597

www.it-ebooks.info

http://www.it-ebooks.info/

as HTML entities so that browsers or other clients understand your intent. To do this,
convert the special characters <, >, &, and " to the corresponding HTML entity desig‐
nators shown in the following table.

Special character HTML entity

< <

> >

& &

" "

Suppose that you want to display the following string literally in a web page:
Paragraphs begin and end with <p> & </p> tags.

If you send this text to the client browser exactly as shown, the browser will misinterpret
it: the <p> and </p> tags will be taken as paragraph markers and the & may be taken as
the beginning of an HTML entity designator. To display the string the way you intend,
encode the special characters as the <, >, and & entities:

Paragraphs begin and end with <p> & </p> tags.

The principle of encoding text this way is also useful within tags. For example, HTML
tag attribute values usually are enclosed within double quotes, so it’s important to per‐
form HTML-encoding of attribute values. Suppose that you want to include a text input
box in a form, and you want to provide an initial value of Rich "Goose" Gossage to be
displayed in the box. You cannot write that value literally in the tag like this:

<input type="text" name="player_name" value="Rich "Goose" Gossage" />

The problem here is that the double-quoted value attribute includes internal double
quotes, which makes the <input> tag malformed. To write it properly, encode the double
quotes:

<input type="text" name="player_name" value="Rich "Goose" Gossage" />

When a browser receives this text, it decodes the " entities back to " characters
and interprets the value attribute value correctly.

Encoding characters that are special in URLs. URLs for hyperlinks that occur within HTML
pages have their own syntax and their own encoding. This encoding applies to attributes
within several tags:

<form action="URL">
<frame src="URL">

Many characters have special meaning within URLs, such as :, /, ?, =, &, and ;. The
following URL contains some of these characters:

598 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

http://localhost/myscript.php?id=428&name=Gandalf

Here the : and / characters segment the URL into components, the ? character indicates
that parameters are present, and the & character separates the parameters, each specified
as a name=value pair. (The ; character is not present in the URL just shown, but com‐
monly is used instead of & to separate parameters.) To include any of these characters
literally within a URL, you must encode them to prevent the browser from interpreting
them with their usual special meaning. Other characters such as spaces require special
treatment as well. Spaces are not permitted within a URL, so if you want to reference a
page named my home page.html on the local host, the URL in the following hyperlink
won’t work:

My Home Page

URL-encoding for special and reserved characters converts each such character to %
followed by two hexadecimal digits representing the character’s ASCII code. For ex‐
ample, the ASCII value of the space character is 32 decimal, or 20 hexadecimal, so write
the preceding hyperlink like this:

My Home Page

Sometimes you’ll see spaces encoded as + in URLs. That is legal, too.

Use the appropriate encoding method for the context:. Be sure to encode information
properly for the context in which you use it. Suppose that you want to create a hyperlink
to trigger a search for items matching a search term, and you want the term itself to
appear as the link label that is displayed in the page. In this case, the term appears as a
parameter in the URL, and also as HTML text between the <a> and tags. If the
search term is “cats & dogs”, the unencoded hyperlink construct looks like this:

cats & dogs

That is incorrect because & is special in both contexts and the spaces are special in the
URL. Write the link like this instead:

cats & dogs

Here, & is HTML-encoded as & for the link label, and is URL-encoded as %26 for
the URL, which also includes spaces encoded as %20.

Granted, it’s a pain to encode text before writing it to a web page, and sometimes you
know enough about a value that you can skip the encoding (see the following sidebar).
Otherwise, encoding is the safe thing to do. Fortunately, most APIs provide functions
to do the work for you. This means you need not know every character that is special
in a given context. You just need to know which kind of encoding to perform, so that
you can call the appropriate function to produce the intended result.

18.4. Encoding Special Characters in Web Output | 599

www.it-ebooks.info

http://www.it-ebooks.info/

Must You Always Encode Web Page Output?
If you know a value is legal in a particular context within a web page, you need not
encode it. For example, if you obtain a value from an integer-valued column in a database
table that cannot be NULL, it must necessarily be an integer. No HTML- or URL-encoding
is needed to include the value in a web page, because digits are not special in HTML
text or within URLs. On the other hand, suppose that you solicit an integer value using
a field in a web form. You might be expecting the user to provide an integer, but the user
might be confused and enter an illegal value. You could handle this by displaying an
error page that shows the value and explains that it’s not an integer. But if the value
contains special characters and you don’t encode it, the page won’t display the value
properly, possibly further confusing the user.

Encoding special characters using web APIs

The following encoding examples show how to retrieve values from MySQL and per‐
form both HTML-encoding and URL-encoding on them to generate hyperlinks. Each
example reads a table named phrase that contains short phrases and then uses its con‐
tents to construct hyperlinks that point to a (hypothetical) script that searches for in‐
stances of the phrases in some other table. The table contains the following rows:

mysql> SELECT phrase_val FROM phrase ORDER BY phrase_val;
+----------------------+
| phrase_val |
+----------------------+
| are we "there" yet? |
| cats & dogs |
| rhinoceros |
| whole > sum of parts |
+----------------------+

The goal here is to generate a list of hyperlinks using each phrase both as the hyperlink
label (which requires HTML-encoding) and in the URL as a parameter to the search
script (which requires URL-encoding). The resulting links look something like this:

are we "there" yet?

cats & dogs

rhinoceros

whole > sum of parts

The initial part of the href attribute value will vary per API. Also, the links produced
by some APIs will look slightly different because they encode spaces as + rather than as
%20.

600 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Perl. The Perl CGI.pm module provides two methods, escapeHTML() and escape(),
that handle HTML-encoding and URL-encoding. There are three ways to use these
methods to encode a string $str:

• Invoke escapeHTML() and escape() as CGI class methods using a CGI:: prefix:
use CGI;
printf "%s\n%s\n", CGI::escape ($str), CGI::escapeHTML ($str);

• Create a CGI object and invoke escapeHTML() and escape() as object methods:
use CGI;
my $cgi = new CGI;
printf "%s\n%s\n", $cgi->escape ($str), $cgi->escapeHTML ($str);

• Import the names explicitly into your script’s namespace. In this case, neither a CGI
object nor the CGI:: prefix is necessary and you invoke the methods as standalone
functions. The following example imports the two method names in addition to
the set of standard names:

use CGI qw(:standard escape escapeHTML);
printf "%s\n%s\n", escape ($str), escapeHTML ($str);

I prefer the last alternative because it is consistent with the CGI.pm function call inter‐
face that you use for other imported method names. Just remember to include the en‐
coding method names in the use CGI statement for any Perl script that requires them,
or you’ll get “undefined subroutine” errors when the script executes.

The following code reads the rows of the phrase table and produces hyperlinks from
them using escapeHTML() and escape():

my $stmt = "SELECT phrase_val FROM phrase ORDER BY phrase_val";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
while (my ($phrase) = $sth->fetchrow_array ())
{
 # URL-encode the phrase value for use in the URL
 my $url = "/cgi-bin/mysearch.pl?phrase=" . escape ($phrase);
 # HTML-encode the phrase value for use in the link label
 my $label = escapeHTML ($phrase);
 print a ({-href => $url}, $label), br ();
}

Ruby. The Ruby cgi module contains two methods, CGI.escapeHTML() and CGI.es
cape(), that perform HTML-encoding and URL-encoding. However, both methods
raise an exception unless the argument is a string. To deal with this, apply the to_s
method to any argument that might not be a string, to force it to string form and convert
nil to the empty string. For example:

18.4. Encoding Special Characters in Web Output | 601

www.it-ebooks.info

http://www.it-ebooks.info/

stmt = "SELECT phrase_val FROM phrase ORDER BY phrase_val"
dbh.execute(stmt) do |sth|
 sth.fetch do |row|
 # make sure that the value is a string
 phrase = row[0].to_s
 # URL-encode the phrase value for use in the URL
 url = "/cgi-bin/mysearch.rb?phrase=" + CGI.escape(phrase)
 # HTML-encode the phrase value for use in the link label
 label = CGI.escapeHTML(phrase)
 page << cgi.a("href" => url) { label } + cgi.br
 end
end

page is used here as a variable that “accumulates” page content and that eventually you
pass to cgi.out to display the page.

PHP. In PHP, the htmlspecialchars() and urlencode() functions perform HTML-
encoding and URL-encoding. Use them as follows:

$stmt = "SELECT phrase_val FROM phrase ORDER BY phrase_val";
$sth = $dbh->query ($stmt);
while (list ($phrase) = $sth->fetch (PDO::FETCH_NUM))
{
 # URL-encode the phrase value for use in the URL
 $url = "/mcb/mysearch.php?phrase=" . urlencode ($phrase);
 # HTML-encode the phrase value for use in the link label
 $label = htmlspecialchars ($phrase);
 printf ('%s
', $url, $label);
}

Python. In Python, the cgi and urllib modules contain the relevant encoding methods.
cgi.escape() and urllib.quote() perform HTML-encoding and URL-encoding.
However, both methods raise an exception unless the argument is a string. To deal with
this, apply the str() method to any argument that might not be a string, to force it to
string form and convert None to the string "None". (If you want None to convert to the
empty string, you must test for it explicitly.) For example:

import cgi
import urllib

stmt = "SELECT phrase_val FROM phrase ORDER BY phrase_val"
cursor = conn.cursor()
cursor.execute(stmt)
for (phrase,) in cursor:
 # make sure that the value is a string
 phrase = str(phrase)
 # URL-encode the phrase value for use in the URL
 url = "/cgi-bin/mysearch.py?phrase=" + urllib.quote(phrase)
 # HTML-encode the phrase value for use in the link label
 label = cgi.escape(phrase, 1)

602 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

 print('%s
' % (url, label))
cursor.close()

The first argument to cgi.escape() is the string to be HTML-encoded. By default, this
function converts <, >, and & characters to their corresponding HTML entities. To tell
cgi.escape() to also convert double quotes to the " entity, pass a second argu‐
ment of 1, as shown in the example. This is especially important if you’re encoding values
to be placed within a double-quoted tag attribute.

Java. The <c:out> JSTL tag automatically performs HTML-encoding for JSP pages.
(Strictly speaking, it performs XML-encoding, but the set of characters affected is <, >,
&, ", and ', which includes all those needed for HTML-encoding.) By using <c:out> to
display text in a web page, you need not think about converting special characters to
HTML entities. If for some reason you want to suppress encoding, invoke <c:out> with
an encodeXML attribute value of false:

<c:out value="value to display" encodeXML="false"/>

To URL-encode parameters for inclusion in a URL, use the <c:url> tag. Specify the
URL string in the tag’s value attribute, and include any parameter values and names in
<c:param> tags in the body of the <c:url> tag. A parameter value can be given either
in the value attribute of a <c:param> tag or in its body. Here’s an example that shows
both uses:

<c:url var="urlStr" value="myscript.jsp">
 <c:param name="id" value ="47"/>
 <c:param name="color">sky blue</c:param>
</c:url>

This URL-encodes the values of the id and color parameters and adds them to the end
of the URL. The result is placed in an object named urlStr, which you can display as
follows:

<c:out value="${urlStr}"/>

The <c:url> tag does not encode special characters such as spaces in
the string supplied in its value attribute. You must encode them
yourself, so it’s probably best to avoid creating pages with spaces in
their names.

To display entries from the phrase table, use the <c:out> and <c:url> tags as follows:
<sql:query dataSource="${conn}" var="rs">
 SELECT phrase_val FROM phrase ORDER BY phrase_val
</sql:query>

<c:forEach items="${rs.rows}" var="row">
 <%-- URL-encode the phrase value for use in the URL --%>

18.4. Encoding Special Characters in Web Output | 603

www.it-ebooks.info

http://www.it-ebooks.info/

 <c:url var="urlStr" value="/mcb/mysearch.jsp">
 <c:param name="phrase" value ="${row.phrase_val}"/>
 </c:url>
 <a href="<c:out value="${urlStr}"/>">
 <%-- HTML-encode the phrase value for use in the link label --%>
 <c:out value="${row.phrase_val}"/>

</c:forEach>

604 | Chapter 18: Introduction to MySQL on the Web

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

Generating Web Content from Query
Results

19.0. Introduction
Information stored in a database is easily retrieved for use on the Web in a variety of
ways. Query results can be displayed as unstructured paragraphs or as structured ele‐
ments such as lists or tables. Query metadata can be useful when formatting query
results, too, such as when generating an HTML table that displays a result set and uses
its metadata to get the column headings for the table. These tasks combine statement
processing with web scripting, and are primarily a matter of properly encoding special
characters in the results (such as & or <) and adding the appropriate HTML tags for the
types of elements you want to produce.

This chapter shows how to generate several types of web output from query results:
paragraphs, lists, tables, hyperlinks, and navigation indexes (single- and multiple-page).
The chapter also covers techniques for inserting binary data into your database and for
retrieving and transferring that kind of information to clients. (It’s easiest and most
common to work with text for creating web pages from database content, but you can
also use MySQL to service requests for binary data such as images, sounds, or PDF files.)
You can also serve query results for download rather than for display.

The recipes here build on the techniques shown in Chapter 18 for generating web pages
from scripts and encoding output for display. See that chapter if you need background
in these topics.

Scripts to create tables used in this chapter are located in the tables directory of the
recipes distribution. Scripts for the examples are located under the directories named
for the web servers used to run them. For Perl, Ruby, PHP, and Python examples, look
under the apache directory. Utility routines used by the example scripts are found in
files located in the lib directory. (For information on configuring Apache so that scripts

605

www.it-ebooks.info

http://www.it-ebooks.info/

run by it can find their library files, see Recipe 18.2.) For Java (JSP) examples, look under
the tomcat directory; you should already have installed these in the process of setting
up the mcb application context (see Recipe 18.3).

If a particular section has no example for a language in which you’re interested, check
the recipes distribution for implementations not shown here.

The scripts in this chapter are intended to be invoked from your browser after they have
been installed, but you can invoke many of them (JSP pages excepted) from the com‐
mand line to see the raw HTML they produce; see Recipe 18.2.

19.1. Displaying Query Results as Paragraphs
Problem
You want to display a query result as free text.

Solution
Display it within paragraph tags.

Discussion
Paragraphs are useful for displaying free text with no particular structure. Retrieve the
text to be displayed, encode it to convert any special characters to the corresponding
HTML entities, and wrap each paragraph within <p> and </p> tags. The following ex‐
amples show how to produce paragraphs for a status display that includes the current
date and time, the server version, and the default database name (if any). These values
are available from the following query:

mysql> SELECT NOW(), VERSION(), DATABASE();
+---------------------+------------+------------+
| NOW() | VERSION() | DATABASE() |
+---------------------+------------+------------+
| 2013-12-22 11:29:50 | 5.6.16-log | cookbook |
+---------------------+------------+------------+

One complication is that the DATABASE() result is NULL if there is no default database.
The examples show how to handle this.

In Perl, the CGI.pm module provides a p() function that adds paragraph tags around
the string you pass to it. p() does not HTML-encode its argument, so handle that by
calling escapeHTML():

($now, $version, $db) =
 $dbh->selectrow_array ("SELECT NOW(), VERSION(), DATABASE()");
$db = "NONE" unless defined ($db);
print p (escapeHTML ("Local time on the MySQL server is $now."));

606 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

print p (escapeHTML ("The server version is $version."));
print p (escapeHTML ("The default database is $db."));

In Ruby, use the cgi module escapeHTML method to encode the paragraph text, and
then pass it to the p method to produce the paragraph tags:

(now, version, db) =
 dbh.select_one("SELECT NOW(), VERSION(), DATABASE()")
db = "NONE" if db.nil?
cgi = CGI.new("html4")
cgi.out {
 cgi.p { CGI.escapeHTML("Local time on the MySQL server is #{now}.") } +
 cgi.p { CGI.escapeHTML("The server version is #{version}.") } +
 cgi.p { CGI.escapeHTML("The default database is #{db}.") }
}

For languages without HTML-tag methods for the required elements, put <p> and </p>
tags around the encoded paragraph text. PHP and Python are examples of this.

PHP:
$sth = $dbh->query ("SELECT NOW(), VERSION(), DATABASE()");
list ($now, $version, $db) = $sth->fetch (PDO::FETCH_NUM);
if ($db === NULL)
 $db = "NONE";
$para = "Local time on the MySQL server is $now.";
print ("<p>" . htmlspecialchars ($para) . "</p>");
$para = "The server version is $version.";
print ("<p>" . htmlspecialchars ($para) . "</p>");
$para = "The default database is $db.";
print ("<p>" . htmlspecialchars ($para) . "</p>");

Python:
cursor = conn.cursor()
cursor.execute("SELECT NOW(), VERSION(), DATABASE()")
(now, version, db) = cursor.fetchone()
cursor.close()
if db is None:
 db = 'NONE'
para = "Local time on the MySQL server is %s." % now
print("<p>%s</p>" % cgi.escape(para, 1))
para = "The server version is %s." % version
print("<p>%s</p>" % cgi.escape(para, 1))
para = "The default database is %s." % db
print("<p>%s</p>" % cgi.escape(para, 1))

In JSP, produce the paragraph display using rowsByIndex to access the result set row’s
columns by numeric index and <c:out> to encode and print the text:

<sql:query dataSource="${conn}" var="rs">
 SELECT NOW(), VERSION(), DATABASE()
</sql:query>
<c:set var="row" value="${rs.rowsByIndex[0]}"/>

19.1. Displaying Query Results as Paragraphs | 607

www.it-ebooks.info

http://www.it-ebooks.info/

<c:set var="db" value="${row[2]}"/>
<c:if test="${empty db}">
 <c:set var="db" value="NONE"/>
</c:if>

<p>Local time on the server is <c:out value="${row[0]}"/>.</p>
<p>The server version is <c:out value="${row[1]}"/>.</p>
<p>The default database is <c:out value="${db}"/>.</p>

19.2. Displaying Query Results as Lists
Problem
You want to display a query result as a structured list of items.

Solution
There are several HTML list types. Write the list items within tags appropriate for the
desired type of list.

Discussion
More structured than paragraphs and less structured than tables, lists provide a useful
way to display a set of individual items. HTML provides several styles of lists, such as
ordered lists, unordered lists, and definition lists. To nest lists, use list-within-list for‐
matting.

Lists generally consist of opening and closing tags that enclose a set of items, each
delimited by its own tags. List items correspond naturally to rows returned from a query,
so generating an HTML list structure from within a program is a matter of encoding
your query result, enclosing each row within the proper item tags, and adding the
opening and closing list tags.

Two approaches to list generation are common: To print the tags as you process the
result set, print the list opening tag, fetch and print each result set row as a list item,
including the item tags, and print the list closing tag.

Alternatively, to process the list in memory, store the list items in an array, pass the array
to a list-generation function that adds the appropriate tags, and print the result.

The examples that follow demonstrate both approaches.

Ordered lists

An ordered list consists of items that have a particular sequence. Browsers typically
display ordered lists as a set of numbered items:

608 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

1. First item
2. Second item
3. Third item

You need not specify the item numbers because browsers add them automatically. An
ordered list is enclosed within and tags, and contains items each enclosed
within and tags:

 First item
 Second item
 Third item

Suppose that an ingredient table contains numbered ingredients for a cooking recipe:
mysql> SELECT * FROM ingredient ORDER BY id;
+----+---------------------------------+
| id | item |
+----+---------------------------------+
1	3 cups flour
2	1/2 cup raw ("unrefined") sugar
3	3 eggs
4	pinch (< 1/16 teaspoon) salt
+----+---------------------------------+

The table contains an id column, but you need only fetch the text values in the proper
order to display them as an ordered list because a browser adds item numbers itself.
The items contain the special characters " and <, so HTML-encode them before adding
the tags that convert the items to an HTML list. The result looks like this:

 3 cups flour
 1/2 cup raw ("unrefined") sugar
 3 eggs
 pinch (< 1/16 teaspoon) salt

One way to create such list from a script is by printing the HTML as you fetch the rows
of the result set. Here’s how you might do so in a JSP page using the JSTL tag library:

<sql:query dataSource="${conn}" var="rs">
 SELECT item FROM ingredient ORDER BY id
</sql:query>

<c:forEach items="${rs.rows}" var="row">
 <c:out value="${row.item}"/>
</c:forEach>

In PHP, perform the same operation like this:
$stmt = "SELECT item FROM ingredient ORDER BY id";
$sth = $dbh->query ($stmt);

19.2. Displaying Query Results as Lists | 609

www.it-ebooks.info

http://www.it-ebooks.info/

print ("");
while (list ($item) = $sth->fetch (PDO::FETCH_NUM))
 print ("" . htmlspecialchars ($item) . "");
print ("");

The preceding examples generate HTML by interleaving row fetching and output gen‐
eration. It’s also possible to separate (decouple) the two operations: retrieve the data
first, and then write the output. Queries tend to vary from list to list, but generating the
list itself often is fairly stereotypical. If you put the list-generation code into a utility
function, you can reuse it for different queries. The function must handle two opera‐
tions: HTML-encoding the items (if they aren’t already encoded), and adding the proper
HTML tags. The following PHP function does this. It takes the list items as an array
argument and returns the list as a string:

function make_ordered_list ($items, $encode = TRUE)
{
 $result = "";
 foreach ($items as $val)
 {
 if ($encode)
 $val = htmlspecialchars ($val);
 $result .= "$val";
 }
 return ("$result");
}

To use the utility function, fetch the data and print the HTML like so:
fetch items for list
$stmt = "SELECT item FROM ingredient ORDER BY id";
$sth = $dbh->query ($stmt);
$items = $sth->fetchAll (PDO::FETCH_COLUMN, 0);

generate HTML list
print (make_ordered_list ($items));

In Python, write the utility function like this:
def make_ordered_list(items, encode=True):
 result = ""
 for item in items:
 if item is None: # handle possibility of NULL item
 item = ""
 # make sure item is a string, then encode if necessary
 item = str(item)
 if encode:
 item = cgi.escape(item, 1)
 result += "" + item + ""
 return "" + result + ""

And use it like this:

610 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

fetch items for list
stmt = "SELECT item FROM ingredient ORDER BY id"
cursor = conn.cursor()
cursor.execute(stmt)
items = []
for (item,) in cursor:
 items.append(item)
cursor.close()

generate HTML list
print(make_ordered_list(items))

The second argument to make_ordered_list() indicates whether it should perform
HTML-encoding of the list items. The easiest thing is to let the function handle this for
you (which is why the default is true). However, for a list of items that themselves include
HTML tags, you wouldn’t want the function to encode the special characters in those
tags. For example, if the list items are hyperlinks, each contains <a> tags. To prevent
these from being converted to <a>, pass make_ordered_list() a second argu‐
ment that evaluates to false.

If your API provides functions to generate HTML structures, you need not write them
yourself. That’s the case for the Perl CGI.pm and Ruby cgi modules. In Perl, generate
each item by invoking its li() function to add the opening and closing item tags, save
the items in an array, and pass the array to ol() to add the opening and closing list tags:

my $stmt = "SELECT item FROM ingredient ORDER BY id";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
my @items;
while (my $ref = $sth->fetchrow_arrayref ())
{
 # handle possibility of NULL (undef) item
 my $item = defined ($ref->[0]) ? escapeHTML ($ref->[0]) : "";
 push (@items, li ($item));
}
print ol (@items);

The code converts NULL values (represented by undef) to the empty string is to avoid
having Perl generate uninitialized-value warnings when run with warnings enabled.
(The ingredient table doesn’t actually contain any NULL values, but in the general case,
you don’t know that.)

The preceding example intertwines row fetching and HTML generation. To decouple
item fetching from printing the HTML, first retrieve the items into an array, then pass
the array by reference to li() and the result to ol():

fetch items for list
my $stmt = "SELECT item FROM ingredient ORDER BY id";
my $item_ref = $dbh->selectcol_arrayref ($stmt);

generate HTML list, handling possibility of NULL (undef) items

19.2. Displaying Query Results as Lists | 611

www.it-ebooks.info

http://www.it-ebooks.info/

$item_ref = [map { defined ($_) ? escapeHTML ($_) : "" } @{$item_ref}];
print ol (li ($item_ref));

Note two things about the li() function:

• It performs no HTML-encoding; you must do that yourself.
• It can handle a single value or an array of values. If you pass an array, pass it by

reference so that li() adds and tags to each array element, concatenates
them, and returns the resulting string. If you pass the array itself rather than a
reference, li() first concatenates the items, then adds a single set of tags around
the result, which is usually not what you want. This behavior is shared by several
other CGI.pm functions that can operate on single or multiple values. For example,
the table data td() function adds a single set of <td> and </td> tags if you pass it
a scalar or list. If you pass a list reference, it adds the tags to each item in the list.

The Ruby equivalent of the previous example looks like this:
fetch items for list
stmt = "SELECT item FROM ingredient ORDER BY id"
items = dbh.select_all(stmt)

list = cgi.ol {
 items.collect { |item| cgi.li { CGI.escapeHTML(item.to_s) } }
}

Should You Intertwine or Decouple Row Fetching and
HTML Generation?

You may be able to get a script working most quickly by writing code that prints HTML
from query rows as you fetch them. There are, however, several advantages to separating
data retrieval from output production. The most obvious ones are that by using a utility
function to generate the HTML, you have to write the function only once, and you can
share it among scripts. There are other benefits as well:

• Functions that generate HTML structures can be used with data obtained from
other sources, not just from a database.

• The decoupled approach enables you to more easily construct page content in
memory, then print it when you’re ready. For building pages that consist of several
components, this gives you more latitude to create them in the order that’s most
convenient. (On the other hand, with very large result sets, this approach can entail
considerable memory use.)

• Decoupling row fetching and output generation provides more flexibility in the
types of output you produce. To generate an unordered list rather than an ordered
list, just call a different output function; the data collection phase need not change.
This is true even if you decide to use a different output language (XML rather than

612 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

HTML, for example). You still need only a different output function; data collection
remains unchanged.

• By prefetching the list items, you can make adaptive decisions about what type of
list to create. Although we are not yet to the point of discussing web forms, they
make heavy use of their own kinds of lists. In that context, having items in hand
before generating an HTML structure from them can be useful for choosing the list
type based on the list size. For example, you can display a set of radio buttons if the
number of items is small, or a pop-up menu or scrolling list if the number is large.

Unordered lists

An unordered list is like an ordered list except that browsers display all items with the
same marker character, such as a bullet:

• First item
• Second item
• Third item

“Unordered” refers to the fact that the marker character provides no sequence infor‐
mation. You can of course display the items in any order you choose. The HTML tags
for an unordered list are the same as for an ordered list except that the opening and
closing tags are and rather than and :

 First item
 Second item
 Third item

For APIs in which you print the tags directly, use the same procedure as for ordered
lists, but print and instead of and . Here is an example in JSP:

<sql:query dataSource="${conn}" var="rs">
 SELECT item FROM ingredient ORDER BY id
</sql:query>

<c:forEach items="${rs.rows}" var="row">
 <c:out value="${row.item}"/>
</c:forEach>

For APIs that provide tag-generating methods, call a different method to produce the
outer tags. For example, in Perl, create an unordered list by calling the CGI.pm ul()
function rather than ol().

To write a utility function for unordered lists, it’s easily derived from a function that
generates ordered lists because they differ only in the opening and closing list tags.

19.2. Displaying Query Results as Lists | 613

www.it-ebooks.info

http://www.it-ebooks.info/

Definition lists

A definition list consists of two-part items, each including a term and a definition.
“Term” and “definition” have loose meanings because you can display any kind of in‐
formation you want. The following doremi table associates the name of each note in a
musical scale with a mnemonic phrase for remembering it:

mysql> SELECT id, note, mnemonic FROM doremi ORDER BY id;
+----+------+----------------------------+
| id | note | mnemonic |
+----+------+----------------------------+
1	do	A deer, a female deer
2	re	A drop of golden sun
3	mi	A name I call myself
4	fa	A long, long way to run
5	so	A needle pulling thread
6	la	A note to follow so
7	ti	A drink with jam and bread
+----+------+----------------------------+

The mnemonics aren’t exactly what you’d call “definitions”; nevertheless, the note and
mnemonic columns can be displayed as a definition list:

do
 A deer, a female deer
re
 A drop of golden sun
mi
 A name I call myself
fa
 A long, long way to run
so
 A needle pulling thread
la
 A note to follow so
ti
 A drink with jam and bread

A definition list begins and ends with <dl> and </dl> tags. Each item has a term enclosed
within <dt> and </dt> tags and a definition enclosed within <dd> and </dd> tags:

<dl>
 <dt>do</dt> <dd>A deer, a female deer</dd>
 <dt>re</dt> <dd>A drop of golden sun</dd>
 <dt>mi</dt> <dd>A name I call myself</dd>
 <dt>fa</dt> <dd>A long, long way to run</dd>
 <dt>so</dt> <dd>A needle pulling thread</dd>
 <dt>la</dt> <dd>A note to follow so</dd>
 <dt>ti</dt> <dd>A drink with jam and bread</dd>
</dl>

In a JSP page, generate the definition list like this:

614 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

<sql:query dataSource="${conn}" var="rs">
 SELECT note, mnemonic FROM doremi ORDER BY note
</sql:query>
<dl>
<c:forEach items="${rs.rows}" var="row">
 <dt><c:out value="${row.note}"/></dt>
 <dd><c:out value="${row.mnemonic}"/></dd>
</c:forEach>
</dl>

Alternatively, fetch the data and then pass it to a utility function that takes arrays of
terms and definitions and returns the list as a string. Here is an example in PHP:

fetch items for list
$stmt = "SELECT note, mnemonic FROM doremi ORDER BY id";
$sth = $dbh->query ($stmt);
$terms = array ();
$defs = array ();
while (list ($note, $mnemonic) = $sth->fetch (PDO::FETCH_NUM))
{
 $terms[] = $note;
 $defs[] = $mnemonic;
}

generate HTML list
print (make_definition_list ($terms, $defs));

The make_definition_list() function looks like this:
function make_definition_list ($terms, $definitions, $encode = TRUE)
{
 $result = "";
 $n = count ($terms);
 for ($i = 0; $i < $n; $i++)
 {
 $term = $terms[$i];
 $definition = $definitions[$i];
 if ($encode)
 {
 $term = htmlspecialchars ($term);
 $definition = htmlspecialchars ($definition);
 }
 $result .= "<dt>$term</dt><dd>$definition</dd>";
 }
 return ("<dl>$result</dl>");
}

In Ruby, use the dt and dd methods to create list item contents, then pass the result to
the dl method to add the outermost list tags:

stmt = "SELECT note, mnemonic FROM doremi ORDER BY id"
list = ""
dbh.execute(stmt) do |sth|
 sth.fetch do |row|

19.2. Displaying Query Results as Lists | 615

www.it-ebooks.info

http://www.it-ebooks.info/

 list << cgi.dt { CGI.escapeHTML(row["note"].to_s) }
 list << cgi.dd { CGI.escapeHTML(row["mnemonic"].to_s) }
 end
end
list = cgi.dl { list }

Here is another example (in Perl). Each term is a database name, and the corresponding
definition indicates how many tables are in the database. The numbers are obtained
from INFORMATION_SCHEMA using a query that counts the number of tables in each da‐
tabase. Create the terms and definitions by invoking dt() and dd(), save them in an
array, and pass the array to dl():

count number of tables per database
my $sth = $dbh->prepare ("SELECT TABLE_SCHEMA, COUNT(TABLE_NAME)
 FROM INFORMATION_SCHEMA.TABLES
 GROUP BY TABLE_SCHEMA");
$sth->execute ();
my @items;
while (my ($db_name, $tbl_count) = $sth->fetchrow_array ())
{
 push (@items, dt (escapeHTML ($db_name)));
 push (@items, dd (escapeHTML ($tbl_count . " tables")));
}
print dl (@items);

The counts indicate the number of tables accessible to the MySQL user account that the
script uses when it connects to the MySQL server. Databases or tables not accessible to
that account are not included.

Nested lists

Some information is most easily understood when presented as a list of lists. The fol‐
lowing example displays state names as a definition list, grouped by initial letter of the
names. For each item in the list, the term is the initial letter, and the definition is an
unordered list of the state names beginning with that letter:

A
 • Alabama
 • Alaska
 • Arizona
 • Arkansas
C
 • California
 • Colorado
 • Connecticut
D
 • Delaware
…

616 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

One way to produce such a list (in Perl) is to retrieve all the information using a single
query, marching through the result set, and beginning a new list item each time you
reach a new letter:

my $sth = $dbh->prepare ("SELECT name FROM states ORDER BY name");
$sth->execute ();
my @items;
my @names;
my $cur_ltr = "";
while (my ($name) = $sth->fetchrow_array ())
{
 my $ltr = uc (substr ($name, 0, 1)); # initial letter of name
 if ($cur_ltr ne $ltr) # beginning a new letter?
 {
 if (@names) # any stored-up names from previous letter?
 {
 # for each definition list item, the initial letter is
 # the term, and the list of states is the definition
 push (@items, dt ($cur_ltr));
 push (@items, dd (ul (li (\@names))));
 }
 @names = ();
 $cur_ltr = $ltr;
 }
 push (@names, escapeHTML ($name));
}
if (@names) # any remaining names from final letter?
{
 push (@items, dt ($cur_ltr));
 push (@items, dd (ul (li (\@names))));
}
print dl (@items);

Another approach uses the same query but separates the data-collection and HTML-
generation phases:

collect state names and associate each with the proper
initial-letter list
my $sth = $dbh->prepare ("SELECT name FROM states ORDER BY name");
$sth->execute ();
my %ltr;
while (my ($name) = $sth->fetchrow_array ())
{
 my $ltr = uc (substr ($name, 0, 1)); # initial letter of name
 # initialize letter list to empty array if this is
 # first state for it, then add state to array
 $ltr{$ltr} = [] unless exists ($ltr{$ltr});
 push (@{$ltr{$ltr}}, $name);
}

generate the output lists
my @items;

19.2. Displaying Query Results as Lists | 617

www.it-ebooks.info

http://www.it-ebooks.info/

foreach my $ltr (sort (keys (%ltr)))
{
 # encode list of state names for this letter, generate unordered list
 my $ul_str = ul (li ([map { escapeHTML ($_) } @{$ltr{$ltr}}]));
 push (@items, dt ($ltr), dd ($ul_str));
}
print dl (@items);

For another application of nested lists, see Recipe 19.5.

19.3. Displaying Query Results as Tables
Problem
You want to display a query result as an HTML table.

Solution
Use each row of the result as a table row. To present an initial row of column labels,
supply your own or use the query metadata to obtain the column names.

Discussion
HTML tables are useful for presenting highly structured output. They’re popular for
displaying the results of queries that consist of rows and columns due to the natural
conceptual correspondence between HTML tables and database tables or query results.
In addition, you can obtain column headers for the table by accessing the query metadata
(see Recipe 10.2). An HTML table has this basic structure:

• The table begins and ends with <table> and </table> tags and encloses a set of
rows.

• Each row begins and ends with <tr> and </tr> tags and encloses a set of cells.
• Tags for header cells are <th> and </th>. Tags for data cells are <td> and </td>.

(Typically, browsers display header cells using boldface or other emphasis.)
• Tags may include attributes. For example, to put a border around each cell, add a
border="1" attribute to the <table> tag. To right-justify a table cell, add an
align="right" attribute to the <td> tag.

Suppose that you want to display the contents of your CD collection:
mysql> SELECT year, artist, title FROM cd ORDER BY artist, year;
+------+-----------------+-------------------+
| year | artist | title |
+------+-----------------+-------------------+
| 2002 | Aradhna | Marga Darshan |
| 1999 | Charlie Peacock | Kingdom Come |

618 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

2008	Children 18:3	Children 18:3
2004	Dave Bainbridge	Veil of Gossamer
1990	Iona	Iona
2011	Iona	Another Realm
2005	Neal Morse	?
2013	Red	Release the Panic
1982	Undercover	Undercover
+------+-----------------+-------------------+

To display this query result as a bordered HTML table, produce output that looks
something like this:

<table border="1">
 <tr>
 <th>Year</th>
 <th>Artist</th>
 <th>Title</th>
 </tr>
 <tr>
 <td>2002</td>
 <td>Aradhna</td>
 <td>Marga Darshan</td>
 </tr>
 <tr>
 <td>1999</td>
 <td>Charlie Peacock</td>
 <td>Kingdom Come</td>
 </tr>
 ... other rows here ...
 <tr>
 <td>1982</td>
 <td>Undercover</td>
 <td>Undercover</td>
 </tr>
</table>

To convert the results of a query to an HTML table, wrap each value from a given result
set row in cell tags, each row in row tags, and the entire set of rows in table tags. A JSP
page might produce an HTML table from the cd table query like this:

<table border="1">
 <tr>
 <th>Year</th>
 <th>Artist</th>
 <th>Title</th>
 </tr>
<sql:query dataSource="${conn}" var="rs">
 SELECT year, artist, title FROM cd ORDER BY artist, year
</sql:query>
<c:forEach items="${rs.rows}" var="row">
 <tr>
 <td><c:out value="${row.year}"/></td>
 <td><c:out value="${row.artist}"/></td>

19.3. Displaying Query Results as Tables | 619

www.it-ebooks.info

http://www.it-ebooks.info/

 <td><c:out value="${row.title}"/></td>
 </tr>
</c:forEach>

</table>

In Perl scripts, the CGI.pm functions table(), tr(), td(), and th() produce the table,
row, data cell, and header cell elements. (Special case: To avoid a conflict with the built-
in Perl tr character-transliteration function, invoke the tr() function that generates a
table row as Tr().) To display the contents of the cd table as an HTML table, do this:

my $sth = $dbh->prepare ("SELECT year, artist, title
 FROM cd ORDER BY artist, year");
$sth->execute ();
my @rows;
push (@rows, Tr (th ("Year"), th ("Artist"), th ("Title")));
while (my ($year, $artist, $title) = $sth->fetchrow_array ())
{
 push (@rows, Tr (
 td (escapeHTML ($year)),
 td (escapeHTML ($artist)),
 td (escapeHTML ($title))
));
}
print table ({-border => "1"}, @rows);

Sometimes a table is easier to read if the rows use alternating colors, particularly if its
cells don’t include borders. To do this, add a style attribute that sets the background
color to each <th> and <td> tag, and alternate the color value for each row. This is easy
with a variable that toggles between two values. The following example alternates the
$color variable between silver and white:

my $sth = $dbh->prepare ("SELECT year, artist, title
 FROM cd ORDER BY artist, year");
$sth->execute ();
my $color = "silver"; # row-color variable
my $style = "background-color:$color";
my @rows;
push (@rows, Tr (
 th ({-style => $style}, "Year"),
 th ({-style => $style}, "Artist"),
 th ({-style => $style}, "Title")
));
while (my ($year, $artist, $title) = $sth->fetchrow_array ())
{
 # toggle the row-color variable
 $color = ($color eq "silver" ? "white" : "silver");
 $style = "background-color:$color";
 push (@rows, Tr (
 td ({-style => $style}, escapeHTML ($year)),
 td ({-style => $style}, escapeHTML ($artist)),
 td ({-style => $style}, escapeHTML ($title))

620 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

));
}
print table ({-border => "1"}, @rows);

The preceding table-generation examples hardwire the column headings into the code,
as well as knowledge about the number of columns. With a little effort, you can write a
more general function that takes a database handle and an arbitrary statement, executes
the statement, and returns its result as an HTML table. The function gets the column
labels from the statement metadata. To produce labels that differ from the table column
names, specify column aliases in the statement:

my $tbl_str = make_table_from_query (
 $dbh,
 "SELECT
 year AS Year, artist AS Artist, title AS Title
 FROM cd
 ORDER BY artist, year"
);
print $tbl_str;

Any kind of statement that returns a result set can be passed to this function. You could,
for example, use it to construct an HTML table from the result of a CHECK TABLE state‐
ment, which returns a result set that indicates the outcome of the check operation.

What does the make_table_from_query() function look like? Here’s a Perl implemen‐
tation:

sub make_table_from_query
{
db handle, query string, parameters to be bound to placeholders (if any)
my ($dbh, $stmt, @param) = @_;

 my $sth = $dbh->prepare ($stmt);
 $sth->execute (@param);
 my @rows;
 # use column names for cells in the header row
 push (@rows, Tr (th ([map { escapeHTML ($_) } @{$sth->{NAME}}])));
 # fetch each data row
 while (my $row_ref = $sth->fetchrow_arrayref ())
 {
 # encode cell values, avoiding warnings for undefined
 # values and using for empty cells
 my @val = map {
 defined ($_) && $_ !~ /^\s*$/ ? escapeHTML ($_) : " "
 } @{$row_ref};
 my $row_str;
 for (my $i = 0; $i < @val; $i++)
 {
 # right-justify numeric columns
 if ($sth->{mysql_is_num}->[$i])
 {
 $row_str .= td ({-align => "right"}, $val[$i]);

19.3. Displaying Query Results as Tables | 621

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 else
 {
 $row_str .= td ($val[$i]);
 }
 }
 push (@rows, Tr ($row_str));
 }
 return table ({-border => "1"}, @rows);
}

make_table_from_query() does some extra work to right-justify numeric columns so
that the values line up better. It also enables you to pass values to be bound to place‐
holders in the statement; specify them after the statement string:

my $tbl_str = make_table_from_query (
 $dbh,
 "SELECT
 year AS Year, artist AS Artist, title AS Title
 FROM cd
 WHERE year < ?
 ORDER BY artist, year",
 1995
);
print $tbl_str;

To display a table in such a way that the user can click any column heading to sort the
table’s contents by that column, see Recipe 20.11.

The Trick for Empty Table Cells
A display problem sometimes occurs for HTML tables that include borders around cells:
when a table cell is empty or contains only whitespace, some browsers show no border
around the cell. This makes the table look irregular. To avoid this problem, the
make_table_from_query() function puts a nonbreaking space () into cells that
would otherwise be empty, so that borders for them display properly.

19.4. Displaying Query Results as Hyperlinks
Problem
You want to create clickable hyperlinks from database content.

Solution
Add the proper tags to the content to generate anchor elements.

622 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
The examples in the preceding sections generate static text, but database content also is
useful for creating hyperlinks. Website URLs or email addresses stored in a table are
easily converted to active links in web pages. You need only properly encode the infor‐
mation and add the appropriate HTML tags.

Suppose that a table named book_vendor contains bookseller and publisher names and
websites:

mysql> SELECT * FROM book_vendor ORDER BY name;
+----------------+------------------------+
| name | website |
+----------------+------------------------+
Amazon.com	www.amazon.com
Barnes & Noble	www.barnesandnoble.com
O'Reilly Media	www.oreilly.com
+----------------+------------------------+

This table readily lends itself to the creation of hyperlinked text. To produce a hyperlink
from a row, add the http:// protocol designator to the website value, use the result as
the href attribute for an <a> anchor tag, and use the name value in the body of the tag
to serve as the link label. Here is the result for the Barnes & Noble row:

Barnes & Noble

JSP code to produce an unordered list of hyperlinks from the table contents looks like
this:

<sql:query dataSource="${conn}" var="rs">
 SELECT name, website FROM book_vendor ORDER BY name
</sql:query>

<c:forEach items="${rs.rows}" var="row">

 <a href="http://<c:out value="${row.website}"/>">
 <c:out value="${row.name}"/>

</c:forEach>

When displayed in a web page, each vendor name in the list becomes an active link that
can be selected to visit the vendor’s website. In Python, the equivalent operation looks
like this:

stmt = "SELECT name, website FROM book_vendor ORDER BY name"
cursor = conn.cursor()
cursor.execute(stmt)
items = []
for (name, website) in cursor:
 items.append('%s'

19.4. Displaying Query Results as Hyperlinks | 623

www.it-ebooks.info

http://www.it-ebooks.info/

 % (urllib.quote(website), cgi.escape(name, 1)))
cursor.close()

print items, but don't encode them; they're already encoded
print(make_unordered_list(items, False))

CGI.pm-based Perl scripts produce hyperlinks with the a() function:
a ({-href => "url-value"}, "link label")

Use the function to produce the vendor link list like this:
my $stmt = "SELECT name, website FROM book_vendor ORDER BY name";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
my @items;
while (my ($name, $website) = $sth->fetchrow_array ())
{
 push (@items, a ({-href => "http://$website"}, escapeHTML ($name)));
}
print ul (li (\@items));

Ruby scripts use the cgi module a method to produce hyperlinks:
stmt = "SELECT name, website FROM book_vendor ORDER BY name"
list = ""
dbh.execute(stmt) do |sth|
 sth.fetch do |row|
 list << cgi.li {
 cgi.a("href" => "http://#{row[1]}") {
 CGI.escapeHTML(row[0].to_s)
 }
 }
 end
end
list = cgi.ul { list }

Generating links using email addresses is another common web programming task.
Assume that a table named newsstaff lists the department, name, and (if known) email
address for the news anchors and reporters employed by a television station, WRRR:

mysql> SELECT * FROM newsstaff;
+------------------+----------------+-------------------------+
| department | name | email |
+------------------+----------------+-------------------------+
Sports	Becky Winthrop	bwinthrop@wrrr-news.com
Weather	Bill Hagburg	bhagburg@wrrr-news.com
Local News	Frieda Stevens	NULL
Local Government	Rex Conex	rconex@wrrr-news.com
Current Events	Xavier Ng	xng@wrrr-news.com
+------------------+----------------+-------------------------+

From this you want to produce an online directory containing email links to all per‐
sonnel, so that site visitors can send mail to any staff member. For example, a row for

624 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

the sports reporter Becky Winthrop with an email address of bwinthrop@wrrr-
news.com becomes an entry in the listing that looks like this:

Sports: Becky Winthrop

It’s easy to use the table’s contents to produce such a directory. First, put the code to
generate an email link into a helper function because that operation is likely to be useful
in multiple scripts. In Perl, the function looks like this:

sub make_email_link
{
my ($name, $addr) = @_;

 $name = escapeHTML ($name);
 # return name as static text if address is undef or empty
 return $name if !defined ($addr) || $addr eq "";
 # return a hyperlink otherwise
 return a ({-href => "mailto:$addr"}, $name);
}

The function handles instances where the person has no email address by returning just
the name as static text. To use the function, write a loop that pulls out names and ad‐
dresses and displays each email link preceded by the staff member’s department:

my $stmt = "SELECT department, name, email FROM newsstaff
 ORDER BY department, name";
my $sth = $dbh->prepare ($stmt);
$sth->execute ();
my @items;
while (my ($dept, $name, $email) = $sth->fetchrow_array ())
{
 push (@items,
 escapeHTML ($dept) . ": " . make_email_link ($name, $email));
}
print ul (li (\@items));

Equivalent email link generator functions for Ruby, PHP, and Python are similar.

For a JSP page, produce the newsstaff listing as follows:
<sql:query dataSource="${conn}" var="rs">
 SELECT department, name, email
 FROM newsstaff
 ORDER BY department, name
</sql:query>

<c:forEach items="${rs.rows}" var="row">

 <c:out value="${row.department}"/>:
 <c:set var="name" value="${row.name}"/>
 <c:set var="email" value="${row.email}"/>
 <c:choose>

19.4. Displaying Query Results as Hyperlinks | 625

www.it-ebooks.info

http://www.it-ebooks.info/

 <%-- null or empty value test --%>
 <c:when test="${empty email}">
 <c:out value="${name}"/>
 </c:when>
 <c:otherwise>
 <a href="mailto:<c:out value="${email}"/>">
 <c:out value="${name}"/>
 </c:otherwise>
 </c:choose>

</c:forEach>

19.5. Creating Navigation Indexes from Database Content
Problem
A list of items in a web page is long. You want to make it easier for users to move around
in the list.

Solution
Create a navigation index containing links to different sections of the list.

Discussion
It’s easy to display a list in a web page (see Recipe 19.2), but if the list contains a lot of
items, the page becomes quite long. It’s often useful to break a lengthy list into sections
and provide a navigation index in the form of hyperlinks that enable users to reach
sections of the list directly without scrolling the page. For example, if you retrieve rows
from a table and display them grouped into sections, you can include an index that lets
the user jump to any section. The same idea applies to multiple-page displays as well,
using a navigation index in each page that enables users to reach any other page easily.

This recipe provides examples to illustrate both techniques, using the kjv table intro‐
duced in Recipe 5.12:

• A single-page display that lists all verses in all chapters of the book of Esther. The
list is broken into 10 sections (one per chapter), with a navigation index that has
links pointing to the beginning of each section.

• A multiple-page display consisting of pages that each show the verses from a single
chapter of Esther, and a list of links to pages for each of the other chapters. These
links enable any page to be reached easily from any other.

626 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a single-page navigation index

This example displays all verses in Esther in a single page, with verses grouped into
sections by chapter. To display the page so that each section contains a navigation
marker, place an <a name> anchor element before each chapter’s verses:

Chapter 1
 ... list of verses in chapter 1...
Chapter 2
 ... list of verses in chapter 2...
Chapter 3
 ... list of verses in chapter 3...
…

That generates a list that includes a set of markers named 1, 2, 3, and so forth. To
construct the navigation index, build a set of hyperlinks, each of which points to one of
the name markers:

Chapter 1
Chapter 2
Chapter 3
…

The # in each href attribute signifies that the link points to a location within the same
page. For example, href="#3" points to the anchor with the name="3" attribute.

To implement this kind of navigation index, use one of these approaches:

• Retrieve the verse rows into memory and determine from them the entries needed
in the navigation index. Then print both the index and verse list.

• Figure out all the applicable anchors in advance and construct the index first. This
statement determines the list of chapter numbers:

SELECT DISTINCT cnum FROM kjv WHERE bname = 'Esther' ORDER BY cnum;

Use the query result to build the navigation index, then fetch the verses for the
chapters later to create the page sections to which the index entries point.

Here’s a script, esther1.pl, that uses the first approach. It’s an adaptation of one of the
nested-list examples shown in Recipe 19.2:

#!/usr/bin/perl
esther1.pl: display the book of Esther in a single page,
with navigation index

use strict;
use warnings;
use CGI qw(:standard escape escapeHTML);
use Cookbook;

my $title = "The Book of Esther";

19.5. Creating Navigation Indexes from Database Content | 627

www.it-ebooks.info

http://www.it-ebooks.info/

my $page = header ()
 . start_html (-title => $title)
 . h3 ($title);

my $dbh = Cookbook::connect ();

Retrieve verses from the book of Esther and associate each one with the
list of verses for the chapter it belongs to.

my $sth = $dbh->prepare ("SELECT cnum, vnum, vtext FROM kjv
 WHERE bname = 'Esther'
 ORDER BY cnum, vnum");
$sth->execute ();
my %verses;
while (my ($cnum, $vnum, $vtext) = $sth->fetchrow_array ())
{
 # Initialize chapter's verse list to empty array if this is
 # first verse for it, then add verse number/text to array.
 $verses{$cnum} = [] unless exists ($verses{$cnum});
 push (@{$verses{$cnum}}, p (escapeHTML ("$vnum. $vtext")));
}

Determine all chapter numbers and use them to construct a navigation
index. These are links of the form Chapter num, where
num is a chapter number and '#' signifies a within-page link. No URL-
or HTML-encoding is done here (the text displayed here doesn't need
it). Make sure to sort chapter numbers numerically (use { a <=> b }).
Separate links by nonbreaking spaces.

my $nav_index;
foreach my $cnum (sort { $a <=> $b } keys (%verses))
{
 $nav_index .= " " if $nav_index;
 $nav_index .= a ({-href => "#$cnum"}, "Chapter $cnum");
}

Display list of verses for each chapter. Precede each section by a
label that shows the chapter number and a copy of the navigation index.

foreach my $cnum (sort { $a <=> $b } keys (%verses))
{
 # add an <a name> anchor for this section of the chapter display
 $page .= p (a ({-name => $cnum}, font ({-size => "+2"}, "Chapter $cnum"))
 . br ()
 . $nav_index);
 $page .= join ("", @{$verses{$cnum}}); # add array of verses for chapter
}

$dbh->disconnect ();

$page .= end_html ();

628 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

print $page;

Creating a multiple-page navigation index

This example shows a Perl script, esther2.pl, that is capable of generating any of several
pages, all based on the verses in the book of Esther stored in the kjv table. The initial
page displays a list of the chapters in the book, along with the verses from chapter 1.
Each item in the chapter list is a hyperlink that reinvokes the script to display the list of
verses in one of the other chapters. Because the script is responsible for generating
multiple pages, it must be able to determine which page to display each time it runs. To
make that possible, the script examines its own URL for a chapter parameter that in‐
dicates the number of the chapter to display.

The URL to request the initial page looks like this:
http://localhost/cgi-bin/esther2.pl

The links to individual chapter pages have the following form, where cnum is a chapter
number:

http://localhost/cgi-bin/esther2.pl?chapter=cnum

esther2.pl uses the CGI.pm param() function to obtain the chapter parameter value,
defaulting to 1 if the chapter is missing or not integer-valued:

my $cnum = param ("chapter");
Missing or malformed chapter; default to chapter 1.
$cnum = 1 if !defined ($cnum) || $cnum !~ /^\d+$/;

Here is the entire esther2.pl script:
#!/usr/bin/perl
esther2.pl: display the book of Esther over multiple pages,
one page per chapter, with navigation index

use strict;
use warnings;
use CGI qw(:standard escape escapeHTML);
use Cookbook;

Construct navigation index as a list of links to the pages for each
chapter in the the book of Esther. Labels are of the form "Chapter
n"; the chapter numbers are incorporated into the links as chapter=num
parameters

$dbh is the database handle, $cnum is the number of the chapter for
which information is currently being displayed. The label in the
chapter list corresponding to this number is displayed as static
text; the others are displayed as hyperlinks to the other chapter
pages.

19.5. Creating Navigation Indexes from Database Content | 629

www.it-ebooks.info

http://www.it-ebooks.info/

No encoding is done because the chapter numbers are digits and don't
need it.

sub get_chapter_list
{
my ($dbh, $cnum) = @_;

 my $nav_index;
 my $ref = $dbh->selectcol_arrayref (
 "SELECT DISTINCT cnum FROM kjv
 WHERE bname = 'Esther' ORDER BY cnum"
);
 foreach my $cur_cnum (@{$ref})
 {
 my $link = url () . "?chapter=$cur_cnum";
 my $label = "Chapter $cur_cnum";
 $nav_index .= br () if $nav_index; # separate entries by

 # use static bold text if entry is for current chapter,
 # use a hyperlink otherwise
 $nav_index .= ($cur_cnum == $cnum
 ? strong ($label)
 : a ({-href => $link}, $label));
 }
 return $nav_index;
}

Get the list of verses for a given chapter. If there are none, the
chapter number was invalid, but handle that case sensibly.

sub get_verses
{
my ($dbh, $cnum) = @_;

 my $ref = $dbh->selectall_arrayref (
 "SELECT vnum, vtext FROM kjv
 WHERE bname = 'Esther' AND cnum = ?",
 undef, $cnum);
 my $verses = "";
 foreach my $row_ref (@{$ref})
 {
 $verses .= p (escapeHTML ("$row_ref->[0]. $row_ref->[1]"));
 }
 return $verses eq "" # no verses?
 ? p ("No verses in chapter $cnum were found.")
 : p ("Chapter $cnum:") . $verses;
}

my $title = "The Book of Esther";

my $page = header () . start_html (-title => $title);

my $dbh = Cookbook::connect ();

630 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

my $cnum = param ("chapter");
Missing or malformed chapter; default to chapter 1.
$cnum = 1 if !defined ($cnum) || $cnum !~ /^\d+$/;

Arrange the page panels as a one-row, three-cell table:
Left panel: List of chapters as hyperlinks (except for current chapter
as bold text)
Middle panel: Spacer
Right panel: List of current chapter's verses

$page .= table (Tr (
 td ({-valign => "top", -width => "15%"},
 get_chapter_list ($dbh, $cnum)),
 td ({-valign => "top", -width => "5%"}, " "),
 td ({-valign => "top", -width => "80%"},
 p (strong ($title)) . get_verses ($dbh, $cnum))
));

$dbh->disconnect ();

$page .= end_html ();

print $page;

See Also
esther2.pl examines its execution environment using the param() function. Recipe 20.5
further discusses web script parameter processing.

Recipe 20.10 discusses another navigation problem: how to split display of a result set
across multiple pages and create previous-page and next-page links.

19.6. Storing Images or Other Binary Data
Problem
You want to store images in MySQL.

Solution
That’s not difficult, provided that you take the proper precautions for encoding image
data.

Discussion
Websites are not limited to displaying text. They also serve various forms of binary data
such as images, music files, PDF documents, and so forth. Images are a common kind

19.6. Storing Images or Other Binary Data | 631

www.it-ebooks.info

http://www.it-ebooks.info/

of binary data, and because image storage is a natural application for a database, a very
common question is “How do I store images in MySQL?” Many people answer this
question by saying, “Don’t do it!” and some of the reasons are discussed in the following
sidebar. Because it’s important to know how to work with binary data, this section does
show how to store images in MySQL. Nevertheless, in recognition that that may not
always be the best thing to do, the section also shows how to store images in the file‐
system.

Although the discussion here is phrased in terms of working with images, the principles
apply to any kind of binary data, such as PDF files or compressed text. In fact, they apply
to any kind of data at all, including text. People tend to think of images as special some‐
how, but they’re not.

One reason that image storage confuses people more often than does storing other types
of information like text strings or numbers is that it’s difficult to type in an image value
manually. For example, you can easily use mysql to enter an INSERT statement to store
a number like 3.48 or a string like Je voudrais une bicyclette rouge, but images
contain binary data and it’s not easy to refer to them by value. So you must do something
else. Your options are:

• Use the LOAD_FILE() function.
• Write a program that reads in the image file and constructs the proper INSERT

statement for you.

Either way, when you store images in the database, use a binary string data type such as
a BLOB, not a character string type.

Should You Store Images in Your Database?
Deciding where to store images involves trade-offs. There are advantages and disad‐
vantages regardless of whether you store images in the database or in the filesystem:

• Storing images in a database table bloats the table. With a lot of images, you’re more
likely to approach any limits your operating system places on table size. On the
other hand, if you store images in the filesystem, directory lookups may become
slow.

• Using a database centralizes storage for images that are used across multiple web
servers on different hosts. Images stored in the filesystem must be stored locally on
the web server host, so in a multiple-host situation, you must replicate the set of
images to the filesystem of each host. If you store the images in MySQL, only one
copy of the images is required because each web server can get the images from the
same database server.

632 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

• Images stored in the filesystem constitute, in essence, a foreign key. Image manip‐
ulation requires two operations: one in the database and one in the filesystem. This
in turn means that if you require transactional behavior, it’s more difficult to im‐
plement—not only do you have two operations, but they take place in different
domains. Storing images in the database is simpler because adding, updating, or
removing an image requires only a single-row operation. It becomes unnecessary
to make sure the image table and the filesystem remain in synchrony.

• It can be faster to serve images over the Web from the filesystem than from the
database because the web server itself opens the file, reads it, and writes it to the
client. Images stored in the database must be read and written twice. First, the
MySQL server reads the image from the database and writes it to your web script.
Then the script reads the image and writes it to the client.

• Images stored in the filesystem can be referred to directly in web pages by means
of tag links that point to the image files. Images stored in MySQL must be
served by a script that retrieves an image and sends it to the client. However, even
if images are stored in the filesystem and accessible to the web server, you might
still want to serve them through a script. This would be appropriate if you must
account for the number of times you serve each image (such as for banner ad dis‐
plays where you charge customers by the number of ad impressions) or if you want
to select an image at request time (such as when you pick an ad at random).

Storing images with LOAD_FILE()

The LOAD_FILE() function takes an argument indicating a file to be read and stored in
the database. For example, to load an image stored in /tmp/myimage.png into a table,
do this:

INSERT INTO mytbl (image_data) VALUES(LOAD_FILE('/tmp/myimage.png'));

To load images with LOAD_FILE(), these requirements must be satisfied:

• The image file must be located on the MySQL server host.
• The file must be readable by the server.
• You must have the FILE privilege.

These constraints mean that LOAD_FILE() is available only to some MySQL users.

Storing images using a script

If LOAD_FILE() is not an option, or you don’t want to use it, you can use a short program
to load your images. The program should either read the contents of an image file and
create a row that contains the image data, or create a row that indicates where in the
filesystem the image file is located. If you elect to store the image in MySQL, include
the image data in the row-creation statement the same way as any other kind of data.

19.6. Storing Images or Other Binary Data | 633

www.it-ebooks.info

http://www.it-ebooks.info/

That is, you either use a placeholder and bind the data value to it, or else encode the
data and put it directly into the statement string.

The script shown in this recipe, store_image.pl, runs from the command line and stores
an image file for later use. The script takes no side in the debate over whether to store
images in the database or the filesystem: it implements both approaches! Of course, this
requires twice the storage space. To adapt this script for your own use, you’ll want to
retain only the parts appropriate for the storage method you want to use. The necessary
modifications are discussed at the end of this section.

The store_image.pl script uses an image table that includes columns for the image ID,
name, and MIME type, and a column in which to store the image data:

CREATE TABLE image
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT, # image ID number
 name VARCHAR(30) NOT NULL, # image name
 type VARCHAR(20) NOT NULL, # image MIME type
 data LONGBLOB NOT NULL, # image data
 PRIMARY KEY (id), # id and name are unique
 UNIQUE (name)
);

The name column indicates the name of the image file in the directory where images are
stored in the filesystem. The data column is a LONGBLOB, the largest BLOB type.

It is possible to use the name column to store full pathnames to images in the database,
but if you put them all under the same directory, you can store names that are relative
to that directory, and name values will take less space. That’s what store_image.pl does.
It needs to know the pathname of the image storage directory, which is what its $im
age_dir variable is for. You should check this variable’s value and modify it as necessary
before running the script. The default value reflects where I like to store images, but
you’ll need to change it according to your own preferences. Make sure to create the
directory if it doesn’t exist before you run the script, and set its access permissions so
that the web server can read and write files there. You’ll also need to check and possibly
change the image directory pathname in the display_image.pl script discussed in
Recipe 19.7.

The image storage directory should be outside the web server docu‐
ment tree. Otherwise, a user who knows or can guess the location may
be able to upload executable code and cause it to run by requesting it
with a web browser.

store_image.pl looks like this:
#!/usr/bin/perl
store_image.pl: read an image file, store in the image table and

634 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

in the filesystem. (Normally, you'd store images only in one
place or another; this script demonstrates how to do both.)

use strict;
use warnings;
use Fcntl; # for O_RDONLY, O_WRONLY, O_CREAT
use FileHandle;
use Cookbook;

Default image storage directory and pathname separator
*** (CHANGE THESE AS NECESSARY) ***
The location should NOT be within the web server document tree
my $image_dir = "/usr/local/lib/mcb/images";
my $path_sep = "/";

Reset directory and pathname separator for Windows/DOS
if ($^O =~ /^MSWin/i || $^O =~ /^dos/)
{
 $image_dir = "C:\\mcb\\images";
 $path_sep = "\\";
}

-d $image_dir or die "$0: image directory ($image_dir)\ndoes not exist\n";

Print help message if script was not invoked properly

(@ARGV == 2 || @ARGV == 3) or die <<USAGE_MESSAGE;
Usage: $0 image_file mime_type [image_name]

image_file = name of the image file to store
mime_time = the image MIME type (e.g., image/jpeg or image/png)
image_name = alternate name to give the image

image_name is optional; if not specified, the default is the
image file basename.
USAGE_MESSAGE

my $file_name = shift (@ARGV); # image filename
my $mime_type = shift (@ARGV); # image MIME type
my $image_name = shift (@ARGV); # image name (optional)

if image name was not specified, use filename basename
(permit either / or \ as separator)
($image_name = $file_name) =~ s|.*[/\\]|| unless defined ($image_name);

my $fh = new FileHandle;
my ($size, $data);

sysopen ($fh, $file_name, O_RDONLY)
 or die "Cannot read $file_name: $!\n";
binmode ($fh); # helpful for binary data
$size = (stat ($fh))[7];

19.6. Storing Images or Other Binary Data | 635

www.it-ebooks.info

http://www.it-ebooks.info/

sysread ($fh, $data, $size) == $size
 or die "Failed to read entire file $file_name: $!\n";
$fh->close ();

Save image file in filesystem under $image_dir. (Overwrite file
if an old version exists.)

my $image_path = $image_dir . $path_sep . $image_name;

sysopen ($fh, $image_path, O_WRONLY|O_CREAT)
 or die "Cannot open $image_path: $!\n";
binmode ($fh); # helpful for binary data
syswrite ($fh, $data, $size) == $size
 or die "Failed to write entire image file $image_path: $!\n";
$fh->close ();

Save image in database table. (Use REPLACE to kick out any old image
that has the same name.)

my $dbh = Cookbook::connect ();
$dbh->do ("REPLACE INTO image (name,type,data) VALUES(?,?,?)",
 undef,
 $image_name, $mime_type, $data);
$dbh->disconnect ();

If you invoke the script with no arguments, it displays a short help message. Otherwise,
it requires two arguments that specify the name of the image file and the MIME type of
the image. By default, the file’s basename (final component) is also used as the name of
the image stored in the database and in the image directory. To use a different name,
provide it using an optional third argument.

The script is fairly straightforward. It implements the following procedure:

1. Check that the proper number of arguments was given and initialize some variables
from them.

2. Make sure the image directory exists. If it does not, the script cannot continue.
3. Open and read the contents of the image file.
4. Store the image as a file in the image directory.
5. Store a row containing identifying information and the image data in the image

table.

store_image.pl uses REPLACE rather than INSERT so that you can replace an old image
with a new version having the same name simply by loading the new one. The statement
specifies no id column value; id is an AUTO_INCREMENT column, so MySQL assigns a
unique sequence number automatically. If you replace an image by loading a new one
with the same name as an existing image, the REPLACE statement generates a new id
value. To keep the old value, use INSERT … ON DUPLICATE KEY UPDATE instead (see

636 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 13.12). This inserts the row if the name doesn’t already exist, or updates the image
value if it does.

The REPLACE statement that stores the image information into MySQL is relatively
mundane:

$dbh->do ("REPLACE INTO image (name,type,data) VALUES(?,?,?)",
 undef,
 $image_name, $mime_type, $data);

If you examine that statement looking for some special technique for handling binary
data, you’ll be disappointed, because the $data variable that contains the image isn’t
treated as special in any way. The statement refers to all column values uniformly us‐
ing ? placeholder characters and the values are passed at the end of the do() call. Another
way to accomplish the same result is to perform escape processing on the column values
explicitly, then insert them directly into the statement string:

$image_name = $dbh->quote ($image_name);
$mime_type = $dbh->quote ($mime_type);
$data = $dbh->quote ($data);
$dbh->do ("REPLACE INTO image (name,type,data)
 VALUES($image_name,$mime_type,$data)");

Image-handling has a reputation for being a lot more troublesome than it really is. If
you properly handle image data in a statement by using placeholders or by encoding it,
you’ll have no problems. If you don’t, you’ll get errors. It’s as simple as that. This is no
different from how you should handle other kinds of data, even text. After all, if you
insert into a statement a piece of text that contains quotes or other special characters
without escaping them, the statement will blow up in your face. So the need for place‐
holders or encoding is not some special thing that’s necessary only for images—it’s
necessary for all data. Say it with me: “I will always use placeholders or encode my
column values. Always.” (Actually, if you know enough about a given value—for ex‐
ample, that it’s an integer—there are times when you can break this rule. Nevertheless,
it’s never wrong to follow the rule.)

To try the script, change location into the apache/images directory of the recipes
distribution. That directory contains the store_image.pl script, and some sample images
are in its flags subdirectory (they’re pictures of national flags for several countries). To
store one of these images, run the script like this under Unix:

% ./store_image.pl flags/iceland.jpg image/jpeg

Or like this under Windows:
C:\> store_image.pl flags\iceland.jpg image/jpeg

store_image.pl takes care of image storage, and the next section discusses how to retrieve
images to serve them over the Web. What about deleting images? I’ll leave it to you to
write a utility to remove images that you no longer want. If you are storing images in

19.6. Storing Images or Other Binary Data | 637

www.it-ebooks.info

http://www.it-ebooks.info/

the filesystem, remember to delete both the database row and the image file the row
points to.

store_image.pl stores each image both in the database and in the filesystem for illustra‐
tive purposes, but of course that makes it inefficient. Earlier, I mentioned that if you use
this script as a basis for your own applications, you should modify it to store images
only in one place—either in the database or in the filesystem—not in both places:

• To adapt the script to store images only in MySQL, there is no need to create an
image directory, and you can delete the code that checks for that directory’s exis‐
tence and that writes image files there.

• To adapt the script for storage only in the filesystem, drop the data column from
the image table, and modify the REPLACE statement to omit that column.

These modifications also apply to the display_image.pl image processing script shown
in Recipe 19.7.

See Also
Recipe 19.7 shows how to retrieve images for display over the Web. Recipe 20.8 discusses
how to upload images from a web page for storage into MySQL.

19.7. Serving Images or Other Binary Data
Problem
You can store images or other binary data values in your database, using the techniques
discussed in Recipe 19.6. But how do you get them back out?

Solution
You need nothing more than a SELECT statement. Of course, what you do with the
information after you retrieve it might be a little more involved.

Discussion
As described in Recipe 19.6, it’s difficult to issue a statement manually that stores a literal
image value into a database, so normally you use LOAD_FILE() or write a script that
encodes the image data for insertion. However, there is no problem at all entering a
statement that retrieves an image:

SELECT * FROM image WHERE id = 1;

But binary information tends not to show up well on text-display devices, so you prob‐
ably don’t want to do this interactively from the mysql program unless you want your

638 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

terminal window to turn into a horrible mess of gibberish, or possibly even lock up. It’s
more common to use the information for display in a web page. Or you might send it
to the client for downloading (see Recipe 19.9), although that is more common for
nonimage binary data such as PDF files.

To display an image in a web page, include an tag in the page that tells the client’s
web browser where to get the image. If you’ve stored images as files in a directory to
which the web server has access, you can refer to an image directly. For example, if the
image file iceland.jpg is located in the /usr/local/lib/mcb/images directory, refer to it like
this:

With this approach, make sure that each image filename has an extension (such as .gif
or .png) that enables the web server to determine what kind of Content-Type: header
to generate when it sends the file to the client.

If the images are stored in a database table instead, or in a directory inaccessible to the
web server, the tag can refer to a script that knows how to fetch images and send
them to clients. To do this, the script must respond by sending a Content-Type: header
that indicates the image format, a Content-Length: header that indicates the number
of bytes of image data, a blank line, and finally the image itself as the body of the response.

The following script, display_image.pl, demonstrates how to serve images over the Web.
It requires a name parameter that indicates which image to display, and permits an op‐
tional location parameter that specifies whether to retrieve the image from the im
age table or from the filesystem. The default is to retrieve image data from the image
table. For example, the following URLs display an image from the database and from
the filesystem, respectively:

http://localhost/cgi-bin/display_image.pl?name=iceland.jpg
http://localhost/cgi-bin/display_image.pl?name=iceland.jpg;location=fs

The script looks like this:
#!/usr/bin/perl
display_image.pl: display image over the Web

use strict;
use warnings;
use CGI qw(:standard escapeHTML);
use FileHandle;
use Cookbook;

sub error
{
my $msg = escapeHTML ($_[0]);

 print header (), start_html ("Error"), p ($msg), end_html ();
 exit (0);

19.7. Serving Images or Other Binary Data | 639

www.it-ebooks.info

http://www.it-ebooks.info/

}

Default image storage directory and pathname separator
*** (CHANGE THESE AS NECESSARY) ***
my $image_dir = "/usr/local/lib/mcb/images";
The location should NOT be within the web server document tree
my $path_sep = "/";

Reset directory and pathname separator for Windows/DOS
if ($^O =~ /^MSWin/i || $^O =~ /^dos/)
{
 $image_dir = "C:\\mcb\\images";
 $path_sep = "\\";
}

my $name = param ("name");
my $location = param ("location");

make sure image name was specified
defined ($name) or error ("image name is missing");
use default of "db" if the location is not specified or is
not "db" or "fs"
(defined ($location) && $location eq "fs") or $location = "db";

my $dbh = Cookbook::connect ();

my ($type, $data);

If location is "db", get image data and MIME type from image table.
If location is "fs", get MIME type from image table and read the image
data from the filesystem.

if ($location eq "db")
{
 ($type, $data) = $dbh->selectrow_array (
 "SELECT type, data FROM image WHERE name = ?",
 undef,
 $name)
 or error ("Cannot find image with name $name");
}
else
{
 $type = $dbh->selectrow_array (
 "SELECT type FROM image WHERE name = ?",
 undef,
 $name)
 or error ("Cannot find image with name $name");
 my $fh = new FileHandle;
 my $image_path = $image_dir . $path_sep . $name;
 open ($fh, $image_path)
 or error ("Cannot read $image_path: $!");
 binmode ($fh); # helpful for binary data

640 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

 my $size = (stat ($fh))[7];
 read ($fh, $data, $size) == $size
 or error ("Failed to read entire file $image_path: $!");
 $fh->close ();
}

$dbh->disconnect ();

Send image to client, preceded by Content-Type: and Content-Length:
headers.

print header (-type => $type, -Content_Length => length ($data));
print $data;

19.8. Serving Banner Ads
Problem
You want to display banner ads by choosing images on the fly from a set of images.

Solution
Use a script that selects a random row from an image table and sends the image to the
client.

Discussion
The display_image.pl script shown in Recipe 19.7 assumes that the URL contains a
parameter that names the image to be sent to the client. Another application might
determine which image to display for itself. One popular image-related use for web
programming is to serve banner advertisements for display in web pages. A simple way
to do this is by means of a script that picks an image at random each time it is invoked.
The following Python script, banner.py, shows how to do this, where the “ads” are the
flag images in the image table:

#!/usr/bin/python
banner.py: serve randomly chosen banner ad from image table
(sends no response if no image can be found)

import cookbook

conn = cookbook.connect()

stmt = "SELECT type, data FROM image ORDER BY RAND() LIMIT 1"
cursor = conn.cursor()
cursor.execute(stmt)
row = cursor.fetchone()
cursor.close()

19.8. Serving Banner Ads | 641

www.it-ebooks.info

http://www.it-ebooks.info/

if row is not None:
 (type, data) = row
 # Send image to client, preceded by Content-Type: and
 # Content-Length: headers. The Expires:, Cache-Control:, and
 # Pragma: headers help keep browsers from caching the image
 # and reusing it for successive requests for this script.
 print("Content-Type: %s" % type)
 print("Content-Length: %s" % len(data))
 print("Expires: Sat, 01 Jan 2000 00:00:00 GMT")
 print("Cache-Control: no-cache")
 print("Pragma: no-cache")
 print("")
 print(data)

conn.close()

banner.py sends a few headers in addition to the usual Content-Type: and Content-
Length: headers. The extra headers help keep browsers from caching the image. Ex
pires: specifies a date in the past to tell the browser that the image is out of date. The
Cache-Control: and Pragma: headers tell the browser not to cache the image. The script
sends both headers because some browsers understand one, and some the other.

Why suppress caching? Because if you don’t, the browser will send a request for ban‐
ner.py only the first time it sees it in a link. On subsequent requests for the script, the
browser will reuse the image, which defeats the intent of having each such link resolve
to a randomly chosen image.

Install the banner.py script in your cgi-bin directory. Then, to place a banner in a web
page, use an tag that invokes the script. For example, if the script is installed as /
cgi-bin/banner.py, the following page references it to include an image below the in‐
troductory paragraph:

<!-- bannertest1.html: page with single link to banner-ad script -->
<html>
<head><title>Banner Ad Test Page 1</title></head>
<body>

<p>You should see an image below this paragraph.</p>

</body>
</html>

If you request this page, it should display an image, and you should see a succession of
randomly chosen images each time you reload the page. (I am assuming here that you
have loaded several images into the image table by now using the store_image.pl script
discussed in Recipe 19.6. Otherwise you’ll see no images at all!) If you modify ban‐
ner.py not to send the cache-related headers, you likely will see the same image each
time you reload the page.

642 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

The cache-control headers suppress caching for links to banner.py that occur over the
course of successive page requests. Another complication occurs if multiple links to the
script occur within the same page. The following page illustrates what happens:

<!-- bannertest2.html: page with multiple links to banner-ad script -->
<html>
<head><title>Banner Ad Test Page 2</title></head>
<body>

<p>You should see two images below this paragraph,
and they probably will be the same.</p>

<p>You should see two images below this paragraph,
and they probably will be different.</p>

</body>
</html>

The first pair of links to banner.py are identical. What you’ll probably find when you
request this page is that your browser notices that fact, sends only a single request to
the web server, and uses the image that is returned where both links appear in the page.
As a result, the first pair of images displayed in the page will be identical. The second
pair of links to banner.py show how to solve this problem. The links include some extra
fluff at the end of the URLs that make them look different. banner.py doesn’t use that
information at all, but making the links look different fools the browser into sending
two image requests. The result is that the second pair of images differ from each other,
unless banner.py happens to randomly select the same image both times.

19.9. Serving Query Results for Download
Problem
You want to send database information to a browser for downloading rather than for
display.

Solution
Unfortunately, there’s no good way to force a download. A browser processes informa‐
tion sent to it according to the Content-Type: header value, and if it has a handler for
that value, it treats the information accordingly. However, you may be able to trick the
browser by using a “generic” content type for which it’s unlikely to have a handler.

19.9. Serving Query Results for Download | 643

www.it-ebooks.info

http://www.it-ebooks.info/

Discussion
Earlier sections of this chapter discuss how to incorporate the results of database queries
into web pages, to display them as paragraphs, lists, tables, or images. But what if you
want to produce a query result that the user can download to a file instead? It’s not
difficult to generate the response itself: send a Content-Type: header preceding the
information, such as text/plain for plain text, image/jpeg for a JPEG image, or ap
plication/pdf or application/msexcel for a PDF or Excel document. Then send a
blank line and the content of the query result. The problem is that there’s no way to
force the browser to download the information. If it knows what to do with the response
based on the content type, it will try to handle the information as it sees fit. If it knows
how to display text or images, it will. If it thinks it’s supposed to give a PDF or Excel
document to a PDF viewer or to Excel, it will. Most browsers enable the user to select
a download explicitly (for example, by right-clicking or Ctrl-clicking a link), but that’s
a client-side mechanism. You have no access to it on the server end.

What you can do is fool the browser by faking the content type. The most generic type
is application/octet-stream. Most users are unlikely to have any content handler
specified for it, so if you send a response using that type, it’s likely to trigger a download
by the browser. The disadvantage of this, of course, is that the response contains a false
indicator about the type of information it contains. You can try to alleviate this problem
by suggesting a default filename for the browser to use when it saves the file. If the
filename has a suffix indicative of the file type, such as .txt, .jpg, .pdf, or .xls, that may
help the client (or the operating system on the client host) determine how to process
the file. To suggest a name, include a Content-Disposition: header in the response:

Content-disposition: attachment; filename="suggested_name"

The following PHP script, download.php, demonstrates one way to produce download‐
able content. When first invoked, it presents a page containing a link that can be selected
to initiate the download. The link points back to download.php but includes a down
load parameter. When you select the link, it reinvokes the script, which sees the pa‐
rameter and responds by issuing a query, retrieving a result set, and sending it to the
browser for downloading. The header() function sets the Content-Type: and Content-
Disposition: headers in the response. (Do this before the script produces any other
output, or header() has no effect.)

<?php
download.php: retrieve result set and send it to user as a download
rather than for display in a web page

require_once "Cookbook.php";
require_once "Cookbook_Webutils.php";

$title = "Result Set Downloading Example";

If no download parameter is present, display instruction page

644 | Chapter 19: Generating Web Content from Query Results

www.it-ebooks.info

http://www.it-ebooks.info/

if (!get_param_val ("download"))
{
 # construct self-referential URL that includes download parameter
 $url = $_SERVER["PHP_SELF"] . "?download=1";
?>

<html>
<head><title><?php print ($title); ?></title></head>
<body>
<p>
Select the following link to commence downloading:
<a href="<?php print ($url); ?>">download
</p>
</body>
</html>

<?php
 exit ();
} # end of "if"

The download parameter was present; retrieve a result set and send
it to the client as a tab-delimited, newline-terminated document.
Use a content type of application/octet-stream in an attempt to
trigger a download response by the browser, and suggest a default
filename of "result.txt".

$dbh = Cookbook::connect ();

$stmt = "SELECT * FROM profile";
$sth = $dbh->query ($stmt);

header ('Content-Type: application/octet-stream');
header ('Content-Disposition: attachment; filename="result.txt"');

while ($row = $sth->fetch (PDO::FETCH_NUM))
 print (implode ("\t", $row) . "\n");

$dbh = NULL;
?>

download.php uses a get_param_val() function that we haven’t covered yet. It deter‐
mines whether that parameter is present. This function is included in the Cook‐
book_Webutils.php file and discussed further in Recipe 20.5.

Another way to produce downloadable content is to generate the query result, write it
to a file on the server side, compress it, and send the result to the browser. The browser
likely will download it and run some kind of uncompress utility to recover the
original file.

19.9. Serving Query Results for Download | 645

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Processing Web Input with MySQL

20.0. Introduction
The previous chapter describes how to retrieve information from MySQL and display
it in web pages using HTML constructs such as tables or hyperlinks. That’s a use of
MySQL to send information in one direction (from web server to user). This chapter
considers the use of MySQL in the other direction: web-based database programming
to collect information sent from user to web server, such as the contents of a submitted
form. For example, you might store the information from a survey form for later use,
or use keywords from a lookup form as the basis for a query to search the database for
information the user wants.

MySQL comes into these activities as the repository for storing information or as the
source from which search results are drawn. But before you can process input from a
form, you must create the form and send it to the user. MySQL helps with this, too,
because it’s often possible to use information from your database to generate form ele‐
ments such as radio buttons, checkboxes, pop-up menus, or scrolling lists:

• Select a set of items from a table that lists countries, states, or provinces and convert
them into a pop-up menu in a form that collects address information.

• Use the list of legal values for an ENUM column that contains permitted colors or
sizes to generate a set of radio buttons.

• Use lists of available colors, sizes, or styles stored in an inventory database to con‐
struct fields for a clothing ordering form.

Using database content to generate form elements lessens the amount of explicit knowl‐
edge your programs must have about table structure and content, and enables them to
determine what they need automatically. A script that uses database content to generate
form elements also adaptively handles changes to the database. To add a new country,
create a new row in the table that stores the list of countries. To add a new salutation,

647

www.it-ebooks.info

http://www.it-ebooks.info/

change the definition of the ENUM column. In each case, you change the set of items in
a form element by updating the database, not by modifying the script; the script adapts
to the change without additional programming.

The first part of this chapter covers the following topics relating to web input processing:
Generating forms and form elements

One way to use database content for form construction is to select a list of items
from a table and create the options in a list element. But metadata can be used as
well. There is a natural correspondence between ENUM columns and single-pick form
elements like radio button sets or pop-up menus. In both cases, only one from a set
of possible values may be chosen. There is a similar correspondence between SET
columns and multiple-pick elements like checkbox groups; any or all of the possible
values may be chosen.

Initializing forms using database contents
In addition to using the database to create structural elements of forms, you can
also use it to initialize their values. For example, to enable a user to modify an
existing record, retrieve it from the database and load its values into the corre‐
sponding form fields before sending the form to the user for editing.

Processing input gathered over the Web
This includes input not only from form fields, but also the contents of uploaded
files, or parameters in URLs. Regardless of how you obtain the information, you
face a common set of issues in dealing with it: extracting and decoding the infor‐
mation, performing constraint or validity checking on it, and re-encoding the in‐
formation for SQL statement construction to avoid generating malformed state‐
ments or storing information inaccurately.

The second part of the chapter illustrates how to apply the techniques developed in the
first part. These include applications that show how to use MySQL to present a web-
based search interface, create paged displays that contain next-page and previous-page
links, implement per-page hit counting and logging, and perform Apache logging to a
database.

Scripts to create tables used in this chapter are located in the tables directory of the
recipes distribution. Scripts for the examples are located under the directories named
for the web servers used to run them. For Perl, Ruby, PHP, and Python examples, look
under the apache directory. Utility routines used by the example scripts are found in
files located in the lib directory. (For information on configuring Apache so that scripts
run by it can find their library files, see Recipe 18.2.) For Java (JSP) examples, look under
the tomcat directory; you should already have installed these in the process of setting
up the mcb application context (see Recipe 18.3).

If a particular section has no example for a language in which you’re interested, check
the recipes distribution for implementations not shown here.

648 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

The scripts in this chapter are intended to be invoked from your browser after they have
been installed, but you can invoke many of them (JSP pages excepted) from the com‐
mand line to see the raw HTML they produce; see Recipe 18.2.

To provide a concrete context for discussion, many of the form-processing examples in
this chapter are based on the following scenario. You run a business in the lucrative
“construct-a-cow” market that manufactures built-to-order ceramic bovine figurines,
and you want to design an online ordering application that lets customers make selec‐
tions for several aspects of the product. For each order, it’s necessary to collect several
types of information:
Cow color

The particular list of colors available at any particular time changes occasionally,
so for flexibility, the values can be stored in a database table. To change the set of
colors from which customers can choose, just update the table.

Cow size
There is a fixed set of sizes that doesn’t change often (small, medium, large), so the
values can be represented as elements of an ENUM column.

The all-important cow accessory items
These include a bell, horns, a sporty-looking tail ribbon, and a nose ring. Accessories
can be represented in a SET column because a customer may want to select more
than one of them. In addition, you know from past experience that most customers
order horns and a cow bell, so it’s reasonable to use those for the column’s default
value.

Customer name and address (street, city, state)
The possible state names are already stored in the states table. We can use them
as the basis for the corresponding form element.

Given the preceding discussion, a cow_order table can be designed like this:
CREATE TABLE cow_order
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT,
 # cow color, figurine size, and accessory items
 color VARCHAR(20),
 size ENUM('small','medium','large') DEFAULT 'medium',
 accessories SET('cow bell','horns','nose ring','tail ribbon')
 DEFAULT 'cow bell,horns',
 # customer name, street, city, and state (abbreviation)
 cust_name VARCHAR(40),
 cust_street VARCHAR(40),
 cust_city VARCHAR(40),
 cust_state CHAR(2),
 PRIMARY KEY (id)
);

20.0. Introduction | 649

www.it-ebooks.info

http://www.it-ebooks.info/

The id column provides a unique identifier for each row. This value is needed when we
get to Recipe 20.4, which shows how to use web forms to edit existing rows. That task
requires being able to tell which row to update, which is difficult to do without a unique
identifier.

For the list of available colors, we maintain a separate table, cow_color:
CREATE TABLE cow_color (color CHAR(20));

Assume for purposes of illustration that the cow_color table contains the following
rows:

+---------------+
| color |
+---------------+
| Black |
| Black & White |
| Brown |
| Cream |
| Red |
| Red & White |
| See-Through |
+---------------+

An application can use the tables just described to generate list elements in an order
entry form. The next several recipes describe how to do this, and how to process the
input that you obtain when a user submits a form, without requiring the application to
have specialized built-in knowledge about the available options.

20.1. Writing Scripts That Generate Web Forms
Problem
You want to write a script that gathers input from a user.

Solution
Create a form within your script and send it to the user. The script can arrange to have
itself invoked again to process the form’s contents when the user fills it in and submits
it.

Discussion
Web forms are a convenient way to enable your visitors to submit information such as
a set of search keywords, a completed survey result, or a response to a questionnaire.
Forms are also beneficial for you as a developer because they provide a structured way
to associate data values with names by which to refer to them.

650 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

A form begins and ends with <form> and </form> tags. Place other HTML constructs
between those tags, including elements that become input fields in the page that the
browser displays. The <form> tag that begins a form should include two attributes,
action and method. The action attribute tells the browser what to do with the form
when the user submits it. This is the URL of the script to invoke to process the form’s
contents. The method attribute indicates to the browser what kind of HTTP request to
use to submit the form. The value is either get or post. Recipe 20.5 discusses the dif‐
ference between these two request methods; for now, we’ll always use post.

Most of the form-based web scripts shown in this chapter share some common behav‐
iors:

• When first invoked, the script generates a form and sends it to the user to be filled
in.

• The action attribute of the form points back to the same script. When the user
completes the form and submits it, the web server invokes the script again to process
the form’s contents.

• The script checks its execution environment to see what input parameters are
present. For the initial invocation, the environment contains none of the parameters
named in the form. This enables the script to determine whether it’s being invoked
by a user for the first time or whether it should process a submitted form.

This approach isn’t the only one you can adopt. One alternative is to place a form in a
static HTML page and have it point to the script that processes the form. Another is to
have one script generate the form and a second script process it.

If a form-creating script wants to have itself invoked again when the user submits the
form, it should determine its own pathname within the web server document tree and
use that value for the action attribute of the opening <form> tag. For example, if a script
is installed as /cgi-bin/myscript in your web tree, you could write the <form> tag like
this:

<form action="/cgi-bin/myscript" method="post">

Each of our language APIs provides a way for a script to obtain its own pathname, which
enables you to avoid hardwiring a script’s pathname into it and gives you greater latitude
where to install it.

Perl

In Perl scripts, the CGI.pm module provides three useful methods for creating <form>
elements and constructing the action attribute. start_form() and end_form() gen‐
erate the opening and closing form tags, and url() returns the script’s own pathname.
Using these methods, scripts generate a form like this:

20.1. Writing Scripts That Generate Web Forms | 651

www.it-ebooks.info

http://www.it-ebooks.info/

print start_form (-action => url (), -method => "post");
... generate form elements here ...
print end_form ();

start_form() supplies a default request method of post. You can omit the method
argument if you’re constructing a post form.

Ruby

In Ruby scripts, create a cgi object, and use its form method to generate a form. The
method arguments provide the <form> tag attributes, and the block following the meth‐
od call provides the form content. To get the script pathname, use the SCRIPT_NAME
member of the ENV hash:

cgi.out {
 cgi.form("action" => ENV["SCRIPT_NAME"], "method" => "post") {
 # ... generate form elements here ...
 }
}

The form method supplies a default request method of post. You can omit the method
argument if you’re constructing a post form.

The script pathname is also available from the cgi.script_name method.

PHP

PHP scripts access the script pathname as the PHP_SELF member of the $_SERVER array,
which is a “superglobal” array (accessible in any scope without being declared as global).
Scripts can obtain their own pathname and use it to generate a form as follows:

print ('<form action="' . $_SERVER['PHP_SELF'] . '" method="post">');
... generate form elements here ...
print ('</form>');

Python

Python scripts get the script pathname by importing the os module and accessing the
SCRIPT_NAME member of the os.environ object:

import os

print('<form action="%s" method="post">' % os.environ['SCRIPT_NAME'])
... generate form elements here ...
print('</form>')

Java

In JSP pages, the request path is available through the implicit request object provided
by the JSP processor. Use that object’s getRequestURI() method as follows:

652 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

<form action="<%= request.getRequestURI () %>" method="post">
<%-- ... generate form elements here ... --%>
</form>

See Also
The examples shown in this section have an empty body between the opening and
closing form tags. For a form to be useful, you must create body elements that corre‐
spond to the types of information to be obtained from users. It’s possible to hardwire
these elements into a script, but Recipes 20.2 and 20.3 describe how MySQL helps you
create the elements on the fly from information stored in your database.

20.2. Creating Single-Pick Form Elements from Database
Content
Problem
A form must present a field that enables the user to select one of several options.

Solution
Use a single-pick list element. These include radio button sets, pop-up menus, and
scrolling lists.

Discussion
Single-pick form elements enable you to present multiple choices from which a single
option can be selected. Our construct-a-cow scenario (see Recipe 20.0) involves several
sets of single-pick choices:

• The list of colors in the cow_color table. These can be obtained with the following
statement:

mysql> SELECT color FROM cow_color ORDER BY color;
+---------------+
| color |
+---------------+
| Black |
| Black & White |
| Brown |
| Cream |
| Red |
| Red & White |
| See-Through |
+---------------+

20.2. Creating Single-Pick Form Elements from Database Content | 653

www.it-ebooks.info

http://www.it-ebooks.info/

Some of the colors contain an & character, which is special in HTML and must be
HTML-encoded when placed into list elements. (We’ll perform list element en‐
coding as a matter of habit. Those values illustrate why it’s a good idea to get in that
habit.)

• The list of legal figurine sizes in the size column of the cow_order table. The col‐
umn is represented as an ENUM, so the permitted and default values can be obtained
from INFORMATION_SCHEMA:

mysql> SELECT COLUMN_TYPE, COLUMN_DEFAULT
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA='cookbook' AND TABLE_NAME='cow_order'
 -> AND COLUMN_NAME='size';
+--------------------------------+----------------+
| COLUMN_TYPE | COLUMN_DEFAULT |
+--------------------------------+----------------+
| enum('small','medium','large') | medium |
+--------------------------------+----------------+

• The list of state names and abbreviations. These are stored in the states table:
mysql> SELECT abbrev, name FROM states ORDER BY name;
+--------+----------------+
| abbrev | name |
+--------+----------------+
AL	Alabama
AK	Alaska
AZ	Arizona
AR	Arkansas
CA	California
CO	Colorado
…

The number of choices varies for each list just described: 3 figurine sizes, 7 colors, and
50 states. The differing numbers of choices lead to different decisions about how to
represent the lists in a form:

• The figurine size values are best represented as a set of radio buttons or a pop-up
menu; a scrolling list is unnecessary because the number of choices is small.

• The set of colors can reasonably be displayed using any of the single-pick element
types; it’s small enough that a set of radio buttons wouldn’t take a lot of space, but
large enough that you may want to enable scrolling—particularly if you make ad‐
ditional colors available.

• The list of states has more items than feasible to present as a set of radio buttons.
It’s more reasonably displayed as a pop-up menu or scrolling list.

The following discussion describes the HTML syntax for these types of elements and
then shows how to generate them from within scripts:

654 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

Radio buttons
A group of radio buttons consists of <input> elements of type radio, all with the
same name attribute. Each element also includes a value attribute. A label to display
can be given after the <input> tag. To mark an item as the default initial selection,
add a checked attribute. The following radio button group displays the possible
cow figurine sizes, using checked to mark medium as the initially selected value:

<input type="radio" name="size" value="small" />small
<input type="radio" name="size" value="medium" checked="checked" />medium
<input type="radio" name="size" value="large" />large

Pop-up menus
A pop-up menu begins and ends with <select> and </select> tags, with each item
in the menu enclosed within <option> and </option> tags. Each <option> element
has a value attribute, and its body provides a label to be displayed. To indicate a
default selection, add a selected attribute to the appropriate <option> item. If no
item is so marked, the first item becomes the default, as is the case for the following
pop-up menu:

<select name="color">
<option value="Black">Black</option>
<option value="Black & White">Black & White</option>
<option value="Brown">Brown</option>
<option value="Cream">Cream</option>
<option value="Red">Red</option>
<option value="Red & White">Red & White</option>
<option value="See-Through">See-Through</option>
</select>

Scrolling lists
A scrolling list displays as a set of items in a box. The list may contain more items
than are visible in the box, in which case the browser displays a scrollbar so the user
can bring the other items into view. The HTML syntax for scrolling lists is similar
to that for pop-up menus, except that the opening <select> tag includes a size
attribute indicating how many rows of the list should be visible in the box. By
default, a scrolling list is a single-pick element; Recipe 20.3 discusses how to enable
multiple picks.

The following single-pick scrolling list includes an item for each US state, of which
six at a time are visible:

<select name="state" size="6">
<option value="AL">Alabama</option>
<option value="AK">Alaska</option>
<option value="AZ">Arizona</option>
<option value="AR">Arkansas</option>
<option value="CA">California</option>
…
<option value="WV">West Virginia</option>

20.2. Creating Single-Pick Form Elements from Database Content | 655

www.it-ebooks.info

http://www.it-ebooks.info/

<option value="WI">Wisconsin</option>
<option value="WY">Wyoming</option>
</select>

Radio button sets, pop-up menus, and scrolling lists have several things in common:
A name for the element

When the user submits the form, the browser associates this name with the value
the user selected.

A set of values, one for each item in the list
The internal values available to be selected.

A set of labels, one for each item
The values that the user sees in the displayed form.

An optional default value
Which item in the list is selected initially when the browser displays the list.

To produce a list element for a form using database content, issue a statement that selects
the appropriate values and labels, encode any special characters they contain, and add
the HTML tags that are appropriate for the kind of list you want to display. Should you
desire to indicate a default selection, add a checked or selected attribute to the proper
item in the list.

Let’s consider how to produce form elements for the color and state lists first. Both are
produced by fetching a set of column values from a table. Later we’ll construct the
figurine size list, which takes its values from a column’s definition (that is, its metadata)
rather than its contents.

In JSP, display a set of radio buttons for the colors using JSTL tags as follows. The color
names are used as the values as well as the labels, so they’re printed twice:

<sql:query dataSource="${conn}" var="rs">
 SELECT color FROM cow_color ORDER BY color
</sql:query>

<c:forEach items="${rs.rows}" var="row">
 <input type="radio" name="color"
 value="<c:out value="${row.color}"/>"
 /><c:out value="${row.color}"/>

</c:forEach>

<c:out> performs HTML entity encoding, so the & character that is present in some of
the color values is converted to & automatically and causes no display problems in
the resulting web page. (For JSTL background, read “JSP, JSTL, and Tomcat Primer” on
the companion website; see the Preface).

To display a pop-up menu instead, the retrieval statement is the same, but the row-
fetching loop differs:

656 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

<select name="color">
<c:forEach items="${rs.rows}" var="row">
 <option value="<c:out value="${row.color}"/>">
 <c:out value="${row.color}"/></option>
</c:forEach>
</select>

The pop-up menu can be changed easily to a scrolling list; add a size attribute to the
opening <select> tag. For example, to make three colors visible at a time, generate the
list like this:

<select name="color" size="3">
<c:forEach items="${rs.rows}" var="row">
 <option value="<c:out value="${row.color}"/>">
 <c:out value="${row.color}"/></option>
</c:forEach>
</select>

Generating a list element for the set of states is similar, except that the labels are not the
same as the values. To make the labels more meaningful to customers, display the full
state names. But the value returned when the form is submitted should be an abbrevi‐
ation because that is what gets stored in the cow_order table. To produce a list that way,
select both the abbreviations and the full names and insert them into the proper parts
of each list item. For example, to create a pop-up menu, do this:

<sql:query dataSource="${conn}" var="rs">
 SELECT abbrev, name FROM states ORDER BY name
</sql:query>

<select name="state">
<c:forEach items="${rs.rows}" var="row">
 <option value="<c:out value="${row.abbrev}"/>">
 <c:out value="${row.name}"/></option>
</c:forEach>
</select>

The preceding JSP examples use an approach that prints each list item individually. List
element generation in CGI.pm-based Perl scripts proceeds on a different basis: extract
the information from the database first, and then pass it all to a function that returns a
string representing the form element. The functions that generate single-pick elements
are radio_group(), popup_menu(), and scrolling_list(). These have several argu‐
ments in common:
name

The list element name.

values

The values for the items in the list. This should be a reference to an array.

20.2. Creating Single-Pick Form Elements from Database Content | 657

www.it-ebooks.info

http://www.it-ebooks.info/

labels

The labels to associate with each value. This argument is optional; if it’s missing,
CGI.pm uses the values as the labels. Otherwise, the labels argument should be a
reference to a hash that associates each value with its corresponding label. For ex‐
ample, to produce a list element for cow colors, the values and labels are the same,
so no labels argument is necessary. However, to produce a state list, labels should
be a reference to a hash that maps each state abbreviation to its full name.

default

The initially selected item in the element. This argument is optional. For a radio
button set, CGI.pm automatically selects the first button by default if this argument
is missing. To defeat that behavior, provide a default value not present in the val
ues list. (This value cannot be undef or the empty string.)

Some of the functions take additional arguments. For radio_group(), you can supply
a linebreak argument to specify that the buttons should be displayed vertically rather
than horizontally. scrolling_list() takes a size argument indicating how many items
should be visible at a time. (The CGI.pm documentation describes additional arguments
that are not used here at all. For example, there are arguments for laying out radio
buttons in tabular form. We won’t be that fancy.)

To construct a form element using the colors in the cow_color table, begin by retrieving
them as an array:

my $color_ref = $dbh->selectcol_arrayref (qq{
 SELECT color FROM cow_color ORDER BY color
});

selectcol_arrayref() returns a reference to the array, exactly the kind of value needed
for the values argument of the CGI.pm functions that create list elements. To create a
group of radio buttons, a pop-up menu, or a single-pick scrolling list, invoke the func‐
tions as follows:

print radio_group (-name => "color",
 -values => $color_ref,
 -linebreak => 1); # display buttons vertically

print popup_menu (-name => "color",
 -values => $color_ref);

print scrolling_list (-name => "color",
 -values => $color_ref,
 -size => 3); # display 3 items at a time

The values and the labels for the color list are the same, so no labels argument need
be given; CGI.pm uses the values as labels by default. Note that we haven’t HTML-
encoded the colors here, even though some of them contain an & character. CGI.pm

658 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

functions that generate form elements automatically perform HTML-encoding, unlike
its functions that create nonform elements.

To produce a list of states for which the values are abbreviations and the labels are full
names, we do need a labels argument. It should be a reference to a hash that maps each
value to the corresponding label. Construct the value list and label hash as follows:

my @state_values;
my %state_labels;
my $sth = $dbh->prepare (qq{
 SELECT abbrev, name FROM states ORDER BY name
});
$sth->execute ();
while (my ($abbrev, $name) = $sth->fetchrow_array ())
{
 push (@state_values, $abbrev); # save each value in an array
 $state_labels{$abbrev} = $name; # map each value to its label
}

Pass the resulting list and hash by reference to popup_menu() or scrolling_list(),
depending on the kind of list element to produce:

print popup_menu (-name => "state",
 -values => \@state_values,
 -labels => \%state_labels);

print scrolling_list (-name => "state",
 -values => \@state_values,
 -labels => \%state_labels,
 -size => 6); # display 6 items at a time

Like CGI.pm, the Ruby cgi module has methods for generating radio buttons, pop-up
menus, and scrolling lists. Examine the form_element.rb script to see how to use them.
However, I don’t discuss them here because I find them awkward to use, particularly
when it’s necessary to ensure that values are properly escaped or that certain group
members are selected by default.

If you use an API that provides no ready-made set of functions for producing form
elements (or which, like Ruby cgi, is inconvenient to use), you may elect either to print
HTML as you fetch list items from MySQL, or write utility routines that generate the
form elements for you. The following discussion considers how to implement both
approaches, using PHP and Python.

In PHP, to present the list of values from the cow_color table in a pop-up menu, use a
fetch-and-print loop like this:

$stmt = "SELECT color FROM cow_color ORDER BY color";
$sth = $dbh->query ($stmt);
print ('<select name="color">');
while (list ($color) = $sth->fetch (PDO::FETCH_NUM))
{

20.2. Creating Single-Pick Form Elements from Database Content | 659

www.it-ebooks.info

http://www.it-ebooks.info/

 $color = htmlspecialchars ($color);
 printf ('<option value="%s">%s</option>', $color, $color);
}
print ("</select>\n");

Python code to do the same is similar:
stmt = "SELECT color FROM cow_color ORDER BY color"
cursor = conn.cursor()
cursor.execute(stmt)
print('<select name="color">')
for (color,) in cursor:
 color = cgi.escape(color, 1)
 print('<option value="%s">%s</option>' % (color, color))
print('</select>')
cursor.close()

The state list requires different values and labels, so the code is slightly more complex.
In PHP, it looks like this:

$stmt = "SELECT abbrev, name FROM states ORDER BY name";
$sth = $dbh->query ($stmt);
print ('<select name="state">');
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 $abbrev = htmlspecialchars ($row[0]);
 $name = htmlspecialchars ($row[1]);
 printf ('<option value="%s">%s</option>', $abbrev, $name);
}
print ("</select>");

And in Python, like this:
stmt = "SELECT abbrev, name FROM states ORDER BY name"
cursor = conn.cursor()
cursor.execute(stmt)
print('<select name="state">')
for (abbrev, name) in cursor:
 abbrev = cgi.escape(abbrev, 1)
 name = cgi.escape(name, 1)
 print('<option value="%s">%s</option>' % (abbrev, name))
print('</select>')
cursor.close()

Radio buttons and scrolling lists can be produced in similar fashion. But rather than
doing so, let’s use a different approach and construct a set of functions that generate
form elements, given the proper information. The functions return a string representing
the appropriate kind of form element. Invoke them as follows:

make_radio_group (name, values, labels, default, vertical)
make_popup_menu (name, values, labels, default)
make_scrolling_list (name, values, labels, default, size, multiple)

These functions have several arguments in common:

660 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

name

The form element name.

values

An array or list of values for the items in the element.

labels

Another array that provides the corresponding element label to display for each
value. The two arrays must be the same size. (To use the values as the labels, pass
the same array to the function twice.)

default

The initial value of the form element. This should be a scalar value, except for
make_scrolling_list(). We’ll write that function to handle either single-pick or
multiple-pick lists (and use it for the latter purpose in Recipe 20.3), so its de
fault value is permitted to be either a scalar or an array. If there is no default, pass
a value not present in the values array; typically, an empty string will do.

Some of the functions have additional arguments that apply only to particular element
types:
vertical

This applies to radio button groups. If true, items are stacked vertically rather than
horizontally.

size, multiple
These arguments apply to scrolling lists. size indicates how many items in the list
are visible, and multiple should be true if the list permits multiple selections.

The implementation of some of these list-generating functions is discussed here, but
you can find the code for all of them in the lib directory of the recipes distribution. All
of them act like CGI.pm for form element functions in the sense that they automatically
perform HTML-encoding of argument values that are incorporated into the list. (The
Ruby version of the library file includes utility methods for generating these elements,
too, even though the cgi module has methods for creating them. I think the utility
methods are easier to use than the cgi methods.)

In PHP, the make_radio_group() function for creating a set of radio buttons looks like
this:

function make_radio_group ($name, $values, $labels, $default, $vertical)
{
 $result = '';
 for ($i = 0; $i < count ($values); $i++)
 {
 # select the item if it corresponds to the default value
 $checked = ($values[$i] == $default ? ' checked="checked"' : '');
 $result .= sprintf (
 '<input type="radio" name="%s" value="%s"%s />%s',

20.2. Creating Single-Pick Form Elements from Database Content | 661

www.it-ebooks.info

http://www.it-ebooks.info/

 htmlspecialchars ($name),
 htmlspecialchars ($values[$i]),
 $checked,
 htmlspecialchars ($labels[$i]));
 if ($vertical)
 $result .= '
'; # display items vertically
 }
 return ($result);
}

The function constructs the form element as a string, which it returns. To use make_ra
dio_group() to present cow colors, invoke it after fetching the items from the cow_col
or table, as follows:

$stmt = "SELECT color FROM cow_color ORDER BY color";
$sth = $dbh->query ($stmt);
$values = $sth->fetchAll (PDO::FETCH_COLUMN, 0);
print (make_radio_group ("color", $values, $values, "", TRUE));

Pass the $values array to make_radio_group() twice because it’s used both for the values
and the labels.

To present a pop-up menu, use the following function instead:
function make_popup_menu ($name, $values, $labels, $default)
{
 $result = '';
 for ($i = 0; $i < count ($values); $i++)
 {
 # select the item if it corresponds to the default value
 $checked = ($values[$i] == $default ? ' selected="selected"' : '');
 $result .= sprintf (
 '<option value="%s"%s>%s</option>',
 htmlspecialchars ($values[$i]),
 $checked,
 htmlspecialchars ($labels[$i]));
 }
 $result = sprintf (
 '<select name="%s">%s</select>',
 htmlspecialchars ($name),
 $result);
 return ($result);
}

make_popup_menu() has no $vertical parameter, but otherwise invoke it the same way
as make_radio_group():

print (make_popup_menu ("color", $values, $values, ""));

The make_scrolling_list() function is similar to make_popup_menu(), so I don’t show
its implementation here. To invoke it to produce a single-pick list, pass the same argu‐
ments as for make_popup_menu(), but indicate how many rows should be visible at once,
and add a multiple argument of FALSE:

662 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

print (make_scrolling_list ("color", $values, $values, "", 3, FALSE));

The state list uses labels that differ from the values. Fetch the labels and values like this:
$values = array ();
$labels = array ();
$stmt = "SELECT abbrev, name FROM states ORDER BY name";
$sth = $dbh->query ($stmt);
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 $values[] = $row[0];
 $labels[] = $row[1];
}

Use the values and labels to generate the type of list you want:
print (make_popup_menu ("state", $values, $labels, ""));

print (make_scrolling_list ("state", $values, $labels, "", 6, FALSE));

Ruby and Python implementations of the utility functions are similar to the PHP ver‐
sions. For example, the Python version of make_popup_menu() looks like this:

def make_popup_menu(name, values, labels, default):
 result = ''
 # make sure name and default are strings
 name = str(name)
 default = str(default)
 for i in range(len(values)):
 # make sure value and label are strings
 value = str(values[i])
 label = str(labels[i])
 # select the item if it corresponds to the default value
 if value == default:
 checked = ' selected="selected"'
 else:
 checked = ''
 result += '<option value="%s"%s>%s</option>' % (
 cgi.escape(value, 1),
 checked,
 cgi.escape(label, 1))

 result = '<select name="%s">%s</select>' % (
 cgi.escape(name, 1), result)
 return result

To present the cow colors in a form, fetch them like this:
values = []
stmt = "SELECT color FROM cow_color ORDER BY color"
cursor = conn.cursor()
cursor.execute(stmt)
for (color,) in cursor:

20.2. Creating Single-Pick Form Elements from Database Content | 663

www.it-ebooks.info

http://www.it-ebooks.info/

 values.append(color)
cursor.close()

Then convert the list to a form element using one of the following calls:
print(make_radio_group('color', values, values, '', True))

print(make_popup_menu('color', values, values, ''))

print(make_scrolling_list('color', values, values, '', 3, False))

To present the state list, fetch the names and abbreviations:
values = []
labels = []
stmt = "SELECT abbrev, name FROM states ORDER BY name"
cursor = conn.cursor()
cursor.execute(stmt)
for (abbrev, name) in cursor:
 values.append(abbrev)
 labels.append(name)
cursor.close()

Then pass them to the appropriate function:
print(make_popup_menu('state', values, labels, ''))

print(make_scrolling_list('state', values, labels, '', 6, False))

The Ruby and Python utility methods in the lib directory do something that their PHP
counterparts do not: explicitly convert to string form all argument values that get in‐
corporated into the list. (You can see this in the Python version of make_pop
up_menu() earlier.) This conversion is necessary because the Ruby CGI.escapeHTML()
and Python cgi.escape() methods raise an exception if you pass nonstring values to
them.

We have thus far considered how to fetch rows from the cow_color and states tables
and convert them to form elements. Another element in the form for the online cow-
ordering application is the field for specifying cow figurine size. The legal values for this
field come from the definition of the size column in the cow_order table. That column
is an ENUM, so getting the legal values for the corresponding form element is a matter of
getting the column definition and parsing it. In other words, use the column metadata
rather than the column data.

As it happens, most of the work for this task has already been done in Recipe 10.7, which
develops utility routines to get ENUM or SET column metadata. In Perl, for example,
invoke the get_enumorset_info() function as follows to get the size column metadata:

my $size_info = get_enumorset_info ($dbh, "cookbook", "cow_order", "size");

The resulting $size_info value is a reference to a hash that has several members, two
of which are relevant to our purposes here:

664 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

$size_info->{values}
$size_info->{default}

The values member is a reference to a list of the legal enumeration values, and de
fault is the column’s default value. Convert this information to a form element such as
a group of radio buttons or a pop-up menu as follows:

print radio_group (-name => "size",
 -values => $size_info->{values},
 -default => $size_info->{default},
 -linebreak => 1); # display buttons vertically

print popup_menu (-name => "size",
 -values => $size_info->{values},
 -default => $size_info->{default});

The default value is medium, so the browser selects that value initially when it displays
the form.

The equivalent Ruby metadata-fetching method returns a hash. Use it as follows to
generate form elements from the size column metadata:

size_info = get_enumorset_info(dbh, "cookbook", "cow_order", "size")

form << make_radio_group("size",
 size_info["values"],
 size_info["values"],
 size_info["default"],
 true) # display items vertically

form << make_popup_menu("size",
 size_info["values"],
 size_info["values"],
 size_info["default"])

The metadata function for PHP returns an associative array, which is used in similar
fashion:

$size_info = get_enumorset_info ($dbh, "cookbook", "cow_order", "size");

print (make_radio_group ("size",
 $size_info["values"],
 $size_info["values"],
 $size_info["default"],
 TRUE)); # display items vertically

print (make_popup_menu ("size",
 $size_info["values"],
 $size_info["values"],
 $size_info["default"]));

The Python version of the metadata function returns a dictionary:

20.2. Creating Single-Pick Form Elements from Database Content | 665

www.it-ebooks.info

http://www.it-ebooks.info/

size_info = get_enumorset_info(conn, 'cookbook', 'cow_order', 'size')

print(make_radio_group('size',
 size_info['values'],
 size_info['values'],
 size_info['default'],
 True)) # display items vertically

print(make_popup_menu('size',
 size_info['values'],
 size_info['values'],
 size_info['default']))

When you use ENUM values like this to create list elements, values are displayed in the
order they are listed in the column definition. To produce a different display order, sort
the values appropriately.

To demonstrate how to process column metadata to generate form elements in JSP
pages, I’ll use a function embedded into the page. A better approach would be to write
a custom action in a tag library that maps onto a class that returns the information, but
custom tag writing is beyond the scope of this book. The examples take the following
approach instead:

1. Use JSTL tags to query INFORMATION_SCHEMA for the ENUM column definition and
move the definition into page context.

2. Invoke a function that extracts the definition from page context, parses it into an
array of individual enumeration values, and moves the array back into page context.

3. Access the array using a JSTL iterator that displays each of its values as a list item.
For each value, compare it to the column’s default value and mark it as the initially
selected item if it’s the same.

The function that extracts legal values from an ENUM or SET column definition is named
getEnumOrSetValues(). Place it into a JSP page like this:

<%@ page import="java.util.*" %>
<%@ page import="java.util.regex.*" %>

<%!
// declare a class method for breaking apart ENUM/SET values.
// typeDefAttr - the name of the page context attribute that contains
// the columm type definition
// valListAttr - the name of the page context attribute in which to
// store the column value list

void getEnumOrSetValues (PageContext ctx,
 String typeDefAttr,
 String valListAttr)
{
 String typeDef = ctx.getAttribute (typeDefAttr).toString ();

666 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

 List values = new ArrayList ();

 // column must be an ENUM or SET
 Pattern pc = Pattern.compile ("(enum|set)\\((.*)\\)",
 Pattern.CASE_INSENSITIVE);
 Matcher m = pc.matcher (typeDef);
 // matches() fails unless it matches entire string
 if (m.matches ())
 {
 // split value list on commas, trim quotes from end of each word
 String[] v = m.group (2).split (",");
 for (int i = 0; i < v.length; i++)
 values.add (v[i].substring (1, v[i].length() - 1));
 }
 ctx.setAttribute (valListAttr, values);
}

%>

The function takes three arguments:
ctx

The page context object.

typeDefAttr

The name of the page attribute that contains the column definition. This is the
function “input.”

valListAttr

The name of the page attribute into which to store the resulting array of legal column
values. This is the function “output.”

To generate a list element from the size column, begin by fetching the column metadata.
Extract the column value list into a JSTL variable named values and the default value
into a variable named default as follows:

<sql:query dataSource="${conn}" var="rs">
 SELECT COLUMN_TYPE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = 'cookbook' AND TABLE_NAME = 'cow_order'
 AND COLUMN_NAME = 'size'
</sql:query>
<c:set var="typeDef" scope="page" value="${rs.rowsByIndex[0][0]}"/>
<% getEnumOrSetValues (pageContext, "typeDef", "values"); %>
<c:set var="defaultVal" scope="page" value="${rs.rowsByIndex[0][1]}"/>

Then use the value list and default value to construct a form element. For example,
produce a set of radio buttons like this:

<c:forEach items="${values}" var="val">
 <input type="radio" name="size"
 value="<c:out value="${val}"/>"

20.2. Creating Single-Pick Form Elements from Database Content | 667

www.it-ebooks.info

http://www.it-ebooks.info/

 <c:if test="${val == defaultVal}">checked="checked"</c:if>
 /><c:out value="${val}"/>

</c:forEach>

or a pop-up menu like this:
<select name="size">
<c:forEach items="${values}" var="val">
 <option
 value="<c:out value="${val}"/>"
 <c:if test="${val == defaultVal}">selected="selected"</c:if>
 ><c:out value="${val}"/></option>
</c:forEach>
</select>

Don’t Forget to HTML-Encode All List Content in Forms
The Ruby, PHP, and Python utility routines described in this recipe for generating list
elements perform HTML-encoding of attribute values for the HTML tags that make up
the list, such as the name and value attributes. They also encode the labels. I’ve noticed
that many published accounts of list generation do not do this, or they encode the labels
but not the values. That is a mistake. If either the label or the value contains a special
character like & or <, the browser may misinterpret them, and your application will
misbehave. It’s also important to make sure that your encoding function turns double
quotes into " entities (or ", which is equivalent), because tag attributes are so
often enclosed within double quotes. Failing to convert a double quote to the entity
name in an attribute value results in a double quote within a double-quoted string, which
is malformed.

If you use the Perl CGI.pm module or the JSTL tags to produce HTML for form elements,
encoding is taken care of for you. CGI.pm’s form-related functions automatically per‐
form encoding. Similarly, using the JSTL <c:out> tag to write attribute values from JSP
pages produces properly encoded values.

The list-generating methods discussed here are not tied to any particular database table,
so they can be used to create form elements for all kinds of data, not just those shown
for the cow-ordering scenario. For example, to enable a user to pick a table name in a
database administration application, generate a scrolling list that contains an item for
each table in the database. A CGI.pm-based script might do so like this:

my $table_ref = $dbh->selectcol_arrayref (qq{
 SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'cookbook' ORDER BY TABLE_NAME
});
print scrolling_list (-name => "table",
 -values => $table_ref,
 -size => 10); # display 10 items at a time

668 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

20.3. Creating Multiple-Pick Form Elements from
Database Content
Problem
A form must present a field that offers several options and enables the user to select any
number of them.

Solution
Use a multiple-pick list element, such as a set of checkboxes or a scrolling list.

Discussion
Multiple-pick form elements enable you to present multiple choices, any number of
which can be selected, or possibly even none of them. For our example scenario in which
customers order cow figurines online, the multiple-pick element is represented by the
set of accessory items that are available. The accessory column in the cow_order table
is represented as a SET, so the following statement returns the permitted and default
values:

mysql> SELECT COLUMN_TYPE, COLUMN_DEFAULT FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE TABLE_SCHEMA='cookbook' AND TABLE_NAME='cow_order'
 -> AND COLUMN_NAME='accessories';
+---+----------------+
| COLUMN_TYPE | COLUMN_DEFAULT |
+---+----------------+
| set('cow bell','horns','nose ring','tail ribbon') | cow bell,horns |
+---+----------------+

The values listed in the definition can be reasonably represented as a set of checkboxes
or a multiple-pick scrolling list. Either way, the cow bell and horns items should be
selected initially because each is present in the column’s default value. The following
discussion shows the HTML syntax for these elements, then describes how to generate
them from within scripts.

The material in this section relies heavily on Recipe 20.2, which dis‐
cusses radio buttons, pop-up menus, and single-pick scrolling lists. I
assume that you’ve already read that section.

Checkboxes
A group of checkboxes is similar to a group of radio buttons in that it consists of
<input> elements that all have the same name attribute. However, the type attribute
is checkbox rather than radio, and you can specify checked for as many items in

20.3. Creating Multiple-Pick Form Elements from Database Content | 669

www.it-ebooks.info

http://www.it-ebooks.info/

the group as you want selected by default. If no items are marked as checked, none
are selected initially. The following checkbox set shows the cow accessory items
with the first two items selected by default:

<input type="checkbox" name="accessories" value="cow bell"
 checked="checked" />cow bell
<input type="checkbox" name="accessories" value="horns"
 checked="checked" />horns
<input type="checkbox" name="accessories" value="nose ring" />nose ring
<input type="checkbox" name="accessories" value="tail ribbon" />tail ribbon

Scrolling lists
A multiple-pick scrolling list has most syntax in common with its single-pick coun‐
terpart. The differences are that you include a multiple attribute in the opening
<select> tag, and default value selection differs. For a single-pick list, add select
ed to at most one item; in the absence of an explicit selected attribute, the first
item is selected by default. For a multiple-pick list, add a selected attribute to as
many of the items as you like; in the absence of selected attributes, no items are
selected by default.

Represented as a multiple-pick scrolling list with cow bell and horns selected ini‐
tially, the set of cow accessories looks like this:

<select name="accessories" size="3" multiple="multiple">
<option value="cow bell" selected="selected">cow bell</option>
<option value="horns" selected="selected">horns</option>
<option value="nose ring">nose ring</option>
<option value="tail ribbon">tail ribbon</option>
</select>

In CGI.pm-based Perl scripts, create checkbox sets or scrolling lists by invoking check
box_group() or scrolling_list(). These functions take name, values, labels, and
default arguments, just like their single-pick cousins. But because multiple items can
be selected initially, CGI.pm permits the default argument to be specified as either a
scalar value or a reference to an array of values. It also accepts the argument name
defaults as a synonym for default.

To get the list of legal values for a SET column, do the same thing as in Recipe 20.2 for
ENUM columns—invoke a utility routine that returns the column metadata:

my $acc_info = get_enumorset_info ($dbh, "cookbook", "cow_order", "accessories");

However, the default value for a SET column is not in a form that is directly usable for
form element generation. MySQL represents SET default values as a list of zero or more
items, separated by commas; for example, the default for the accessories column is
cow bell,horns. That doesn’t match the list-of-values format that the CGI.pm func‐
tions expect, so it’s necessary to split the default value at the commas to obtain an array.
The following expression shows how, taking into account the possibility that the default
column value might be undef (NULL):

670 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

my @acc_def = defined ($acc_info->{default})
 ? split (/,/, $acc_info->{default})
 : ();

After splitting the default value, pass the resulting array by reference to the list-
generating function you want to use:

print checkbox_group (-name => "accessories",
 -values => $acc_info->{values},
 -default => \@acc_def,
 -linebreak => 1); # display buttons vertically

print scrolling_list (-name => "accessories",
 -values => $acc_info->{values},
 -default => \@acc_def,
 -size => 3, # display 3 items at a time
 -multiple => 1); # create multiple-pick list

When you use SET values like this to create list elements, the values are displayed in the
order they are listed in the column definition. To produce a different display order, sort
the values appropriately.

For Ruby, PHP, and Python, we can create utility functions to generate multiple-pick
items. They have the following invocation syntax:

make_checkbox_group (name, values, labels, default, vertical)
make_scrolling_list (name, values, labels, default, size, multiple)

The name, values, and labels arguments to these functions are similar to those of the
single-pick utility routines described in Recipe 20.2. make_checkbox_group() takes a
vertical argument to indicate whether to stack the items vertically rather than hori‐
zontally. make_scrolling_list() was already described in Recipe 20.2 for producing
single-pick lists. To use it here, the multiple argument should be true to produce a
multiple-pick list. For both functions, the default argument can be an array of multiple
values if several items should be selected initially.

make_checkbox_group() looks like this (shown here in Ruby; the PHP and Python
versions are similar):

def make_checkbox_group(name, values, labels, default, vertical)
 # make sure default is an array (converts a scalar to an array)
 default = [default].flatten
 str = ""
 for i in 0...values.length do
 # select the item if it corresponds to one of the default values
 checked = (default.include?(values[i]) ? " checked=\"checked\"" : "")
 str << sprintf(
 "<input type=\"checkbox\" name=\"%s\" value=\"%s\"%s />%s",
 CGI.escapeHTML(name.to_s),
 CGI.escapeHTML(values[i].to_s),
 checked,
 CGI.escapeHTML(labels[i].to_s))

20.3. Creating Multiple-Pick Form Elements from Database Content | 671

www.it-ebooks.info

http://www.it-ebooks.info/

 str << "
" if vertical # display items vertically
 end
 return str
end

To fetch the cow accessory information and present it using checkboxes, do this:
acc_info = get_enumorset_info(dbh, "cookbook", "cow_order", "accessories")
if acc_info["default"].nil?
 acc_def = []
else
 acc_def = acc_info["default"].split(",")
end

form << make_checkbox_group("accessories",
 acc_info["values"],
 acc_info["values"],
 acc_def,
 true) # display items vertically

To display a scrolling list instead, invoke make_scrolling_list():
form << make_scrolling_list("accessories",
 acc_info["values"],
 acc_info["values"],
 acc_def,
 3, # display 3 items at a time
 true) # create multiple-pick list

In PHP, fetch the accessory information:
$acc_info = get_enumorset_info ($dbh, "cookbook", "cow_order", "accessories");
$acc_def = explode (",", $acc_info["default"]);

Then present checkboxes or a scrolling list:
print (make_checkbox_group ("accessories[]",
 $acc_info["values"],
 $acc_info["values"],
 $acc_def,
 TRUE)); # display items vertically

print (make_scrolling_list ("accessories[]",
 $acc_info["values"],
 $acc_info["values"],
 $acc_def,
 3, # display 3 items at a time
 TRUE)); # create multiple-pick list

Note that the field name in the PHP examples is specified as accessories[] rather than
as accessories. In PHP, to permit a field to have multiple values, you must add [] to
the name. If you omit the [], the user can select multiple items while filling in the form,
but PHP returns only one to your script. This issue comes up again (see Recipe 20.5)
when we discuss how to process the contents of submitted forms.

672 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

In Python, to fetch the cow accessory information and present it using checkboxes or
a scrolling list, do this:

acc_info = get_enumorset_info(conn, 'cookbook', 'cow_order', 'accessories')
if acc_info['default'] is None:
 acc_def = ""
else:
 acc_def = acc_info['default'].split(',')

print(make_checkbox_group('accessories',
 acc_info['values'],
 acc_info['values'],
 acc_def,
 True)) # display items vertically

print(make_scrolling_list('accessories',
 acc_info['values'],
 acc_info['values'],
 acc_def,
 3, # display 3 items at a time
 True)) # create multiple-pick list

In JSP pages, the getEnumOrSetValues() function used earlier to get the value list for
the size column (an ENUM) can also be used for the accessory column (a SET). The
column definition and default value can be obtained from INFORMATION_SCHEMA. Query
the COLUMNS table, parse the type definition into a list of values named values, and put
the default value in defList like this:

<sql:query dataSource="${conn}" var="rs">
 SELECT COLUMN_TYPE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = 'cookbook'
 AND TABLE_NAME = 'cow_order'
 AND COLUMN_NAME = 'accessories'
</sql:query>
<c:set var="typeDef" scope="page" value="${rs.rowsByIndex[0][0]}"/>
<% getEnumOrSetValues (pageContext, "typeDef", "values"); %>
<c:set var="defList" scope="page" value="${rs.rowsByIndex[0][1]}"/>

For a SET column, the defList value might contain multiple values, separated by com‐
mas. It needs no special treatment; the JSTL <c:forEach> tag can iterate over such a
string, so initialize the default values for a checkbox set as follows:

<c:forEach items="${values}" var="val">
 <input type="checkbox" name="accessories"
 value="<c:out value="${val}"/>"
 <c:forEach items="${defList}" var="defaultVal">
 <c:if test="${val == defaultVal}">checked="checked"</c:if>
 </c:forEach>
 /><c:out value="${val}"/>

</c:forEach>

20.3. Creating Multiple-Pick Form Elements from Database Content | 673

www.it-ebooks.info

http://www.it-ebooks.info/

For a multiple-pick scrolling list, do this:
<select name="accessories" size="3" multiple="multiple">
<c:forEach items="${values}" var="val">
 <option
 value="<c:out value="${val}"/>"
 <c:forEach items="${defList}" var="defaultVal">
 <c:if test="${val == defaultVal}">selected="selected"</c:if>
 </c:forEach>
 ><c:out value="${val}"/></option>
</c:forEach>
</select>

20.4. Loading Database Content into a Form
Problem
You want to display a form but initialize it using the contents of a database record, to
present a record-editing form.

Solution
Generate the form as you usually would, but populate it with database content. That is,
instead of setting the form fields to their usual defaults, set them to values retrieved
from the database.

Discussion
The examples in earlier recipes that show how to generate form fields have either sup‐
plied no default value or have used the default value as specified in an ENUM or SET column
definition. That’s appropriate for presenting a “blank” form that you expect the user to
fill in. However, for applications that present a web-based interface for record editing,
it’s more likely that you’d want to fill in the form using the content of an existing record
for the initial values. This section discusses how to do that.

The examples shown here illustrate how to generate an editing form for rows from the
cow_order table. Normally, you would permit the user to specify which record to edit.
For simplicity, assume the use of a record that has an id value of 1, with the following
contents:

mysql> SELECT * FROM cow_order WHERE id = 1\G
*************************** 1. row ***************************
 id: 1
 color: Black & White
 size: large
accessories: cow bell,nose ring
 cust_name: Farmer Brown
cust_street: 123 Elm St.

674 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

 cust_city: Bald Knob
 cust_state: AR

To generate a form with contents that correspond to a database record, use the column
values for the element defaults as follows:

• For <input> elements such as radio buttons or checkboxes, add a checked attribute
to each list item that matches the column value.

• For <select> elements such as pop-up menus or scrolling lists, add a selected
attribute to each list item that matches the column value.

• For text fields represented as <input> elements of type text, set the value attribute
to the corresponding column value. For example, to present a 60-character field for
cust_name, initialized to Farmer Brown, do this:

<input type="text" name="cust_name" value="Farmer Brown" size="60" />

To present a <textarea> element instead, set the body to the column value. To
create a field 40 columns wide and 3 rows high, write it like this:

<textarea name="cust_name" cols="40" rows="3">
Farmer Brown
</textarea>

• In a record-editing situation, it’s a good idea to include a unique value in the form
so that you can tell which record the form contents represent when the user submits
it. Use a hidden field to do this. Its value is not displayed to the user, but the browser
returns it with the rest of the field values. Our sample record has an id column with
a value of 1, so the hidden field looks like this:

<input type="hidden" name="id" value="1" />

The following examples show how to produce a form with id represented as a hidden
field, color as a pop-up menu, size as a set of radio buttons, and accessories as a set
of checkboxes. The customer information values are represented as text input boxes,
except that cust_state is a single-pick scrolling list. You could make other choices, of
course, such as to present the sizes as a pop-up menu rather than as radio buttons.

The recipes distribution scripts for the examples in this section are named cow_ed‐
it.pl, cow_edit.jsp, and so forth. Note that these scripts are designed only to present the
entry form; they do nothing with the form contents when you click the Submit button.

The following procedure outlines how to load the sample cow_table record into an
editing form for a CGI.pm-based Perl script:

1. Retrieve the column values for the record to load into the form:
my $id = 1; # select record number 1
my ($color, $size, $accessories,
 $cust_name, $cust_street, $cust_city, $cust_state)
 = $dbh->selectrow_array (qq{

20.4. Loading Database Content into a Form | 675

www.it-ebooks.info

http://www.it-ebooks.info/

 SELECT
 color, size, accessories,
 cust_name, cust_street, cust_city, cust_state
 FROM cow_order WHERE id = ?
 }, undef, $id);

2. Begin the form:
print start_form (-action => url ());

3. Generate the hidden field containing the id value that uniquely identifies the
cow_order record:

print hidden (-name => "id", -value => $id, -override => 1);

The override argument forces CGI.pm to use the value specified in the value
argument as the hidden field value. If override is not true, CGI.pm normally tries
to use values present in the script execution environment to initialize form fields,
even if you provide values in the field-generating calls. (CGI.pm does this to make
it easier to redisplay a form with the values the user just submitted. For example, if
you find that a form has been filled in incorrectly, you can redisplay it and ask the
user to correct any problems. To make sure that a form element contains the value
you specify, it’s necessary to override this behavior.)

4. Create the fields that describe the cow figurine specifications. Generate these fields
the same way as described in Recipes 20.2 and 20.3, except set the default values
from the contents of record 1. The code here presents color as a pop-up menu,
size as a set of radio buttons, and accessories as a set of checkboxes. Note that it
splits the accessories value at commas to produce an array of values because the
column value might name several accessory items:

my $color_ref = $dbh->selectcol_arrayref (qq{
 SELECT color FROM cow_color ORDER BY color
});

print br (), "Cow color:", br ();
print popup_menu (-name => "color",
 -values => $color_ref,
 -default => $color,
 -override => 1);

my $size_info = get_enumorset_info ($dbh, "cookbook",
 "cow_order", "size");

print br (), "Cow figurine size:", br ();
print radio_group (-name => "size",
 -values => $size_info->{values},
 -default => $size,
 -override => 1,
 -linebreak => 1);

my $acc_info = get_enumorset_info ($dbh, "cookbook",

676 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

 "cow_order", "accessories");
my @acc_val = defined ($accessories)
 ? split (/,/, $accessories)
 : ();

print br (), "Cow accessory items:", br ();
print checkbox_group (-name => "accessories",
 -values => $acc_info->{values},
 -default => \@acc_val,
 -override => 1,
 -linebreak => 1);

5. Create the customer information fields. These are text input fields, except the state,
shown here as a single-pick scrolling list:

print br (), "Customer name:", br ();
print textfield (-name => "cust_name",
 -value => $cust_name,
 -override => 1,
 -size => 60);

print br (), "Customer street address:", br ();
print textfield (-name => "cust_street",
 -value => $cust_street,
 -override => 1,
 -size => 60);

print br (), "Customer city:", br ();
print textfield (-name => "cust_city",
 -value => $cust_city,
 -override => 1,
 -size => 60);

my @state_values;
my %state_labels;
my $sth = $dbh->prepare (qq{
 SELECT abbrev, name FROM states ORDER BY name
});
$sth->execute ();
while (my ($abbrev, $name) = $sth->fetchrow_array ())
{
 push (@state_values, $abbrev); # save each value in an array
 $state_labels{$abbrev} = $name; # map each value to its label
}

print br (), "Customer state:", br ();
print scrolling_list (-name => "cust_state",
 -values => \@state_values,
 -labels => \%state_labels,
 -default => $cust_state,
 -override => 1,
 -size => 6); # display 6 items at a time

20.4. Loading Database Content into a Form | 677

www.it-ebooks.info

http://www.it-ebooks.info/

6. Create a form submission button and terminate the form:
print br (),
 submit (-name => "choice", -value => "Submit Form"),
 end_form ();

The same general procedure applies to other APIs. For example, in a JSP page, fetch the
record to be edited and extract its contents into scalar variables like this:

<c:set var="id" value="1"/>
<sql:query dataSource="${conn}" var="rs">
 SELECT
 id, color, size, accessories,
 cust_name, cust_street, cust_city, cust_state
 FROM cow_order WHERE id = ?
 <sql:param value="${id}"/>
</sql:query>

<c:set var="row" value="${rs.rows[0]}"/>
<c:set var="id" value="${row.id}"/>
<c:set var="color" value="${row.color}"/>
<c:set var="size" value="${row.size}"/>
<c:set var="accessories" value="${row.accessories}"/>
<c:set var="cust_name" value="${row.cust_name}"/>
<c:set var="cust_street" value="${row.cust_street}"/>
<c:set var="cust_city" value="${row.cust_city}"/>
<c:set var="cust_state" value="${row.cust_state}"/>

Then use the values to initialize the various form elements, such as:

• The hidden field for the ID value:
<input type="hidden" name="id" value="<c:out value="${id}"/>"/>

• The color pop-up menu:
<sql:query dataSource="${conn}" var="rs">
 SELECT color FROM cow_color ORDER BY color
</sql:query>

Cow color:

<select name="color">
<c:forEach items="${rs.rows}" var="row">
 <option
 value="<c:out value="${row.color}"/>"
 <c:if test="${row.color == color}">selected="selected"</c:if>
 ><c:out value="${row.color}"/></option>
</c:forEach>
</select>

• The cust_name text field:

Customer name:

<input type="text" name="cust_name"

678 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

 value="<c:out value="${cust_name}"/>"
 size="60" />

For Ruby, PHP, or Python, create the form using the utility functions developed in
Recipes 20.2 and 20.3. See the cow_edit.rb, cow_edit.php, and cow_edit.py scripts for
details.

20.5. Collecting Web Input
Problem
You want to extract input parameters submitted as part of a form or specified at the end
of a URL.

Solution
Use the capabilities of your API that provide a means of accessing names and values of
the input parameters in the execution environment of a web script.

Discussion
Earlier recipes in this chapter discuss how to retrieve information from MySQL and use
it to generate various forms of output, such as static text, lists, hyperlinks, or form
elements. In this recipe, we discuss the opposite problem—how to collect input from
the Web. Applications for such input are many. For example, you can use the techniques
shown here to extract the contents of a form submitted by a user. You might interpret
the information as a set of search keywords, and then run a query against a product
catalog to show the matching items to a customer. In this case, you use the Web to collect
information from which to determine the client’s interests. From that, construct an
appropriate search query and display the results. If a form represents a survey, a mailing
list sign-up sheet, or a poll, you might just store the values, using the data to create a
new database record (or perhaps to update an existing record).

A script that receives input over the Web and uses it to interact with MySQL generally
processes the information in a series of stages:

1. Extract the input from the execution environment. When a request arrives that
contains input parameters, the web server places the input into the environment of
the script that handles the request, and the script queries its environment to obtain
the parameters. It may be necessary to decode special characters in the parameters
to recover the actual values submitted by the client, if the extraction mechanism
provided by your API doesn’t do it for you. (For example, you might need to convert
%20 to space.)

20.5. Collecting Web Input | 679

www.it-ebooks.info

http://www.it-ebooks.info/

2. Validate the input to make sure that it’s legal. You cannot trust users to send legal
values, so check input parameters to make sure they look reasonable. For example,
if you expect a user to enter a number into a field, check the value to be sure that
it’s really numeric. If a form contains a pop-up menu constructed using the per‐
mitted values of an ENUM column, you might expect the value actually returned to
be one of them. But there’s no way to be sure except to check. Remember, you don’t
even know there is a real user on the other end of the network connection. It might
be a malicious script roving the Web, trying to hack your site by exploiting weak‐
nesses in your form-processing code.
If you don’t check input, you run the risk of storing garbage in your database or
corrupting existing content. It is true that you can prevent entry of values that are
invalid for the data types in your table columns by enabling strict SQL mode (see
Recipe 12.1). However, there might be additional semantic constraints on what your
application considers legal, in which case it’s still useful to check values in your
script before attempting to enter them. Also, by performing checks in your script,
you may be able to present more meaningful error messages to users about problems
in the input than the messages returned by the MySQL server when it detects bad
data. For these reasons, it might be best to consider strict SQL mode a valuable
additional level of protection, not necessarily sufficient in itself. That is, combine
strict mode on the server side with client-side validation.

3. Construct an SQL statement based on the input. Typically, input parameters are
used to add a record to a database, or to retrieve information from the database for
display to the client. Either way, you use the input to construct a statement and send
it to the MySQL server. Statement construction based on user input should be done
with care, using proper escaping to avoid creating malformed or dangerous SQL
statements. Use of placeholders is a good idea here (see Recipe 2.5).

The rest of this recipe explores the first of these three stages of input processing (pulling
input from the execution environment). Recipes 20.6 and 20.7 cover the second and
third stages. The first stage has little to do with MySQL, but is covered here because it’s
how you obtain the information used in the later stages.

Input obtained over the Web can be received in several ways, two of which are most
common:

• As part of a get request, in which case input parameters are appended to the end
of the URL. For example, the following URL invokes a PHP script named
price_quote.php and specifies item and quantity parameters with values D-0214
and 60:

http://localhost/mcb/price_quote.php?item=D-0214&quantity=60

Such requests are generated when a user selects a hyperlink or submits a form that
specifies method="get" in the <form> tag. A parameter list in a URL begins

680 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

with ? and consists of name=value pairs separated by ; or & characters. (It’s also
possible to place information in the middle of a URL, but this book doesn’t cover
that.)

• As part of a post request, such as a form submission that specifies meth
od="post" in the <form> tag. The contents of a form for a post request are sent as
parameters in the body of the request, rather than at the end of the URL.

You may also have occasion to process other types of input, such as uploaded files. Those
are sent using post requests, but as part of a special kind of form element. Recipe 20.8
discusses file uploads.

When you gather input for a web script, you should consider how the input was sent.
(Some APIs distinguish between input sent via get and post; others do not.) However,
after you have pulled out the information that was sent, the request method doesn’t
matter. The validation and statement construction stages need not know whether pa‐
rameters were sent using get or post.

The recipes distribution includes scripts that process input parameters in the apache/
params directory (tomcat/mcb for JSP). Each script enables you to submit get or post
requests, and shows how to extract and display the parameter values thus submitted.
Examine these scripts to see how the parameter-extraction methods for the various APIs
are used. Utility routines invoked by the scripts can be found in the library modules in
the lib directory of the distribution.

Web input extraction conventions

To obtain input parameters passed to a script, familiarize yourself with your API’s con‐
ventions so that you know what it does for you, and what you must do yourself. You
should know the answers to these questions:

• How do you determine which parameters are available?
• How do you obtain a parameter value from the environment?
• Are values thus obtained the actual values submitted by the client, or do you need

to decode them further?
• How are multiple-valued parameters handled (for example, when several items in

a checkbox group are selected)?
• For parameters submitted in a URL, which separator character does the API expect

between parameters? This may be & for some APIs and ; for others. ; is preferable
as a parameter separator because it’s not special in HTML like & is, but many
browsers or other user agents separate parameters using &. If you construct a URL
within a script that includes parameters at the end, be sure to use a parameter-
separator character that the receiving script understands.

20.5. Collecting Web Input | 681

www.it-ebooks.info

http://www.it-ebooks.info/

Perl. The Perl CGI.pm module makes input parameters available to scripts through the
param() function. param() provides access to input submitted via either get or post,
which simplifies your task as the script writer. You need not know which method a form
used for submitting parameters. You need not perform any decoding, either; param()
handles that as well.

To obtain a list of names of all available parameters, call param() with no arguments:
@param_names = param ();

To obtain the value of a specific parameter, pass its name to param(). In scalar context,
param() returns the parameter value if it is single-valued, the first value if it is multiple-
valued, or undef if the parameter is not available. In array context, param() returns all
the parameter’s values as a list, which is empty if the parameter is not available:

$id = param ("id"); # return scalar value
@options = param ("options"); # return list

A parameter with a given name might not be available if the form field with that name
was left blank, or if there isn’t any field with that name. Note too that a parameter value
may be defined but empty. For good measure, you may want to check both possibilities.
For example, to check for an age parameter and assign a default value of unknown if the
parameter is missing or empty, you can do this:

$age = param ("age");
$age = "unknown" if !defined ($age) || $age eq "";

CGI.pm understands both ; and & as URL parameter separator characters.

Ruby. Ruby scripts that use the cgi module access web script parameters through the
cgi object you create for generating HTML elements. Its param method returns a hash
of parameter names and values; access this hash or get the parameter names as follows:

params = cgi.params
param_names = cgi.params.keys

The value of a particular parameter is available from the hash of parameter names and
values or from the cgi object:

id = cgi.params["id"]
id = cgi["id"]

The two access methods differ slightly. The params method returns each parameter
value as an array. The array contains multiple entries if the parameter has multiple
values, and is empty if the parameter is not present. The cgi object returns a single
string. If the parameter has multiple values, only the first is returned. If the parameter
is not present, the value is the empty string. For either access method, use the has_key?
method to test whether a parameter is present.

682 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

The following listing shows how to get the parameter names and loop through each
parameter to print its name and value, printing multiple-valued parameters as a comma-
separated list:

params = cgi.params
param_names = cgi.params.keys
param_names.sort!
page << cgi.p { "Parameter names:" + param_names.join(", ") }

list = ""
param_names.each do |name|
 val = params[name]
 list << cgi.li {
 "type=#{val.class}, name=#{name}, value=" +
 CGI.escapeHTML(val.join(", "))
 }
end
page << cgi.ul { list }

The cgi module understands both ; and & as URL parameter separator characters.

PHP. Input parameters are available to PHP several ways, depending on your config‐
uration settings:

• If the track_vars variable is enabled (which it is by default), parameters are avail‐
able in the $_GET and $_POST arrays. If a form contains a field named id, the value
is available as $_GET["id"] or $_POST["id"], depending on whether the form was
submitted via get or post. $_GET and $_POST are “superglobal” arrays (accessible
in any scope without being declared as global).

• If the register_globals variable is enabled, parameters are assigned to global
variables of the same name. In this case, the value of a field named id is available
as the variable $id, regardless of whether the request was sent via get or post. It’s
dangerous to rely on this variable, for reasons described shortly. PHP scripts in this
book do not rely on register_globals (which in any case is deprecated in PHP
5.3 and removed in 5.4). Instead, they obtain input through the global parameter
arrays.

The track_vars and (if present) register_globals settings can be compiled into PHP
or configured in the PHP php.ini file. As mentioned previously, track_vars is enabled
by default, so I’ll assume that this is true for your PHP installation.

register_globals was designed to make it convenient to access input parameters
through global variables, but it poses a security risk and is therefore best disabled in
versions of PHP that have it. Suppose that you write a script that requires the user to
supply a password, represented by the $password variable. In the script, you might check
the password like this:

20.5. Collecting Web Input | 683

www.it-ebooks.info

http://www.it-ebooks.info/

if (check_password ($password))
 $password_is_ok = 1;

The intent here is that if the password matches, the script sets $password_is_ok to 1.
Otherwise, it leaves $password_is_ok unset (which compares false in Boolean expres‐
sions). But suppose that someone invokes your script as follows:

http://your.host.com/chkpass.php?password_is_ok=1

If register_globals is enabled, PHP sees that the password_is_ok parameter is set to
1 and sets the corresponding $password_is_ok variable to 1. The result is that when
your script executes, $password_is_ok is 1 no matter what password was given, or even
if no password was given! Thus, register_globals enables outside users to supply
default values for global variables in your scripts. The best solution is to disable regis
ter_globals and check the global arrays ($_GET, $_POST) for input parameter values.
If you cannot disable register_globals, take care not to assume that PHP variables
have no value initially. Unless you expect a global variable to be set from an input pa‐
rameter, initialize it explicitly to a known value. The password-checking code should
be written as follows to make sure that only $password (and not $password_is_ok) can
be set from an input parameter. That way, $password_is_ok is assigned a value by the
script itself whatever the result of the test:

$password_is_ok = 0;
if (check_password ($password))
 $password_is_ok = 1;

Another complicating factor when retrieving input parameters in PHP is that they may
need some decoding, depending on the value of the magic_quotes_gpc configuration
variable (if present; like register_globals, magic_quotes_gpc is deprecated in PHP
5.3 and removed in 5.4). If magic quotes are enabled, any quote, backslash, and NUL
characters in input parameter values accessed by your scripts will be escaped with back‐
slashes. I suppose that the intent is to save you a step by permitting you to extract values
and use them directly in SQL statement strings. However, that’s only useful if you plan
to use web input in a statement with no preprocessing or validity checking, which is
dangerous. You should check your input first, in which case it’s necessary to strip out
the slashes, anyway. This means that having magic quotes turned on isn’t really very
useful.

Given the various sources through which input parameters may be available, and the
fact that they may or may not contain extra backslashes, extracting input in PHP scripts
can be an interesting problem. If you have control of your server and can set the values
of the various configuration settings, you can of course write your scripts based on those
settings. But if you do not control your server or are writing scripts that need to run on
several machines, you may not know in advance what the settings are. Fortunately, it’s
possible to write reasonably general-purpose parameter-extraction code that works
correctly with few assumptions about your PHP operating environment. The following
utility function, get_param_val(), takes a parameter name as its argument and returns

684 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

the corresponding parameter value. If the parameter is not available, the function re‐
turns an unset value. (get_param_val() uses a helper function, strip_slash_help
er(), which is discussed shortly.)

function get_param_val ($name)
{
 $val = NULL;
 if (isset ($_GET[$name]))
 $val = $_GET[$name];
 else if (isset ($_POST[$name]))
 $val = $_POST[$name];
 if (isset ($val) && get_magic_quotes_gpc ())
 $val = strip_slash_helper ($val);
 return ($val);
}

To use this function to obtain the value of a single-valued parameter named id, call it
like this:

$id = get_param_val ("id");

Test $id to determine whether the id parameter was present in the input:
if (isset ($id))
 ... id parameter is present ...
else
 ... id parameter is not present ...

For a form field that might have multiple values (such as a checkbox group or a multiple-
pick scrolling list), represent it in the form using a name that ends in []. For example,
a list element constructed from the SET column accessories in the cow_order table
has one item for each permitted set value. To make sure PHP treats the element value
as an array, name the field accessories[], not accessories. (See Recipe 20.3 for an
example.) When the form is submitted, PHP places the array of values in a parameter
named without the []. To access it, do this:

$accessories = get_param_val ("accessories");

The value of the $accessories variable is an array, whether the parameter has multiple
values, a single value, or even no values. The determining factor is not whether the
parameter actually has multiple values, but whether you named the corresponding field
in the form using [] notation.

The get_param_val() function checks the $_GET and $_POST arrays for parameter val‐
ues. Thus, it works correctly regardless of whether the request was made by get or
post, or whether register_globals is enabled. It assumes only that track_vars is
enabled.

get_param_val() also works correctly regardless of whether magic quoting is enabled.
It uses a helper function strip_slash_helper() that performs backslash stripping from
parameter values if necessary:

20.5. Collecting Web Input | 685

www.it-ebooks.info

http://www.it-ebooks.info/

function strip_slash_helper ($val)
{
 if (!is_array ($val))
 $val = stripslashes ($val);
 else
 {
 foreach ($val as $k => $v)
 $val[$k] = strip_slash_helper ($v);
 }
 return ($val);
}

strip_slash_helper() checks whether a value is a scalar or an array and processes it
accordingly. It uses a recursive algorithm for array values because in PHP it’s possible
to create nested arrays from input parameters.

To make it easy to obtain a list of all parameter names, use another utility function:
function get_param_names ()
{
 # construct an array in which each element has a parameter name as
 # both key and value. (Using names as keys eliminates duplicates.)
 $names = array ();
 foreach (array_keys ($_GET) as $name)
 $names[$name] = $name;
 foreach (array_keys ($_POST) as $name)
 $names[$name] = $name;
 return ($names);
}

get_param_names() returns a list of parameter names present in the HTTP variable
arrays, with duplicate names removed if there is overlap between the arrays. The return
value is an array with its keys and values both set to the parameter names. This way you
can use either the keys or the values as the list of names. The following example prints
the names, using the values:

$param_names = get_param_names ();
foreach ($param_names as $name)
 print (htmlspecialchars ($name) . "
");

To construct URLs that point to PHP scripts and that have parameters at the end, sep‐
arate the parameters by & characters. To use a different character (such as ;), change the
separator by setting the arg_separator configuration variable in the PHP initialization
file.

Python. The Python cgi module provides access to input parameters that are present
in the script environment. Import that module, then create a FieldStorage object:

import cgi

params = cgi.FieldStorage()

686 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

The FieldStorage object contains information for parameters submitted via either get
or post requests, so you need not know which method was used to send the request.
The object also contains an element for each parameter present in the environment. Its
key() method returns a list of available parameter names:

param_names = params.keys()

If a given parameter, name, is single-valued, the value associated with it is a scalar that
you can access as follows:

val = params[name].value

If the parameter is multiple-valued, params[name] is a list of MiniFieldStorage objects
that have name and value attributes. Each has the same name (it will be equal to name)
and one of the parameter’s values. To create a list containing all the values for such a
parameter, do this:

val = []
for item in params[name]:
 val.append(item.value)

To avoid having to distinguish whether a parameter has a single value or multiple values,
use getlist(). The following listing shows how to get the parameter names and loop
through each parameter to print its name and value, printing multiple-valued param‐
eters as a comma-separated list:

params = cgi.FieldStorage()
param_names = params.keys()
param_names.sort()
print("<p>Parameter names: %s</p>" % param_names)
items = []
for name in param_names:
 val = ','.join(params.getlist(name))
 items.append("name=" + name + ", value=" + val)
print(make_unordered_list(items))

Python raises an exception if you try to access a parameter not present in the Field
Storage object. To avoid this, use has_key() to find out whether the parameter exists:

if params.has_key(name):
 print("parameter %s exists" % name)
else:
 print("parameter %s does not exist" % name)

Single-valued parameters have attributes other than value. For example, a parameter
representing an uploaded file has additional attributes you can use to get the file’s con‐
tents. Recipe 20.8 discusses this further.

The cgi module expects URL parameters to be separated by & characters. To construct
a hyperlink that points to a Python script based on the cgi module, don’t separate the
parameters by ; characters.

20.5. Collecting Web Input | 687

www.it-ebooks.info

http://www.it-ebooks.info/

Java. Within JSP pages, the implicit request object has the following methods for
accessing the request parameters:
getParameterNames()

Returns an enumeration of String objects, one for each parameter name present
in the request.

getParameterValues(String name)
Returns an array of String objects, one for each value associated with the parameter,
or null if the parameter does not exist.

getParameterValue(String name)
Returns the first value associated with the parameter, or null if the parameter does
not exist.

The following example shows one way to use these methods to display request param‐
eters:

<%@ page import="java.util.*" %>

<%
 Enumeration e = request.getParameterNames ();
 while (e.hasMoreElements ())
 {
 String name = (String) e.nextElement ();
 // use array in case parameter is multiple-valued
 String[] val = request.getParameterValues (name);
 out.println (" name: " + name + "; values:");
 for (int i = 0; i < val.length; i++)
 out.println (val[i]);
 out.println ("");
 }
%>

Request parameters are also available within JSTL tags, using the special variables par
am and paramValues. param[name] returns the first value for a given parameter and thus
is most suited for single-valued parameters:

color value:
<c:out value="${param['color']}"/>

paramValues[name] returns an array of values for the parameter, so it’s useful for pa‐
rameters that can have multiple values:

accessory values:
<c:forEach items="${paramValues['accessories']}" var="val">
 <c:out value="${val}"/>
</c:forEach>

688 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

If a parameter name is legal as an object property name, you can also access the pa‐
rameter using dot notation:

color value:
<c:out value="${param.color}"/>
accessory values:
<c:forEach items="${paramValues.accessories}" var="val">
 <c:out value="${val}"/>
</c:forEach>

To produce a list of parameter objects with key and value attributes, iterate over the
paramValues variable:

 <c:forEach items="${paramValues}" var="p">

 name:
 <c:out value="${p.key}"/>;
 values:
 <c:forEach items="${p.value}" var="val">
 <c:out value="${val}"/>
 </c:forEach>

 </c:forEach>

To construct URLs that point to JSP pages and that have parameters at the end, separate
the parameters by & characters.

20.6. Validating Web Input
Problem
After extracting the parameters supplied to a script, you want to check them to be sure
they’re valid.

Solution
Web input processing is one form of data import, so after you’ve extracted the input
parameters, validate them using the techniques discussed in Chapter 12.

Discussion
One phase of web form processing is extracting the input returned when the user sub‐
mits the form. It’s also possible to receive input in the form of parameters at the end of
a URL. Either way, if you plan to store the input in your database, it’s important to check
it to be sure that it’s valid.

20.6. Validating Web Input | 689

www.it-ebooks.info

http://www.it-ebooks.info/

When clients send input to you over the Web, you don’t really know what they’re sending.
If you present a form for users to fill out, most of the time they’ll probably be nice and
enter the kinds of values you expect. But a malicious user can save the form to a file,
modify the file to permit form options you don’t intend, reload the file into a browser
window, and submit the modified form. Your form-processing script won’t know the
difference. If you write it only to process the kinds of values that well-intentioned users
submit, the script may misbehave or crash when presented with unexpected input—or
perhaps even do bad things to your database. (Recipe 20.7 discusses what kinds of bad
things.) For this reason, it’s prudent to perform some validity checking on web input
before using it to construct SQL statements.

Preliminary checking is a good idea even for nonmalicious users. If a user neglects to
provide a required value, you must present a reminder to supply one. The check might
be simple (“Is the parameter present?”) or more involved. Typical validation operations
include the following:

• Checking content format, such as making sure a value looks like an integer or a
date. This may involve some reformatting for acceptability to MySQL (for example,
changing a date from MM/DD/YY to ISO format).

• Determining whether a value is a member of a legal set of values. Perhaps the value
must be listed in the definition for an ENUM or SET column, or must be present in a
lookup table.

• Filtering out extraneous characters such as spaces or dashes from telephone num‐
bers or credit card numbers.

Some of these operations have little to do with MySQL, except in the sense that you want
values to be appropriate for the types of the columns in which you store them or against
which you match them. For example, before storing a value in an INT column, you can
make sure that it’s an integer first, using a test like this (shown here using Perl):

$val =~ /^\d+$/
 or die "Hey! '" . escapeHTML ($val) . "' is not an integer!\n";

For other types of validation, MySQL is intimately involved. If a field value is to be stored
into an ENUM column, you can make sure the value is one of the legal enumeration values
by checking the column definition in INFORMATION_SCHEMA.

Having described some of the kinds of web input validation you might want to carry
out, I won’t further discuss them here. Chapter 12 describes these and other forms of
validation testing. That chapter is oriented largely toward bulk input validation, but the
techniques discussed there apply to web programming as well.

690 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

20.7. Storing Web Input in a Database
Problem
Input obtained over the Web cannot be trusted and should not be entered into a database
without taking the proper precautions.

Solution
Sanitize data values by using placeholders or a quoting function so that SQL statements
you construct are valid and not subject to SQL injection attacks. Enable strict SQL mode
so the MySQL server rejects values that are invalid for column data types.

Discussion
After you’ve extracted input parameter values in a web script and checked them to make
sure they’re valid, you’re ready to use them to construct an SQL statement. This is ac‐
tually the easy part of input processing, although it’s necessary to take the proper pre‐
cautions to avoid making a mistake that you’ll regret. Let’s consider what can go wrong,
and then see how to prevent problems.

Suppose that a form acts as a frontend to a simple search engine and contains a keyword
field. When a user submits a keyword, you intend to use it to find matching rows in a
table by constructing a statement like this:

SELECT * FROM mytbl WHERE keyword = 'keyword_val'

Here, keyword_val represents the value entered by the user. If the value is something
like eggplant, the resulting statement is:

SELECT * FROM mytbl WHERE keyword = 'eggplant'

The statement returns all eggplant-matching rows, presumably generating a small result
set. But suppose that the user is tricky and tries to subvert your script by entering the
following value:

eggplant' OR 'x'='x

In this case, the statement becomes:
SELECT * FROM mytbl WHERE keyword = 'eggplant' OR 'x'='x'

That statement matches every row in the table! If the table is quite large, the input
effectively becomes a denial-of-service attack because it causes your system to divert
resources away from legitimate requests into doing useless work. This type of attack is
known as SQL injection because the user is injecting executable SQL code into your
statement where you expect to receive only a nonexecutable data value. Likely results
of SQL injection attacks include the following:

20.7. Storing Web Input in a Database | 691

www.it-ebooks.info

http://www.it-ebooks.info/

• Extra load on the MySQL server
• Out-of-memory problems in your script as it tries to digest the result set received

from MySQL
• Extra network bandwidth consumption as the script sends the results to the client

If your script generates a DELETE or UPDATE statement, the consequences of this kind of
subversion can be much worse. Your script might issue a statement that empties a table
completely or changes all of its rows, when you intended to permit it to affect at most
a single row.

Try to Break Your Web Scripts
The discussion in this section is phrased in terms of guarding against other users from
attacking your scripts. But it’s not a bad idea to put yourself in the place of an attacker
and adopt the mindset, “How can I break this application?” That is, consider whether
you can submit input that it won’t handle and that causes it to generate a malformed
statement. If you can cause the application to misbehave, so can other people, either
deliberately or accidentally. Be wary of bad input, and write your applications accord‐
ingly. It’s better to be prepared than just hope.

The implication of the preceding discussion is that providing a web interface to your
database opens you up to certain forms of security vulnerabilities. However, you can
prevent these problems by means of a simple precaution that you should already be
following: don’t put data values received from external sources literally into statement
strings. Use placeholders or an encoding function instead. For example, handle an input
parameter in Perl using a placeholder:

$sth = $dbh->prepare ("SELECT * FROM mytbl WHERE keyword = ?");
$sth->execute (param ("keyword"));
... fetch result set ...

Or by using quote():
$keyword = $dbh->quote (param ("keyword"));
$sth = $dbh->prepare ("SELECT * FROM mytbl WHERE keyword = $keyword");
$sth->execute ();
... fetch result set ...

Either way, if the user enters the subversive value, the statement becomes harmless:
SELECT * FROM mytbl WHERE keyword = 'eggplant\' OR \'x\'=\'x'

As a result, the statement matches no rows rather than all rows—definitely a more
suitable response to someone who’s trying to break your script.

692 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

Recipe 2.5 discusses similar placeholder and quoting techniques for Ruby, PHP, Python,
and Java. For JSP pages written using the JSTL tag library, quote input parameter values
using placeholders and the <sql:param> tag. For example, to use the value of a form
parameter named keyword in a SELECT statement, do this:

<sql:query dataSource="${conn}" var="rs">
 SELECT * FROM mytbl WHERE keyword = ?
 <sql:param value="${param['keyword']}"/>
</sql:query>

One issue not covered by placeholder techniques involves a question of interpretation:
If a form field is optional, what should you store in the database if the user leaves the
field empty? Perhaps the value represents an empty string—or perhaps it should be
interpreted as NULL. One way to resolve this question is to consult the column metadata
(see Recipe 10.6). If the column can contain NULL values, interpret an empty field as
NULL. Otherwise, take an empty field to mean an empty string.

Placeholders and encoding functions apply only to SQL data values. They do not address
how to handle web input used for other kinds of statement elements such as identifiers:
names of databases, tables, and columns. If you intend to include such values into a
statement literally, you should check them first. For example, to construct a statement
such as the following, you should verify that $tbl_name contains a reasonable value:

SELECT * FROM $tbl_name;

But what does “reasonable” mean? If your tables don’t have strange characters in their
names, it may be sufficient to make sure that $tbl_name contains only alphanumeric
characters or underscores. Alternatively, issue a statement that determines whether the
table actually exists. (Check INFORMATION_SCHEMA or use SHOW TABLES.) This is more
foolproof, at the cost of an additional statement.

A better option is to use an identifier-quoting routine, if you have one (see Recipe 2.6).
This approach requires no extra statement because it renders any string safe for use in
a statement. If the identifier does not exist, the statement simply fails as it should.

For additional protection in your web scripts, combine client-side checking of input
values with strict server-side checking. You can set the server SQL mode to be restrictive
about accepting input values so that it rejects values that don’t match your table column
data types. For discussion of the SQL mode and input value checking, see Recipe 12.1.

See Also
Several other recipes in this chapter illustrate how to incorporate web input into state‐
ments. Recipe 20.8 shows how to upload files and load them into MySQL. Recipe 20.9
demonstrates a simple search application using input as search keywords. Recipes 20.10
and 20.11 process parameters submitted via URLs.

20.7. Storing Web Input in a Database | 693

www.it-ebooks.info

http://www.it-ebooks.info/

20.8. Processing File Uploads
Problem
You want to permit files to be uploaded to your web server and stored in your database.

Solution
Present the user with a web form that includes a file field. When the user submits the
form, extract the file and store it.

Discussion
One special kind of web input is an uploaded file. A file is sent as part of a post request,
but it’s handled differently from other post parameters because a file is represented by
several pieces of information such as its contents, its MIME type, its original filename
on the client, and its name in temporary storage on the web server host.

To handle file uploads, you must send a special kind of form to the user; this is true no
matter what API you use to create the form. When the user submits the form, the
operations that check for and process an uploaded file are API-specific.

To create a form that enables files to be uploaded, the opening <form> tag should specify
the post method and must also include an enctype (encoding type) attribute with a
value of multipart/form-data:

<form method="post" enctype="multipart/form-data" action="script_name">

If the form uses the application/x-www-form-urlencoded encoding type, file uploads
will not work properly.

To include a file upload field in the form, use an <input> element of type file. For
example, this element presents a 60-character file field named upload_file:

<input type="file" name="upload_file" size="60" />

The browser displays this field as a text input box into which the user can enter the name
manually. It also displays a Browse button that enables the user to select the file via a
standard file-browsing system dialog. When the user chooses a file and submits the
form, the browser encodes the file contents for inclusion into the resulting post request.
At that point, the web server receives the request and invokes your script to process it.
The specifics vary for particular APIs, but file uploads generally work like this:

• The file will already have been uploaded and stored in a temporary directory by the
time your upload-handling script begins executing. All your script has to do is read
it. The temporary file is available to your script either as an open file descriptor or
the temporary filename, or perhaps both. The file size can be obtained through the

694 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

file descriptor. The API may also make available other information about the file,
such as its MIME type. (But note that some browsers may not send a MIME value.)

• The web server automatically deletes uploaded files when your script terminates.
If you want a file’s contents to persist beyond the end of your script’s execution, the
script must save the file to a more permanent location, such as in a database or
somewhere else in the filesystem. If you save the file in the filesystem, the directory
where you store it must be accessible to the web server. (Don’t put it under the
document root or any user home directories. That effectively enables a remote
attacker to install scripts and HTML files on your web server.)

• The API might enable you to control the location of the temporary file directory
or the maximum size of uploaded files. Changing the directory to one that is ac‐
cessible only to your web server may improve security against local exploits by other
users with login accounts on the server host.

This recipe discusses how to create forms that include a file upload field. It also dem‐
onstrates how to handle uploads using a Perl script, post_image.pl. The script is some‐
what similar to the store_image.pl script for loading images from the command line (see
Recipe 19.6). post_image.pl differs in that it enables you to store images over the Web
by uploading them, and it stores images only in MySQL, whereas store_image.pl stores
them in both MySQL and the filesystem.

This recipe also discusses how to obtain file upload information using PHP and Python.
It does not repeat the entire image-posting scenario shown for Perl, but the recipes
distribution contains implementations equivalent to post_image.pl for the other lan‐
guages.

Uploads in Perl

The CGI.pm module enables you to specify multipart encoding for a form several ways.
The following statements are equivalent:

print start_form (-action => url (), -enctype => "multipart/form-data");

print start_form (-action => url (), -enctype => MULTIPART ());

print start_multipart_form (-action => url ());

The first statement specifies the encoding type literally. The second uses the CGI.pm
MULTIPART() function, which is easier than trying to remember the literal encoding
value. The third statement is easiest of all because start_multipart_form() supplies
the enctype parameter automatically. (Like start_form(), start_multipart_form()
uses a default request method of post, so you need not include a method argument.)

Here’s a simple form that includes a text field that enables the user to assign a name to
an image, a file field so that the user can select the image file, and a Submit button:

20.8. Processing File Uploads | 695

www.it-ebooks.info

http://www.it-ebooks.info/

print start_multipart_form (-action => url ()),
 "Image name:", br (),
 textfield (-name =>"image_name", -size => 60),
 br (), "Image file:", br (),
 filefield (-name =>"upload_file", -size => 60),
 br (), br (),
 submit (-name => "choice", -value => "Submit"),
 end_form ();

When the user submits an uploaded file, begin processing it by extracting the parameter
value for the file field:

$file = param ("upload_file");

The value for a file upload parameter is special in CGI.pm because you can use it two
ways. You can treat it as an open file handle to read the file’s contents or pass it to
uploadInfo() to obtain a reference to a hash that provides information about the file
such as its MIME type. The following listing shows how post_image.pl presents the form
and processes a submitted form. When first invoked, post_image.pl generates a form
with an upload field. For the initial invocation, no file will have been uploaded, so the
script does nothing else. If the user submitted an image file, the script gets the image
name, reads the file contents, determines its MIME type, and stores a new row in the
image table. For illustrative purposes, post_image.pl also displays all the information
that the uploadInfo() function makes available about the uploaded file:

#!/usr/bin/perl
post_image.pl: enable user to upload image files using post requests

use strict;
use warnings;
use CGI qw(:standard escapeHTML);
use Cookbook;

print header (), start_html (-title => "Post Image");

Use multipart encoding because the form contains a file upload field

print start_multipart_form (-action => url ()),
 "Image name:", br (),
 textfield (-name =>"image_name", -size => 60),
 br (), "Image file:", br (),
 filefield (-name =>"upload_file", -size => 60),
 br (), br (),
 submit (-name => "choice", -value => "Submit"),
 end_form ();

Get a handle to the image file and the name to assign to the image

my $image_file = param ("upload_file");
my $image_name = param ("image_name");

696 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

Must have either no parameters (in which case that script was just
invoked for the first time) or both parameters (in which case the form
was filled in). If only one was filled in, the user did not fill in the
form completely.

my $param_count = 0;
++$param_count if defined ($image_file) && $image_file ne "";
++$param_count if defined ($image_name) && $image_name ne "";

if ($param_count == 0) # initial invocation
{
 print p ("No file was uploaded.");
}
elsif ($param_count == 1) # incomplete form
{
 print p ("Please fill in BOTH fields and resubmit the form.");
}
else # a file was uploaded
{
 my ($size, $data);

 # If an image file was uploaded, print some information about it,
 # then save it in the database.

 # Get reference to hash containing information about file
 # and display the information in "key=x, value=y" format
 my $info_ref = uploadInfo ($image_file);
 print p ("Information about uploaded file:");
 foreach my $key (sort (keys (%{$info_ref})))
 {
 print p ("key="
 . escapeHTML ($key)
 . ", value="
 . escapeHTML ($info_ref->{$key}));
 }
 $size = (stat ($image_file))[7]; # get file size from file handle
 print p ("File size: " . $size);

 binmode ($image_file); # helpful for binary data
 if (sysread ($image_file, $data, $size) != $size)
 {
 print p ("File contents could not be read.");
 }
 else
 {
 print p ("File contents were read without error.");

 # Get MIME type, use generic default if not present

 my $mime_type = $info_ref->{'Content-Type'};
 $mime_type = "application/octet-stream" unless defined ($mime_type);

20.8. Processing File Uploads | 697

www.it-ebooks.info

http://www.it-ebooks.info/

 # Save image in database table. (Use REPLACE to kick out any
 # old image that has the same name.)

 my $dbh = Cookbook::connect ();
 $dbh->do ("REPLACE INTO image (name,type,data) VALUES(?,?,?)",
 undef,
 $image_name, $mime_type, $data);
 $dbh->disconnect ();
 }
}

print end_html ();

Uploads in PHP

To write an upload form in PHP, include a file field. If you like, also include a hidden
field preceding the file field that has a name of MAX_FILE_SIZE and a value of the largest
file size you’re willing to accept:

<form method="post" enctype="multipart/form-data"
 action="<?php print ($_SERVER["PHP_SELF"]); ?>">
<input type="hidden" name="MAX_FILE_SIZE" value="4000000" />
Image name:

<input type="text" name="image_name" size="60" />

Image file:

<input type="file" name="upload_file" size="60" />

<input type="submit" name="choice" value="Submit" />
</form>

Be aware that MAX_FILE_SIZE is advisory only; it can be subverted easily. To specify a
value that cannot be exceeded, use the upload_max_filesize configuration variable in
the php.ini PHP configuration file. There is also a file_uploads variable that controls
whether file uploads are permitted at all.

The upload_tmp_dir PHP configuration variable controls where uploaded files are
saved. This is /tmp by default on many systems, but you may want to override it to
reconfigure PHP to use a different directory that’s owned by the web server user and
thus more private.

When the user submits the form, PHP places file upload information from post requests
in an array, $_FILES, that has one entry for each uploaded file. $_FILES is a superglobal
array (accessible in any scope without being declared as global). Each entry within the
array is itself an array with four elements. For example, if a form has a file field named
upload_file and the user submits a file, information about it is available in the following
variables:

$_FILES["upload_file"]["name"]
$_FILES["upload_file"]["tmp_name"]

698 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

$_FILES["upload_file"]["size"]
$_FILES["upload_file"]["type"]

These variables represent the original filename on the client host, the temporary file‐
name on the server host, the file size in bytes, and the file MIME type. Be careful here
because there may be an entry for an upload field even if the user submitted no file. In
this case, the tmp_name value will be the empty string or the string none.

To simplify access to file upload information, use a utility routine that does the work.
The following function, get_upload_info(), takes an argument corresponding to the
name of a file upload field. Then it examines the $_FILES array and returns an associative
array of information about the file, or a NULL value if the information is not available.
For a successful call, the array element keys are "tmp_name", "name", "size", and
"type":

function get_upload_info ($name)
{
 # Check the $_FILES array tmp_name member to make sure there is a
 # file. (The entry might be present even if no file was uploaded.)
 $val = NULL;
 if (isset ($_FILES[$name])
 && $_FILES[$name]["tmp_name"] != ""
 && $_FILES[$name]["tmp_name"] != "none")
 $val = $_FILES[$name];
 return ($val);
}

See the post_image.php script for details about how to use this function to get image
information and store it in MySQL.

Uploads in Python

In Python, write a simple upload form like this:
print('''
<form method="post" enctype="multipart/form-data" action="%s">
Image name:

<input type="text" name="image_name", size="60" />

Image file:

<input type="file" name="upload_file", size="60" />

<input type="submit" name="choice" value="Submit" />
</form>
''' % (os.environ['SCRIPT_NAME']))

When the user submits the form, obtain its contents using the FieldStorage() method
of the cgi module (see Recipe 20.5). The resulting object contains an element for each
input parameter. For a file upload field, get this information as follows:

form = cgi.FieldStorage()
if form.has_key('upload_file') and form['upload_file'].filename != '':

20.8. Processing File Uploads | 699

www.it-ebooks.info

http://www.it-ebooks.info/

 image_file = form['upload_file']
else:
 image_file = None

According to most of the documentation that I have read, the file attribute of an object
that corresponds to a file field should be true if a file has been uploaded. Unfortunately,
the file attribute seems to be true even when the user submits the form but leaves the
file field blank. It may even be the case that the type attribute is set when no file actually
was uploaded (for example, to application/octet-stream). In my experience, a more
reliable way to determine whether a file was uploaded is to test the filename attribute:

form = cgi.FieldStorage()
if form.has_key('upload_file') and form['upload_file'].filename:
 print("<p>A file was uploaded</p>")
else:
 print("<p>A file was not uploaded</p>")

Assuming that a file was uploaded, access the parameter’s value attribute to read the
file and obtain its contents:

data = form['upload_file'].value

See the post_image.py script for details about how to use this function to get image
information and store it in MySQL.

20.9. Performing Web-Based Database Searches
Problem
You want to implement a web-based search interface.

Solution
Present a form containing fields that enable the user to supply search parameters such
as keywords. Use the submitted keywords to construct a database query, then display
the query results.

Discussion
A script that implements a web-based search interface provides a convenience for people
who visit your website because they need not know any SQL to find information in your
database. Instead, visitors supply keywords that describe what they’re interested in and
your script figures out the appropriate statements to run on their behalf. A common
paradigm for this activity involves a form containing one or more fields for entering
search parameters. The user fills in the form, submits it, and receives back a new page
containing the records that match the parameters.

As the writer of such a script, you must handle these operations:

700 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

1. Generate the form and send it to the users.
2. Interpret the submitted form and construct an SQL statement based on its contents.

This includes proper use of placeholders or quoting to prevent bad input from
crashing or subverting your script.

3. Execute the statement and display its result. This can be simple if the result set is
small, or more complex if it is large. In the latter case, you may want to present the
matching records using a paged display—that is, a display consisting of multiple
pages, each of which shows a subset of the entire statement result. Multiple-page
displays have the benefit of not overwhelming the user with huge amounts of in‐
formation all at once. Recipe 20.10 discusses how to implement them.

This recipe demonstrates a script that implements a minimal search interface: a form
with one keyword field, from which a statement is constructed that returns at most one
record. The script performs a two-way search of the states table. That is, if the user
enters a state name, it looks up the corresponding abbreviation. Conversely, if the user
enters an abbreviation, it looks up the name. The script, search_state.pl, looks like this:

#!/usr/bin/perl
search_state.pl: Simple "search for state" application.

Present a form with an input field and a submit button. User enters
a state abbreviation or a state name into the field and submits the
form. Script finds the abbreviation and displays the full name, or
vice versa.

use strict;
use warnings;
use CGI qw(:standard escapeHTML);
use Cookbook;

my $title = "State Name or Abbreviation Lookup";

print header (), start_html (-title => $title);

If keyword parameter is present and nonempty, perform a lookup.

my $keyword = param ("keyword");

if (defined ($keyword) && $keyword !~ /^\s*$/)
{
 my $dbh = Cookbook::connect ();
 my $found = 0;
 my $s;

 # first look for keyword as a state abbreviation;
 # if that fails, look for it as a name
 $s = $dbh->selectrow_array ("SELECT name FROM states WHERE abbrev = ?",
 undef, $keyword);

20.9. Performing Web-Based Database Searches | 701

www.it-ebooks.info

http://www.it-ebooks.info/

 if ($s)
 {
 ++$found;
 print p ("You entered the abbreviation: " . escapeHTML ($keyword));
 print p ("The corresponding state name is : " . escapeHTML ($s));
 }
 $s = $dbh->selectrow_array ("SELECT abbrev FROM states WHERE name = ?",
 undef, $keyword);
 if ($s)
 {
 ++$found;
 print p ("You entered the state name: " . escapeHTML ($keyword));
 print p ("The corresponding abbreviation is : " . escapeHTML ($s));
 }
 if (!$found)
 {
 print p ("You entered the keyword: " . escapeHTML ($keyword));
 print p ("No match was found.");
 }

 $dbh->disconnect ();
}

print p (qq{
Enter a state name into the form and select Search, and I will
show you the corresponding abbreviation. Or enter an abbreviation
and I will show you the full name.
});

print start_form (-action => url ()),
 "State: ",
 textfield (-name => "keyword", -size => 20),
 br (),
 submit (-name => "choice", -value => "Search"),
 end_form ();

print end_html ();

The script first checks whether a keyword parameter is present. If so, it executes the
statements that look for a match to the parameter value in the states table and displays
the results. Then it presents the form so that the user can enter a new search.

When you try the script, you’ll notice that the value of the keyword field carries over
from one invocation to the next. That’s due to CGI.pm’s behavior of initializing form
fields with values from the script environment. If you don’t like this behavior, defeat it
and make the field come up blank each time by supplying an empty value explicitly and
an override parameter in the textfield() call:

print textfield (-name => "keyword",
 -value => "",
 -override => 1,
 -size => 20);

702 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

Alternatively, clear the parameter’s value in the environment before generating the field:
param (-name => "keyword", -value => "");
print textfield (-name => "keyword", -size => 20);

20.10. Generating Previous-Page and Next-Page Links
Problem
A statement matches so many rows that displaying them all in a single web page produces
an unwieldy result.

Solution
Split the statement output across several pages and include links that enable the user to
navigate among pages.

Discussion
If a statement matches a large number of rows, showing them all in a single web page
can result in a display that’s difficult to navigate. For such cases, it can be more convenient
for the user if you split the result among multiple pages. A paged display avoids over‐
whelming the user with too much information, but is more difficult to implement than
a single-page display.

A paged display typically is used in a search context to present rows that match the
search parameters supplied by the user. To simplify things, the examples in this recipe
don’t have any search interface. Instead, they implement a paged display that presents
10 rows at a time from the result of a fixed statement:

SELECT name, abbrev, statehood, pop FROM states ORDER BY name;

MySQL makes it easy to select just a portion of a result set: add a LIMIT clause that
indicates which rows you want. The two-argument form of LIMIT takes values indicating
how many rows to skip at the beginning of the result set, and how many to select. The
statement to select a section of the states table thus becomes:

SELECT name, abbrev, statehood, pop FROM states ORDER BY name
LIMIT skip,select;

One issue, then, is to determine the proper values of skip and select for any given
page. Another is to generate the links that point to other pages or the statement result.
This second issue presents you with a choice: which paging style should you use for the
links?

20.10. Generating Previous-Page and Next-Page Links | 703

www.it-ebooks.info

http://www.it-ebooks.info/

• One style of paged display presents only “previous page” and “next page” links. To
do this, you must know whether any rows precede or follow those you display in
the current page.

• Another paging style displays a link for each available page. This enables the user
to jump directly to any page, not just the previous or next page. To present this kind
of navigation, you must know the total number of rows in the result set and the
number of rows per page, so that you can determine how many pages there are.

Paged displays with previous-page and next-page links

The following script, state_pager1.pl, presents rows from the states table in a paged
display that includes navigation links only to the previous and next pages. For a given
page, determine the required links as follows:

• A “previous page” link is required if there are rows in the result set preceding those
shown in the current page. If the current page starts at row one, there are no such
rows.

• A “next page” link is required if there are rows in the result set following those
shown in the current page. You can determine this by issuing a SELECT COUNT(*)
statement to see how many rows the statement matches in total. Another method
is to select one more row than you need. For example, if you display 10 rows at a
time, try to select 11 rows. If you get 11, there is a next page. If you get 10 or less,
there isn’t. state_pager1.pl uses the latter approach.

To determine its current position in the result set and how many rows to display,
state_pager1.pl looks for start and per_page input parameters. When you first invoke
the script, these parameters aren’t present, so they’re initialized to 1 and 10, respectively.
Thereafter, the script generates “previous page” and “next page” links to itself that in‐
clude the proper parameter values in the URLs for selecting the previous or next sections
of the result set:

#!/usr/bin/perl
state_pager1.pl: paged display of states, with prev-page/next-page links

use strict;
use warnings;
use CGI qw(:standard escape escapeHTML);
use Cookbook;

my $title = "Paged U.S. State List";

my $page = header ()
 . start_html (-title => $title)
 . h3 ($title);

704 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

my $dbh = Cookbook::connect ();

Collect parameters that determine where we are in the display and
verify that they are integers.
Default to beginning of result set, 10 records/page if parameters
are missing/malformed.

my $start = param ("start");
$start = 1
 if !defined ($start) || $start !~ /^\d+$/ || $start < 1;

my $per_page = param ("per_page");
$per_page = 10
 if !defined ($per_page) || $per_page !~ /^\d+$/ || $per_page < 1;;

If start > 1, then we'll need a live "previous page" link.
To determine whether there is a next page, try to select one more
record than we need. If we get that many, display only the first
$per_page records, but add a live "next page" link.

Select the records in the current page of the result set, and
attempt to get an extra record. (If we get the extra one, we
won't display it, but its presence tells us there is a next
page.)

my $stmt = sprintf ("SELECT name, abbrev, statehood, pop
 FROM states
 ORDER BY name LIMIT %d,%d",
 $start - 1, # number of records to skip
 $per_page + 1); # number of records to select

my $tbl_ref = $dbh->selectall_arrayref ($stmt);

$dbh->disconnect ();

Display results as HTML table
my @rows;
push (@rows, Tr (th (["Name", "Abbreviation", "Statehood", "Population"])));
for (my $i = 0; $i < $per_page && $i < @{$tbl_ref}; $i++)
{
 # get data values in row $i
 my @cells = @{$tbl_ref->[$i]}; # get data values in row $i
 # map values to HTML-encoded values, or to if null/empty
 @cells = map {
 defined ($_) && $_ ne "" ? escapeHTML ($_) : " "
 } @cells;
 # add cells to table
 push (@rows, Tr (td (\@cells)));
}

$page .= table ({-border => 1}, @rows) . br ();

20.10. Generating Previous-Page and Next-Page Links | 705

www.it-ebooks.info

http://www.it-ebooks.info/

If we're not at the beginning of the query result, present a live
link to the previous page. Otherwise, present static text.

if ($start > 1) # live link
{
 my $url = sprintf ("%s?start=%d;per_page=%d",
 url (),
 $start - $per_page,
 $per_page);
 $page .= "[" . a ({-href => $url}, "previous page") . "] ";
}
else # static text
{
 $page .= "[previous page]";
}

If we got the extra record, present a live link to the next page.
Otherwise, present static text.

if (@{$tbl_ref} > $per_page) # live link
{
 my $url = sprintf ("%s?start=%d;per_page=%d",
 url (),
 $start + $per_page,
 $per_page);
 $page .= "[" . a ({-href => $url}, "next page") . "]";
}
else # static text
{
 $page .= "[next page]";
}

$page .= end_html ();

print $page;

Paged displays with links to each page

The next script, state_pager2.pl, is much like state_pager1.pl, but presents a paged dis‐
play that includes navigation links to each page of the query result. To do this, it’s nec‐
essary to know how many rows there are in all. state_pager2.pl determines this by run‐
ning a SELECT COUNT(*) statement. Because the script then knows the total row count,
it need not select an extra row when fetching the section of the result to be displayed.
(For a large table, SELECT COUNT(*) with no WHERE clause can be slow. For an application
using a such a table, it’s best to include a WHERE clause that narrows down the result.)

Omitting the parts of state_pager2.pl that are the same as state_pager1.pl, the middle
part that retrieves rows and generates links is implemented as follows:

Determine total number of records

706 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

my $total_recs = $dbh->selectrow_array ("SELECT COUNT(*) FROM states");

Select the records in the current page of the result set

my $stmt = sprintf ("SELECT name, abbrev, statehood, pop
 FROM states
 ORDER BY name LIMIT %d,%d",
 $start - 1, # number of records to skip
 $per_page); # number of records to select

my $tbl_ref = $dbh->selectall_arrayref ($stmt);

$dbh->disconnect ();

Display results as HTML table
my @rows;
push (@rows, Tr (th (["Name", "Abbreviation", "Statehood", "Population"])));
for (my $i = 0; $i < @{$tbl_ref}; $i++)
{
 # get data values in row $i
 my @cells = @{$tbl_ref->[$i]}; # get data values in row $i
 # map values to HTML-encoded values, or to if null/empty
 @cells = map {
 defined ($_) && $_ ne "" ? escapeHTML ($_) : " "
 } @cells;
 # add cells to table
 push (@rows, Tr (td (\@cells)));
}

$page .= table ({-border => 1}, @rows) . br ();

Generate links to all pages of the result set. All links are
live, except the one to the current page, which is displayed as
static text. Link label format is "[m to n]" where m and n are
the numbers of the first and last records displayed on the page.

for (my $first = 1; $first <= $total_recs; $first += $per_page)
{
 my $last = $first + $per_page - 1;
 $last = $total_recs if $last > $total_recs;
 my $label = "$first to $last";
 my $link;

 if ($first != $start) # live link
 {
 my $url = sprintf ("%s?start=%d;per_page=%d",
 url (),
 $first,
 $per_page);
 $link = a ({-href => $url}, $label);
 }
 else # static text

20.10. Generating Previous-Page and Next-Page Links | 707

www.it-ebooks.info

http://www.it-ebooks.info/

 {
 $link = $label;
 }
 $page .= "[$link] ";
}

20.11. Generating “Click to Sort” Table Headings
Problem
You want to display a query result in a web page as a table that enables the user to select
the column by which to sort the table rows.

Solution
Make each column heading a hyperlink that redisplays the table, sorted by the corre‐
sponding column.

Discussion
A web script can determine what action to take by examining its environment to find
out what parameters are present and what their values are. In many cases these param‐
eters come from a user, but there’s no reason a script cannot add parameters to URLs
itself. This is one way a given invocation of a script can send information to the next
invocation. The effect is that the script communicates with itself by means of URLs that
it generates to cause specific actions. An application of this technique is for showing the
result of a query such that a user can select which column of the result to use for sorting
the display. To do this, make the column headers active links that redisplay the table,
sorted by the selected column.

The examples here use the driver_log table, which has these contents:
mysql> SELECT * FROM driver_log;
+--------+-------+------------+-------+
| rec_id | name | trav_date | miles |
+--------+-------+------------+-------+
1	Ben	2014-07-30	152
2	Suzi	2014-07-29	391
3	Henry	2014-07-29	300
4	Henry	2014-07-27	96
5	Ben	2014-07-29	131
6	Henry	2014-07-26	115
7	Suzi	2014-08-02	502
8	Henry	2014-08-01	197
9	Ben	2014-08-02	79
10	Henry	2014-07-30	203
+--------+-------+------------+-------+

708 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

To retrieve the table and display its contents as an HTML table, use the techniques
discussed in Recipe 19.3. Here we’ll use those same concepts but modify them to produce
“click to sort” table column headings.

A “plain” HTML table includes a row of column headers consisting only of the column
names:

<tr>
 <th>rec_id</th>
 <th>name</th>
 <th>trav_date</th>
 <th>miles</th>
</tr>

To make the headings active links that reinvoke the script to produce a display sorted
by a given column name, we must produce a header row that looks like this:

<tr>
 <th>rec_id</th>
 <th>name</th>
 <th>trav_date</th>
 <th>miles</th>
</tr>

To generate such headings, the script must know the names of the columns in the table,
as well as its own URL. Recipes 10.6 and 20.1 show how to obtain this information using
statement metadata and information from the script’s environment. For example, in
PHP, a script can generate the header row for the columns in a given statement as follows,
where getColumnMeta(i) returns metadata for column i:

print ('<tr>');
$ncols = $sth->columnCount ();
for ($i = 0; $i < $ncols; $i++)
{
 $col_info = $sth->getColumnMeta ($i);
 $col_name = $col_info['name'];
 printf ('<th>%s</th>',
 $_SERVER['PHP_SELF'],
 urlencode ($col_name),
 htmlspecialchars ($col_name));
}
print ('</tr>');

The following script, clicksort.php, implements this kind of table display. It checks its
environment for a sort parameter that indicates which column to use for sorting, then
uses the parameter to construct a statement of the following form:

SELECT * FROM $tbl_name ORDER BY $sort_col LIMIT 50

There is a small bootstrapping problem for this kind of script. The first time you invoke
it, there is no sort column name in the environment, so the script doesn’t know which
column to sort by initially. What should you do? There are several possibilities:

20.11. Generating “Click to Sort” Table Headings | 709

www.it-ebooks.info

http://www.it-ebooks.info/

• Retrieve the results unsorted.
• Hardwire one of the column names into the script as the default.
• Retrieve the column names from INFORMATION_SCHEMA and use one of them (such

as the first) as the default:
SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = "cookbook" AND TABLE_NAME = "mail"
AND ORDINAL_POSITION = 1;

The following script looks up the name from INFORMATION_SCHEMA. It also uses a LIM
IT clause when retrieving results as a precaution that prevents the script from dumping
huge amounts of output if the table is large:

<?php
clicksort.php: display query result as HTML table with "click to sort"
column headings

Rows from the database table are displayed as an HTML table.
Column headings are presented as hyperlinks that reinvoke the
script to redisplay the table sorted by the corresponding column.
The display is limited to 50 rows in case the table is large.

require_once "Cookbook.php";
require_once "Cookbook_Utils.php";
require_once "Cookbook_Webutils.php";

$title = "Table Display with Click-To-Sort Column Headings";
?>

<html>
<head><title><?php print ($title); ?></title></head>
<body>

<?php
names for database and table and default sort column; change as desired
$db_name = "cookbook";
$tbl_name = "driver_log";

$dbh = Cookbook::connect ();

print ("<p>" . htmlspecialchars ("Table: $db_name.$tbl_name") . "</p>");
print ("<p>Click a column name to sort by that column.</p>");

Get the name of the column to sort by: If missing, use the first column.

$sort_col = get_param_val ("sort");
if (!isset ($sort_col))
{
 $stmt = "SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE TABLE_SCHEMA = ? AND TABLE_NAME = ?

710 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

 AND ORDINAL_POSITION = 1";
 $sth = $dbh->prepare ($stmt);
 $sth->execute (array ($db_name, $tbl_name));
 list ($sort_col) = $sth->fetch (PDO::FETCH_NUM);
}

Construct query to select records from the table, sorting by the
named column. Limit output to 50 rows to avoid dumping entire
contents of large tables.

$stmt = sprintf ("SELECT * FROM %s.%s ORDER BY %s LIMIT 50",
 quote_identifier ($db_name),
 quote_identifier ($tbl_name),
 quote_identifier ($sort_col));
$sth = $dbh->query ($stmt);

Display query results as HTML table. Use query metadata to get column
names, and display names in first row of table as hyperlinks that cause
the table to be redisplayed, sorted by the corresponding table column.

print ('<table border="1">');
print ('<tr>');
$ncols = $sth->columnCount ();
for ($i = 0; $i < $ncols; $i++)
{
 $col_info = $sth->getColumnMeta ($i);
 $col_name = $col_info['name'];
 printf ('<th>%s</th>',
 $_SERVER['PHP_SELF'],
 urlencode ($col_name),
 htmlspecialchars ($col_name));
}
print ('</tr>');
while ($row = $sth->fetch (PDO::FETCH_NUM))
{
 print ('<tr>');
 for ($i = 0; $i < $ncols; $i++)
 {
 # encode values, using for empty cells
 $val = $row[$i];
 if (isset ($val) && $val != '')
 $val = htmlspecialchars ($val);
 else
 $val = ' ';
 printf ('<td>%s</td>', $val);
 }
 print ('</tr>');
}
print ('</table>');

$dbh = NULL;
?>

20.11. Generating “Click to Sort” Table Headings | 711

www.it-ebooks.info

http://www.it-ebooks.info/

</body>
</html>

The $sort_col value comes from the sort parameter of the environment, so it should
be considered dangerous: An attacker might submit a URL with a sort parameter de‐
signed to attempt an SQL injection attack. To prevent this, $sort_col should be quoted
when you construct the SELECT statement that retrieves rows from the displayed table.
You cannot use a placeholder to quote the value because that technique applies to data
values. ($sort_col is an identifier here, not a data value.) clicksort.php uses the
quote_identifier() function from Cookbook_Utils.php to make the identifiers safe
for inclusion in the SQL statement (see Recipe 2.6).

Another approach to validating the column name is to check the COLUMNS table of
INFORMATION_SCHEMA. This enables you to incorporate the table name into the query as
a data value, so it can be supplied using a placeholder. If the sort column is not found,
it is invalid. The clicksort.php script shown here does not do that. However, the rec
ipes distribution contains a Perl counterpart script, clicksort.pl, that does perform this
kind of check. Have a look at it if you want more information.

The cells in the rows following the header row contain the data values from the database
table, displayed as static text. Empty cells are displayed using so that they display
with the same border as nonempty cells (see Recipe 19.3).

20.12. Web Page Access Counting
Problem
You want to count the number of times web pages have been accessed.

Solution
Implement a hit counter, keyed to the page to be counted. This can be used to display
a counter in the page. Use the same technique to record other types of information as
well, such as the number of times each of a set of banner ads has been served.

Discussion
This recipe discusses access counting, using hit counters for the examples. Counters
that display the number of times a web page has been accessed are not such a big thing
as they used to be, presumably because page authors now realize that they serve pri‐
marily the author’s vanity; most visitors don’t really care how popular a page is. Still,
the general concept has application in many contexts. For example, if you display banner
ads in your pages (see Recipe 19.7), you likely charge vendors by the number of times

712 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

you serve their ads. To do so, you must count the number of accesses for each. The
technique shown in this section can be adapted for all such purposes.

There are several methods for writing a page that displays a count of the number of
times it has been accessed. The most basic is to maintain the count in a file. For each
page request, open the file, read the count, increment it, write the new count to the file,
and display it in the page. This is easy to implement but requires a counter file for each
page that includes a hit count. It also doesn’t work properly if two clients access the page
at the same time, unless you implement some kind of locking protocol in the file-access
procedure. It’s possible to reduce counter file litter by keeping multiple counts in a single
file, but that makes it more difficult to access particular values within the file, and it
doesn’t solve the simultaneous-access problem. In fact, the problem is worse because a
multiple-counter file has a higher likelihood of being accessed by multiple clients si‐
multaneously than does a single-counter file. So you end up implementing storage and
retrieval methods for processing the file contents, and locking protocols to keep multiple
processes from interfering with each other. Hmm... those sound suspiciously like the
problems that a database management system such as MySQL already takes care of!
Keeping the counts in the database centralizes them into a single table, SQL provides
the storage and retrieval interface, and the locking problem goes away because MySQL
serializes access to the table so that clients can’t interfere with each other. Furthermore,
depending on how you manage the counters, you might be able to update the counter
and retrieve the new sequence value using a single statement.

Assume that you want to log hits for more than one page. To do that, create a table that
has one row for each page to be counted. This necessitates a unique identifier for each
page, so that counters for different pages don’t get mixed up. Each page’s path within
your web tree is unique, so just use that. (Web programming languages typically make
this path easy to obtain, as discussed in Recipe 20.1.) On that basis, create a hitcount
table as follows:

CREATE TABLE hitcount
(
 path VARCHAR(255)
 CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL,
 hits BIGINT UNSIGNED NOT NULL,
 PRIMARY KEY (path)
);

This table definition involves some assumptions:

• The path column that stores page pathnames has a character set of latin1 and a
case-sensitive collation of latin1_general_cs. Use of a case-sensitive collation is
appropriate for a web platform where pathnames are case sensitive, such as most
versions of Unix. For Windows or for HFS+ filesystems under Mac OS X, filenames
are not case sensitive, so you would choose a collation that is not case sensitive,

20.12. Web Page Access Counting | 713

www.it-ebooks.info

http://www.it-ebooks.info/

such as latin1_swedish_ci. If your filesystem is set up to use pathnames in a
different character set, change the character set and collation.

• The path column has a maximum length of 255 characters, which limits you to
page paths no longer than that.

• The path column is indexed as a PRIMARY KEY to require unique values. Either a
PRIMARY KEY or UNIQUE index is required because we will implement the hit-
counting algorithm using an INSERT statement with an ON DUPLICATE KEY UPDATE
clause to insert a row if none exists for the page or update the row if it does exist.
(Recipe 13.12 explains ON DUPLICATE KEY UPDATE.)

• The table is set up to count page hits for a single document tree, such as when your
web server is used to serve pages for a single domain. If you institute a hit count
mechanism on a host that serves multiple virtual domains, you may want to add a
column for the domain name. This value is available in the SERVER_NAME value that
Apache puts into your script’s environment. In this case, the hitcount table index
should include both the hostname and the page path.

The general logic involved in hit counter maintenance is to increment the hits column
of the row for a page, and then retrieve the updated counter value:

UPDATE hitcount SET hits = hits + 1 WHERE path = 'page path';
SELECT hits FROM hitcount WHERE path = 'page path';

Unfortunately, with that approach, you might not get the correct value. If several clients
request the page simultaneously, several UPDATE statements execute in close temporal
proximity and the SELECT statements that follow won’t necessarily get the corresponding
hits value. This can be avoided by using a transaction or by locking the hitcount table,
but that slows down hit counting. MySQL provides a solution that enables each client
to retrieve its own count, no matter how many simultaneous updates occur:

UPDATE hitcount SET hits = LAST_INSERT_ID(hits+1) WHERE path = 'page path';
SELECT LAST_INSERT_ID();

The basis for updating the count here is LAST_INSERT_ID(expr), discussed in
Recipe 13.12. The UPDATE statement finds the relevant row and increments its counter
value. The use of LAST_INSERT_ID(hits+1) rather than just hits+1 tells MySQL to treat
the value as though it were an AUTO_INCREMENT value. This enables it to be retrieved in
the second statement using LAST_INSERT_ID(). The LAST_INSERT_ID() function re‐
turns a connection-specific value, so it always corresponds to the preceding UPDATE for
the same connection. In addition, the SELECT statement doesn’t query a table, so it’s very
fast.

However, there’s still a problem. What if the page isn’t listed in the hitcount table? In
that case, the UPDATE statement finds no row to modify and you get a counter value of
zero. You could deal with this problem by requiring that any page that includes a hit
counter must be registered in the hitcount table before the page goes online. This is

714 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

tedious and difficult to enforce. An easier approach is to use MySQL’s INSERT … ON
DUPLICATE KEY UPDATE syntax to insert a row with a count of 1 if it does not exist, and
update its counter if it does exist:

INSERT INTO hitcount (path,hits) VALUES('some path',LAST_INSERT_ID(1))
ON DUPLICATE KEY UPDATE hits = LAST_INSERT_ID(hits+1);
SELECT LAST_INSERT_ID();

The first time you request a count for a page, the statement inserts a row because the
page isn’t listed in the table yet. The statement creates a new counter and initializes it to
one. For each request thereafter, the statement updates the existing row for the page
with the new count. No advance page registration in the hitcount table is required.

If your API provides a means for direct retrieval of the most recent sequence number,
a further efficiency is gained by eliminating the SELECT statement altogether. For ex‐
ample, in Perl, you can update the count and get the new value with only one SQL
statement like this:

$dbh->do ("INSERT INTO hitcount (path,hits) VALUES(?,LAST_INSERT_ID(1))
 ON DUPLICATE KEY UPDATE hits = LAST_INSERT_ID(hits+1)",
 undef, $page_path);
$count = $dbh->{mysql_insertid};

To make the counter mechanism easier to use, put the code in a utility function that
takes a page path as an argument and returns the count. In Perl, a hit-counting function
might look like this, in which the arguments are a database handle and the page path:

sub get_hit_count
{
my ($dbh, $page_path) = @_;

 $dbh->do ("INSERT INTO hitcount (path,hits) VALUES(?,LAST_INSERT_ID(1))
 ON DUPLICATE KEY UPDATE hits = LAST_INSERT_ID(hits+1)",
 undef, $page_path);
 return $dbh->{mysql_insertid};
}

The CGI.pm script_name() function returns the local part of the URL, so use
get_hit_count() like this:

my $count = get_hit_count ($dbh, script_name ());
print p ("This page has been accessed $count times.");

The technique is analogous for other languages. For example, the Ruby version of the
hit counter looks like this:

def get_hit_count(dbh, page_path)
 dbh.do("INSERT INTO hitcount (path,hits) VALUES(?,LAST_INSERT_ID(1))
 ON DUPLICATE KEY UPDATE hits = LAST_INSERT_ID(hits+1)",
 page_path)
 return dbh.func(:insert_id)
end

20.12. Web Page Access Counting | 715

www.it-ebooks.info

http://www.it-ebooks.info/

Use the counter method as follows:
count = get_hit_count(dbh, ENV["SCRIPT_NAME"])
page << cgi.p { "This page has been accessed #{count} times." }

The recipes distribution includes demonstration hit counter scripts in the apache/
hits directory (tomcat/mcb for JSP). Install any of these in your web tree, invoke it from
your browser a few times, and watch the count increase. First, you must create the
hitcount table. To do this, use the hits.sql script provided in the tables directory. (The
script also creates the hitlog table because the hit-counting scripts implement hit log‐
ging as well, as discussed in Recipe 20.13.)

20.13. Web Page Access Logging
Problem
You want to know things about a page other than the number of times it’s been accessed,
such as when accesses occur and the hosts from which requests originate.

Solution
Maintain a hit log rather than a simple counter.

Discussion
The hitcount table used in Recipe 20.12 records only the access count for each page
registered in it. Suppose that you want to track other information about page access,
such as the time of access and client host for each request. In this case, you must log a
row for each page access rather than maintain only a count:

CREATE TABLE hitlog
(
 path VARCHAR(255)
 CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL,
 t TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
 host VARCHAR(255),
 INDEX (path)
);

The hitlog table has the useful property that access times are recorded automatically
in the TIMESTAMP column t when you insert new rows (see Recipe 6.7). For notes on
choosing the character set and collation for the path column, see Recipe 20.12.

To insert new rows into the hitlog table, use this statement:
INSERT INTO hitlog (path, host) VALUES(path_val,host_val);

For example, in a JSP page, log hits like this:

716 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

<c:set var="host"><%= request.getRemoteHost () %></c:set>
<c:if test="${empty host}">
 <c:set var="host"><%= request.getRemoteAddr () %></c:set>
</c:if>
<c:if test="${empty host}">
 <c:set var="host">UNKNOWN</c:set>
</c:if>

<sql:update dataSource="${conn}">
 INSERT INTO hitlog (path, host) VALUES(?,?)
 <sql:param><%= request.getRequestURI () %></sql:param>
 <sql:param value="${host}"/>
</sql:update>

Although the hitlog table doesn’t maintain page-access counts, you can determine
them easily:

• To determine the number of hits for a given page, use this statement:
SELECT COUNT(*) FROM hitlog WHERE path = 'path_name';

• To determine the current counter value for all pages and retrieve them in order with
the most-requested pages first, do this:

SELECT path, COUNT(*) FROM hitlog GROUP BY path ORDER BY COUNT(*) DESC;

20.14. Using MySQL for Apache Logging
Problem
You don’t want to use MySQL to log accesses for just a few pages, as shown in
Recipe 20.13. You want to log all page accesses, without having to put explicit logging
code in each page.

Solution
Tell Apache to log page accesses by writing to a MySQL table.

Discussion
The uses for MySQL in a web context aren’t limited to page generation and processing.
MySQL can help you run the web server itself. For example, most Apache servers are
set up to log a record of page requests to a file. But it’s also possible to send log records
to a program instead, from which you can write the records wherever you like—such
as to a database. Logging records in a database rather than a flat file makes the log more
highly structured and you can apply SQL analysis techniques to it. Want to see a par‐
ticular report? Write the SQL statements that produce it. To display the report in a

20.14. Using MySQL for Apache Logging | 717

www.it-ebooks.info

http://www.it-ebooks.info/

specific format, issue the statements from within an API and take advantage of your
language’s output production capabilities.

By handling log entry generation and storage using separate processes, you gain flexi‐
bility. Some of the possibilities are to send logs from multiple web servers to the same
MySQL server, or to send different logs generated by a given web server to different
MySQL servers.

This recipe shows how to integrate MySQL into Apache’s logging mechanism and dem‐
onstrates some representative summary queries.

Setting up database logging

Directives in the httpd.conf configuration file control Apache logging. For example, a
typical logging setup uses LogFormat and CustomLog directives that look like this:

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog /usr/local/apache/logs/access_log common

The LogFormat line defines a format for log records and gives it the nickname common.
The CustomLog directive indicates that lines should be written in that format to the
access_log file in Apache’s logs directory. To set up logging to MySQL instead, use the
following procedure. (Adapt it as necessary if you use logging directives such as Trans
ferLog rather than LogFormat and CustomLog.)

1. Decide what values to record and set up a table that contains the appropriate col‐
umns.

2. Write a program that reads log lines from Apache and writes them to the database.
3. Set up a LogFormat line that defines how to write log lines in the format the program

expects, and a CustomLog directive that tells Apache to write to the program rather
than to a file.

Suppose that you want to record the date and time of each request, the host that issued
the request, the request method and URL pathname, the status code, the number of
bytes transferred, the referring page, and the user agent (typically a browser or spider
name). The following table includes columns for these values:

CREATE TABLE httpdlog
(
 dt DATETIME NOT NULL, # request date
 host VARCHAR(255) NOT NULL, # client host
 method VARCHAR(4) NOT NULL, # request method (GET, PUT, etc.)
 url VARCHAR(255) # URL path
 CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL,
 status INT NOT NULL, # request status
 size INT, # number of bytes transferred
 referer VARCHAR(255), # referring page

718 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

 agent VARCHAR(255) # user agent
);

Most of the string columns use VARCHAR and are not case sensitive. The exception,
url, is declared with a case-sensitive collation as is appropriate for a server running on
a system with case-sensitive filenames. For notes on choosing the character set and
collation for the path column, see Recipe 20.12.

The httpdlog table definition shown here includes no indexes. If you plan to run sum‐
mary queries, add appropriate indexes to the table. Otherwise, the summaries slow
dramatically as table size increases. The columns to index depend on the types of state‐
ments you intend to run to analyze the table contents. For example, statements that
analyze the distribution of client host values benefit from an index on the host column.

Next, you need a program to process log lines produced by Apache and insert them into
the httpdlog table. The following script, httpdlog.pl, opens a connection to the MySQL
server, then loops to read input lines. It parses each line into column values and inserts
the result into the database. When Apache exits, it closes the pipe to the logging program.
httpdlog.pl sees end of file on its input, terminates the loop, and disconnects from
MySQL:

#!/usr/bin/perl
httpdlog.pl: Log Apache requests to httpdlog table

path to directory containing Cookbook.pm (*** CHANGE AS NECESSARY ***)
use lib qw(/usr/local/lib/mcb);
use strict;
use warnings;
use Cookbook;

my $dbh = Cookbook::connect ();
my $sth = $dbh->prepare (qq{
 INSERT INTO httpdlog
 (dt,host,method,url,status,size,referer,agent)
 VALUES (?,?,?,?,?,?,?,?)
 });

while (<>) # loop while there is input to read
{
 chomp;
 my ($dt, $host, $method, $url, $status, $size, $refer, $agent)
 = split (/\t/, $_);
 # map "-" to NULL for some columns
 $size = undef if $size eq "-";
 $agent = undef if $agent eq "-";
 $sth->execute ($dt, $host, $method, $url,
 $status, $size, $refer, $agent);
}

$dbh->disconnect ();

20.14. Using MySQL for Apache Logging | 719

www.it-ebooks.info

http://www.it-ebooks.info/

The purpose of including the use lib line is so that Perl can find the Cookbook.pm
module. This line is needed if the environment of scripts invoked by Apache for logging
does not enable Perl to find the module. Adjust the path as necessary for your system.
Alternatively, modify the Apache environment using a SetEnv directive (see
Recipe 18.2).

httpdlog.pl assumes that input lines contain httpdlog column values delimited by tabs
(to make it easy to break input lines), so Apache must write log entries in a matching
format. The following table shows the LogFormat field specifiers to produce the appro‐
priate values:

Specifier Meaning

%{%Y-%m-%d %H:%M:%S}t The date and time of the request, in MySQL’s DATETIME format

%h The host from which the request originated

%m The request method (get, post, and so forth)

%U The URL path

%>s The status code

%b The number of bytes transferred

%{Referer}i The referring page

%{User-Agent}i The user agent

To define a logging format named mysql that produces these values with tabs in between,
add the following LogFormat directive to your httpd.conf file:

LogFormat \
"%{%Y-%m-%d %H:%M:%S}t\t%h\t%m\t%U\t%>s\t%b\t%{Referer}i\t%{User-Agent}i" \
mysql

Most of the pieces are in place now. We have a log table, a program that writes to it, and
a mysql format for producing log entries. Install the httpdlog.pl script where you want
Apache to look for it. On my system, the Apache root directory is /usr/local/apache,
so /usr/local/apache/bin is a reasonable installation directory. This path is needed shortly
for constructing the CustomLog directive that instructs Apache to log to the script.

All that remains is to tell Apache to write the entries to the httpdlog.pl script. However,
until you know that the output format really is correct and that the program can process
log entries properly, it’s premature to tell Apache to log directly to the program. To make
testing and debugging a bit easier, have Apache log mysql-format entries to a file instead.
That way, you can look at the file to check the output format, and you can use it as input
to httpdlog.pl to verify that the program works correctly. To instruct Apache to log lines
in mysql format to the file test_log in Apache’s log directory, use this CustomLog directive:

CustomLog /usr/local/apache/logs/test_log mysql

720 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

Then restart Apache to enable the new logging directives. After your web server receives
a few requests, take a look at the test_log file. Verify that the contents are as you expect,
then feed the file to httpdlog.pl:

% /usr/local/apache/bin/httpdlog.pl test_log

After httpdlog.pl finishes, take a look at the httpdlog table to make sure that it looks
correct. Once you’re satisfied, tell Apache to send log entries directly to httpdlog.pl by
modifying the CustomLog directive as follows:

CustomLog "|/usr/local/apache/bin/httpdlog.pl" mysql

The | character at the beginning of the pathname tells Apache that httpdlog.pl is a
program, not a file. Restart Apache and new entries should appear in the httpdlog table
as visitors request pages from your site.

Nothing you have done to this point changes any logging you may have been doing
originally. For example, if you were logging to an access_log file before, you still are now,
so Apache is sending entries both to the original logfile and to MySQL. If that’s what
you want, fine. Apache doesn’t care if you log to multiple destinations, but you’ll use
more disk space. To disable file logging, disable your original CustomLog directive and
restart Apache.

Analyzing the logfile

Now that Apache is logging into the database, what you do with the information depends
on what you want to know. Here are some questions MySQL can answer easily:

• How many requests were received?
SELECT COUNT(*) FROM httpdlog;

• How many different client hosts sent requests?
SELECT COUNT(DISTINCT host) FROM httpdlog;

• How many different pages did clients request?
SELECT COUNT(DISTINCT url) FROM httpdlog;

• What are the 10 most popular pages?
SELECT url, COUNT(*) AS count FROM httpdlog
GROUP BY url ORDER BY count DESC LIMIT 10;

• How many requests were received for favicon.ico files that certain browsers like to
check for?

SELECT COUNT(*) FROM httpdlog WHERE url LIKE '%/favicon.ico%';

• What is the range of dates spanned by the log?
SELECT MIN(dt), MAX(dt) FROM httpdlog;

• How many requests were received each day?

20.14. Using MySQL for Apache Logging | 721

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT DATE(dt) AS day, COUNT(*) FROM httpdlog GROUP BY day;

Answering this question requires stripping the time-of-day part from the dt values
so that requests received on a given date can be grouped. The statement does this
using the DATE() function to convert DATETIME values to DATE values. However, if
you intend to run a lot of statements that use just the date part of the dt values, it
would be more efficient to create the httpdlog table with separate DATE and TIME
columns, change the LogFormat directive to produce the date and time as separate
output values, and modify httpdlog.pl accordingly. Then you can operate on the
request dates directly without stripping the time, and you can index the date column
for even better performance.

• What is the hour-of-the-day request histogram?
SELECT HOUR(dt) AS hour, COUNT(*) FROM httpdlog GROUP BY hour;

• What is the average number of requests received each day?
SELECT COUNT(*)/(DATEDIFF(MAX(dt), MIN(dt)) + 1) FROM httpdlog;

The numerator is the number of requests in the table. The denominator is the
number of days spanned by the records.

• What is the longest URL recorded in the table?
SELECT MAX(LENGTH(url)) FROM httpdlog;

If the url column is defined as VARCHAR(255) and this statement produces a value
of 255, it’s likely that some URL values were too long to fit in the column and were
truncated at the end. To avoid this, change the column definition to permit more
characters. For example, to permit up to 5,000 characters, modify the url column
as follows:

ALTER TABLE httpdlog
 MODIFY url VARCHAR(5000)
 CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL;

• What is the total number of bytes served and the average bytes per request?
SELECT
 COUNT(size) AS requests,
 SUM(size) AS bytes,
 AVG(size) AS 'bytes/request'
FROM httpdlog;

The statement uses COUNT(size) rather than COUNT(*) to count only those requests
with a non-NULL size value. If a client requests a page twice, the server may respond
to the second request by sending a header indicating that the page hasn’t changed
rather than by sending content. In this case, the log entry for the request will have
NULL in the size column.

• How much traffic has there been for each kind of file (based on filename extension
such as .html, .jpg, or .php)?

722 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT
 SUBSTRING_INDEX(SUBSTRING_INDEX(url,'?',1),'.',-1) AS extension,
 COUNT(size) AS requests,
 SUM(size) AS bytes,
 AVG(size) AS 'bytes/request'
FROM httpdlog
WHERE url LIKE '%.%'
GROUP BY extension;

The WHERE clause selects only url values that have a period in them, to eliminate
pathnames that refer to files that have no extension. To extract the extension values
for the output column list, the inner SUBSTRING_INDEX() call strips any parameter
string from the right end of the URL and leaves the rest. (This turns a value like /
cgi-bin/script.pl?id=43 into /cgi-bin/script.pl. If the value has no param‐
eter part, SUBSTRING_INDEX() returns the entire string.) The outer SUBSTRING_IN
DEX() call strips everything up to and including the rightmost period from the
result, leaving only the extension.

Other logging issues

The preceding discussion shows a simple method for hooking Apache to MySQL: write
a short script that communicates with MySQL, and tell Apache to write to the script
rather than to a file. This works well if you log all requests to a single file, but certainly
isn’t appropriate for every possible configuration of which Apache is capable. For ex‐
ample, if you have virtual servers defined in your httpd.conf file, you might have separate
CustomLog directives defined for each server. To log them all to MySQL, you can change
each directive to write to httpdlog.pl, but that results in a separate logging process for
each virtual server.

That brings up the issue of how you associate log records with the proper virtual server.
One solution is to create a separate log table for each server and modify httpdlog.pl to
take an argument that indicates which table to use. Another is to use a table that has a
vhost column, an Apache log format that includes the %v virtual host format specifier,
and a logging script that uses the vhost value when it generates INSERT statements. The
apache/httpdlog directory of the recipes distribution contains an httpdlog2.pl script
that implements this method, along with instructions for using it.

Logging to a database rather than a file enables you to bring the full power of MySQL
to bear on log analysis, but it doesn’t eliminate the need to think about space manage‐
ment. Web servers can generate a lot of activity, and log records use space regardless of
whether you write them to a file or to a database. One way to save space is to expire
records now and then. For example, to remove log records that are more than a year
old, run the following statement periodically:

DELETE FROM httpdlog WHERE dt < NOW() - INTERVAL 1 YEAR;

20.14. Using MySQL for Apache Logging | 723

www.it-ebooks.info

http://www.it-ebooks.info/

To do this automatically, set up a scheduled event that runs the DELETE statement peri‐
odically (see Recipe 9.8).

With respect to disk space consumed by web logging activity, be aware that if you have
query logging enabled for the MySQL server, each request will be written to the httpdlog
table and also to the query log. Thus, you may find disk space disappearing more quickly
than you expect, so it’s a good idea to have some kind of logfile rotation or expiration
set up. For some ideas, see Recipe 22.4.

724 | Chapter 20: Processing Web Input with MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Using MySQL-Based Web Session
Management

21.0. Introduction
Many web applications interact with users over a series of requests and, as a result, must
retain information from one request to the next. A set of related requests is called a
session. Sessions are useful for activities such as performing login operations and as‐
sociating a logged-in user with subsequent requests, and gathering input from a user in
stages (possibly using earlier responses to tailor later questions). However, HTTP is a
stateless protocol, so web servers treat each request independently of any other—unless
you take steps to ensure otherwise.

This chapter shows how to make information persist across multiple requests, which
enables you to develop applications for which one request retains memory of previous
ones. The techniques shown here are general enough to apply to a variety of state-
maintaining web applications.

Session Management Issues
Some session management methods rely on information stored on the client. One way
to implement client-side storage is to use cookies, implemented as information trans‐
mitted back and forth in special request and response headers. When a session begins,
the application generates and sends the client a cookie containing the initial information
to be stored. The client returns the cookie to the server with subsequent requests to
identify itself and enable the application to recognize the requests as stages of the same
client session. At each stage, the application uses the cookie content to determine the
state (or status) of the client. To modify the session state, the application sends the client
a new cookie containing updated information to replace the old cookie. This mechanism
enables data to persist across requests while still affording the application the

725

www.it-ebooks.info

http://www.it-ebooks.info/

opportunity to update the information as necessary. Cookies are easy to use, but it’s
possible for the client to modify cookie contents, possibly tricking the application into
misbehaving. Other client-side session storage techniques suffer the same drawback.

The alternative to client-side storage is to maintain session state on the server side.
Information about client activity is stored somewhere on the server, such as in a file, in
shared memory, or in a database. The only information maintained on the client side
is a unique identifier that the server generates and sends to the client when the session
begins. The client sends this value to the server with each subsequent request so the
server can associate the client with the appropriate session. Common techniques for
tracking the session ID are to store it in a cookie or to encode it in request URLs (useful
for clients that have cookies disabled). The server gets the ID from the cookie value or
by extracting it from the URL.

Server-side session storage is more secure than storing information on the client because
the application maintains control over the session contents. The only value present on
the client side is the session ID, so the client can’t modify session data unless the appli‐
cation permits it. It’s still possible for a client to tinker with the ID and send back a
different one, but if IDs are unique and selected from a very large pool of possible values,
a malicious client is unlikely to guess the ID of another valid session. If you are concerned
about other clients stealing valid session IDs by network snooping, use sessions within
the context of secure connections (for example, by using SSL). But that is beyond the
scope of this book.

Server-side methods for managing sessions commonly store session contents in per‐
sistent backing storage such as a file or a database. Database storage characteristics differ
from file storage, such as that you eliminate the filesystem clutter that results from
having many session files, and you can use the same MySQL server to handle session
traffic for multiple web servers. If this appeals to you, the techniques shown in the
chapter enable you to integrate MySQL-based session management into your applica‐
tions. The chapter shows how to implement server-side database-backed session man‐
agement for several of our API languages:

• The Perl Apache::Session module includes most of the capabilities needed for ses‐
sion management. It can store session information in files or in any of several da‐
tabase systems, including MySQL, PostgreSQL, and Oracle.

• The Ruby CGI::Session class provides session-handling capability. It uses tempo‐
rary files by default, but permits other storage managers to be used, such as the
mysql-session package for MySQL.

• PHP includes native session support. The implementation uses temporary files by
default, but applications can supply their own handler routines for session storage.
This makes it possible to plug in a storage module that uses MySQL.

726 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

• For Java-based web applications running under the Tomcat web server, Tomcat
provides session support at the server level. Tomcat uses temporary files by default,
but you need only modify a server or application configuration file to use MySQL
for session storage. There are no changes to application programs, which need do
nothing to select one session backing-store method or another.

Session support for different APIs can use very different approaches. For Perl, the lan‐
guage itself provides no session support, so a script must include a module such as
Apache::Session explicitly if it wants to implement a session. Ruby is similar. In PHP,
the session manager is built in. Scripts can use it with no special preparation, but only
as long as they want to use the default storage method (files). To use an alternative
method (such as storing sessions in MySQL), an application must register its own rou‐
tines with the session manager. Still another approach is used for Java applications run‐
ning under Tomcat, because Tomcat itself manages many of the details associated with
session management, including where to store session data. Individual applications
need not know or care where this information is stored.

Despite their differences, session management implementations typically perform a
common set of tasks:

• Determine whether the client provided a session ID. If not, generate a unique ses‐
sion ID and send it to the client. Some session managers transmit the session ID
between the server and the client automatically. PHP does this, as does Tomcat for
Java programs. The Perl Apache::Session module leaves it to the application devel‐
oper to manage ID transmission.

• Store values into the session for use by later requests and retrieve values placed into
the session by earlier requests. This involves any activity that uses session data:
increment a counter, validate a login request, update a shopping cart, and so forth.

• Terminate the session when it’s no longer needed. Some session managers can expire
sessions automatically after a period of inactivity. Sessions may also end explicitly,
if the request indicates that the session should terminate (such as when the client
selects a logout action). In response, the session manager destroys the session re‐
cord. It might also be necessary to tell the client to release information. If the client
sends the session identifier in a cookie, the application should instruct the client to
discard the cookie. Otherwise, the client may continue to submit it after it no longer
applies. Another approach to session “termination” is to delete all information from
the session record. This causes a new session to start with the client’s next request
because no previous session information is available.

Session managers impose little constraint on what applications can store in session
records. Sessions usually can accommodate various types of data, such as scalars, arrays,
or objects. To make it easy to store and retrieve session data, session managers typically
serialize session information by converting it to a coded scalar string value before storing

21.0. Introduction | 727

www.it-ebooks.info

http://www.it-ebooks.info/

it and unserialize it after retrieval. The conversion to and from serialized strings gen‐
erally is not something you must deal with when providing storage routines. It’s nec‐
essary only to make sure the storage manager has a large enough repository in which
to store the serialized strings. For backing store implemented using MySQL, use one of
the BLOB data types. Our session managers use the largest such type, LONGBLOB. When
assessing storage needs, remember that stored data is serialized, which takes more space
than raw data.

The rest of the chapter shows a session-based script for each API. Each script performs
two tasks. It maintains a counter value that indicates how many requests have been
received during the current session, and records a timestamp for each request. In this
way, the scripts illustrate how to store and retrieve a scalar value (the counter) and a
nonscalar value (the timestamp array). They require very little interaction with the user,
who simply reloads the page to issue the next request. This results in extremely simple
code.

Session-based applications often include some way for the user to log out explicitly and
terminate the session. The example scripts implement a form of “logout” based on an
implicit mechanism: sessions have a limit of 10 requests. As you reinvoke a script, it
checks whether the counter limit has been reached and destroys the session data if so.
Because the session values are not present in the next request, the script starts a new
session.

To see the queries that MySQL-based session managers generate, watch the server’s
general query log as you invoke session scripts from your browser. (The log must be
enabled; see Recipe 22.3.)

The example session scripts for Perl, Ruby, and PHP are located under the apache
directory of the recipes distribution; the PHP session module is located in the lib
directory; and the JSP examples are under the tomcat directory. SQL scripts for creating
the session storage tables are located in the tables directory. As used here, the session
tables are created in the cookbook database and accessed through the same MySQL
account as that used elsewhere in this book. If you don’t want to mix session management
activities with those pertaining to the other cookbook tables, consider setting up a sep‐
arate database and MySQL account to be used only for session data. This is true par‐
ticularly for Tomcat, where session management takes place above the application level.
You might not want the Tomcat server storing information in “your” database; if not,
give Tomcat its own database.

21.1. Using MySQL-Based Sessions in Perl Applications
Problem
You want to use session storage for Perl scripts.

728 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
The Apache::Session module provides a convenient way to use several different storage
types, including one based on MySQL.

Discussion
Apache::Session is an easy-to-use Perl module for maintaining state information across
multiple web requests. Despite the name, this module does not require Apache and can
be used in nonweb contexts—for example, to maintain persistent state across multiple
invocations of a command-line script.

Apache::Session does not handle issues associated with tracking the session ID (sending
it to the client in response to the initial request and extracting it from subsequent re‐
quests). The example application shown here uses cookies to pass the session ID, on the
assumption that the client has cookies enabled.

Apache::Session setup

If Apache::Session is not installed, get it from CPAN. Apache::Session also requires
several other modules that you may need to install first. (If you use a cpan install
Apache::Session command, that should install the module and take care of dependen‐
cies.) After you have everything installed, create a table in which to store session records,
in any database you like (we’ll use cookbook). The specification for the table comes from
the MySQL storage handler documentation, which you can read using this command:

% perldoc Apache::Session::Store::MySQL

We’ll use a table named perl_session with this structure:
CREATE TABLE perl_session
(
 id CHAR(32) NOT NULL, # session identifier
 a_session LONGBLOB, # session data
 PRIMARY KEY (id)
);

The id column holds session identifiers, which are unique 32-character MD5 values
generated by Apache::Session. The a_session column stores session data as serialized
strings. Apache::Session uses the Storable module to serialize and unserialize session
data. (The Apache::Session::Store::MySQL documentation indicates that a_session is
a TEXT column, but any BLOB or TEXT data type large enough to hold the anticipated
session records should work.)

The Apache::Session interface

To use the perl_session table in a script, include the MySQL-related session module:
use Apache::Session::MySQL;

21.1. Using MySQL-Based Sessions in Perl Applications | 729

www.it-ebooks.info

http://cpan.perl.org
http://www.it-ebooks.info/

Apache::Session represents session information using a hash. It uses Perl’s tie mecha‐
nism to map hash operations onto the storage and retrieval methods used by the un‐
derlying storage manager. Thus, to open a session, declare a hash variable and pass it
to tie. The other arguments to tie are the name of the session module, the session ID,
and a hashref containing information about the database to use. There are two ways to
specify the database connection. One method passes a reference to a hash that contains
connection parameters (and the session table name if you do not use the default name
of sessions):

my %session;
tie %session,
 "Apache::Session::MySQL",
 $sess_id,
 {
 DataSource => "DBI:mysql:host=localhost;database=cookbook",
 UserName => "cbuser",
 Password => "cbpass",
 LockDataSource => "DBI:mysql:host=localhost;database=cookbook",
 LockUserName => "cbuser",
 LockPassword => "cbpass",
 TableName => "perl_session"
 };

In this case, Apache::Session uses the parameters to open its own connection to MySQL,
which it closes when you close or destroy the session.

The other method passes the handle for an already open database connection (repre‐
sented here by $dbh):

my %session;
tie %session,
 "Apache::Session::MySQL",
 $sess_id,
 {
 Handle => $dbh,
 LockHandle => $dbh,
 TableName => "perl_session"
 };

If you pass a handle to an open connection as just shown, Apache::Session leaves it open
when you close or destroy the session, on the assumption that you’re using the handle
for other purposes elsewhere in the script. Close the connection yourself when you’re
done with it.

The $sess_id argument to tie is the session identifier. Its value is either undef to begin
a new session, or the ID of an existing session record (a value that matches the id column
in some existing perl_session table row).

After the session has been opened, you can access its contents. For example, you’ll want
to determine its identifier so that you can send it to the client:

730 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

$sess_id = $session{_session_id};

Apache::Session reserves for internal use hash element names that begin with an un‐
derscore, such as _session_id. Other than that, you can use choose your own names
for storing session values.

To save a scalar value in the session, store it by value. To access a scalar, read the value
directly. For example, maintain a scalar counter value as follows, where the counter is
initialized if the session is new, and then incremented and retrieved for display:

$session{count} = 0 if !exists ($session{count}); # initialize counter
++$session{count}; # increment counter
print "counter value: $session{count}\n"; # print value

To save a nonscalar value such as an array or a hash into the session record, store a
reference to it:

$session{my_array} = \@my_array;
$session{my_hash} = \%my_hash;

In this case, changes made to @my_array or %my_hash before you close the session will
be reflected in the session contents. To save an independent copy of an array or hash in
the session that will not change when you modify the original, create a reference to the
copy like this:

$session{my_array} = [@my_array];
$session{my_hash} = { %my_hash };

To retrieve a nonscalar value, dereference the reference stored in the session:
@my_array = @{$session{my_array}};
%my_hash = %{$session{my_hash}};

To close a session when you’re done with it, pass it to untie:
untie (%session);

When you close a session, Apache::Session saves it to the perl_session table if you’ve
made changes to it. This also makes the session values inaccessible, so don’t close the
session until you’re done with it.

Apache::Session notices changes to “top-level” session record val‐
ues, but might not detect a change to a member of a value stored by
reference (such as an array element). If this is a problem, you can force
Apache::Session to save a session when you close it by assigning any
top-level session element a value. The session ID is always present in
the session hash, so the following idiom provides a convenient way
to force session saving:

$session{_session_id} = $session{_session_id};

21.1. Using MySQL-Based Sessions in Perl Applications | 731

www.it-ebooks.info

http://www.it-ebooks.info/

An open session can be terminated rather than closed. Doing so removes the corre‐
sponding row from the perl_session table so that it can no longer be used:

tied (%session)->delete ();

A sample Apache::Session application

The following script, sess_track.pl, is a short but complete session application. It uses
Apache::Session to track the number of requests in the session and the time of each
request, updating and displaying the information each time it is invoked. sess_track.pl
uses the CGI.pm cookie management interface to pass the session ID in a cookie named
PERLSESSID:

#!/usr/bin/perl
sess_track.pl: session request counting/timestamping demonstration

use strict;
use warnings;
use CGI qw(:standard);
use Cookbook;
use Apache::Session::MySQL;

my $title = "Perl Session Tracker";

my $dbh = Cookbook::connect (); # connection to MySQL
my $sess_id = cookie ("PERLSESSID"); # session ID (undef if new session)
my %session; # session hash
my $cookie; # cookie to send to client

open the session

tie %session,
 "Apache::Session::MySQL",
 $sess_id,
 {
 Handle => $dbh,
 LockHandle => $dbh,
 TableName => "perl_session"
 };
if (!defined ($sess_id)) # this is a new session
{
 # get new session ID, initialize session data, create cookie for client
 $sess_id = $session{_session_id};
 $session{count} = 0; # initialize counter
 $session{timestamp} = []; # initialize timestamp array
 $cookie = cookie (-name => "PERLSESSID", -value => $sess_id);
}

increment counter and add current timestamp to timestamp array

++$session{count};
push (@{$session{timestamp}}, scalar (localtime (time ())));

732 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

construct content of page body

my $page_body =
 p ("This session has been active for $session{count} requests.")
 . p ("The requests occurred at these times:")
 . ol (li ($session{timestamp}))
 . p ("Reload page to send next request.");

if ($session{count} < 10) # close (and save) session
{
 untie (%session);
}
else # destroy session after 10 invocations
{
 tied (%session)->delete ();
 # reset cookie to tell browser to discard session cookie
 $cookie = cookie (-name => "PERLSESSID",
 -value => $sess_id,
 -expires => "-1d"); # "expire yesterday"
}

$dbh->disconnect ();

generate the output page; include cookie in headers if it's defined

print header (-cookie => $cookie)
 . start_html (-title => $title)
 . $page_body
 . end_html ();

For information about CGI.pm cookie support, use the following command and read
the section describing the cookie() function:

% perldoc CGI

To try the script, install it in your web server’s cgi-bin directory and request it from your
browser. To reinvoke it, use your browser’s Reload function.

sess_track.pl opens the session and increments the counter prior to generating any page
output. This is necessary because the client must be sent a cookie containing the session
name and identifier if the session is new. Any cookie sent must be part of the response
headers, so the page body cannot be sent until after the headers.

The script saves the page content in a variable rather than writing it immediately. Should
the session need to be terminated, the script resets the cookie to be one that tells the
browser to discard the one it has. This must be determined prior to sending any page
content.

21.1. Using MySQL-Based Sessions in Perl Applications | 733

www.it-ebooks.info

http://www.it-ebooks.info/

Session expiration

The Apache::Session module requires only the id and a_session columns in the
perl_session table. The module makes no provision for timing out or expiring ses‐
sions, but doesn’t restrict you from adding other columns, so you can implement those
capabilities yourself. Add a TIMESTAMP column to the table to store the time of each
session’s last modification (MySQL updates it automatically whenever a session record
is changed):

ALTER TABLE perl_session
ADD update_time TIMESTAMP NOT NULL,
ADD INDEX (update_time);

To expire sessions, run a statement periodically that sweeps the table and removes old
rows. The following statement uses an expiration time of four hours:

DELETE FROM perl_session WHERE update_time < NOW() - INTERVAL 4 HOUR;

The ALTER TABLE statement indexes update_time to make the DELETE operation faster.

To expire rows automatically, create a scheduled event (see Recipe 9.8). This event runs
every four hours:

CREATE EVENT expire_perl_session
 ON SCHEDULE EVERY 4 HOUR
 DO DELETE FROM perl_session WHERE update_time < NOW() - INTERVAL 4 HOUR;

21.2. Using MySQL-Based Storage in Ruby Applications
Problem
You want to use session storage for Ruby scripts.

Solution
Use the CGI::Session class interface. By default, it uses temporary files for backing
store, but you can configure it to use MySQL instead.

Discussion
The CGI::Session class manages session storage. It identifies sessions using cookies,
which it adds transparently to the responses sent to the client. CGI::Session permits
use of alternative storage-management classes in place of the default manager that uses
temporary files. We’ll use the mysql-session package, which is based on the Ruby DBI
interface and stores session records using MySQL. mysql-session is available from the
MySQL Cookbook companion website (see the Preface).

To use mysql-session in a script, include these modules:

734 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

require "cgi"
require "cgi/session"
require "mysqlstore"

To create a session, first create a CGI object. Then invoke CGI::Session.new, which
takes several arguments. The first is a CGI object associated with the script; it must exist
before you can open the session. Other arguments provide information about the ses‐
sion itself. Those following are relevant no matter which storage manager you use:
session_key

The session key is the name of the cookie to send to the client. The default key value
is _session_key; we’ll use RUBYSESSID.

new_session

This argument is true to force a new session to be created, or false to use an existing
session, which is assumed to have already been created during a previous request.
It’s also possible to create a session if it does not exist and use the current session if
it does. To enable that behavior, omit the new_session argument; our example script
does so.

database_manager

The name of the class that provides storage management for session records. If this
argument is omitted, the session manager uses temporary files.

To use the mysql-session package as the storage manager, the database_manager
argument should be CGI::Session::MySQLStore. In that case, mysql-session enables
several other arguments for the CGI::Session.new method. You can pass in arguments
that instruct the session manager to establish its own connection to MySQL, or open
your own connection and pass its database handle to the session manager.

The following discussion shows both approaches, but either way, we need a table for
storing session records. For mysql-session, create a table named ruby_session with
the following structure:

CREATE TABLE ruby_session
(
 session_id VARCHAR(255) NOT NULL,
 session_value LONGBLOB NOT NULL,
 update_time DATETIME NOT NULL,
 PRIMARY KEY (session_id)
);

To have the session manager open its own connection to MySQL, create the session like
this:

cgi = CGI.new("html4")
sess_id = cgi.cookies["RUBYSESSID"]
session = CGI::Session.new(
 cgi,
 "session_key" => "RUBYSESSID",

21.2. Using MySQL-Based Storage in Ruby Applications | 735

www.it-ebooks.info

http://www.it-ebooks.info/

 "database_manager" => CGI::Session::MySQLStore,
 "db.host" => "localhost",
 "db.user" => "cbuser",
 "db.pass" => "cbpass",
 "db.name" => "cookbook",
 "db.table" => "ruby_session",
 "db.hold_conn" => 1
)

The db.xxx parameters used in that code tell mysql-session how to connect to the
server, as well as the database and table for session records:
db.host

The host where the MySQL server is running.

db.user, db.pass
The username and password of the MySQL account to use.

db.name, db.table
The database and table names for the session table.

db.hold_conn

By default, mysql-session opens and closes a connection each time it needs to send
a statement to the MySQL server. If the db.hold_conn parameter is 1, mysql-
session opens the connection only once and holds it open until the session ends.

Another way to create a session is to pass the handle for an already open database
connection(represented using dbh):

cgi = CGI.new("html4")
sess_id = cgi.cookies["RUBYSESSID"]
session = CGI::Session.new(
 cgi,
 "session_key" => "RUBYSESSID",
 "database_manager" => CGI::Session::MySQLStore,
 "db.dbh" => dbh,
 "db.name" => "cookbook",
 "db.table" => "ruby_session"
)

In this case, the db.host, db.user, db.pass, and db.hold_conn parameters are not used.
Close the connection yourself when you’re done with it.

Whichever way you create the session, its ID is available while it is open as the ses
sion.session_id attribute.

To close or destroy the session, invoke the close or delete method of the session object,
respectively.

The session manager stores data as key/value pairs, using strings for the values. It does
not know the types of the values that you store. I find the following strategy useful for
dealing with type-conversion issues:

736 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

1. After opening the session, extract values from the session and convert them from
“generic” string form to properly typed values.

2. Work with the typed values until it is time to close the session.
3. Convert the typed values to string form, store them in the session, and close it.

The following script uses the CGI::Session session manager to track the number of
requests in a session and the time of each request. After 10 requests, the script deletes
the session to cause a new session to begin for the next request:

#!/usr/bin/ruby -w
sess_track.rb: session request counting/timestamping demonstration

require "Cookbook"
require "cgi"
require "cgi/session"
require "mysqlstore"

title = "Ruby Session Tracker";

dbh = Cookbook::connect

cgi = CGI.new("html4")
session = CGI::Session.new(
 cgi,
 "session_key" => "RUBYSESSID",
 "database_manager" => CGI::Session::MySQLStore,
 "db.dbh" => dbh,
 "db.name" => "cookbook",
 "db.table" => "ruby_session"
)

extract string values from session, convert them to the proper types

count = session["count"]
count = (count.nil? ? 0 : count.to_i)
timestamp = session["timestamp"]
timestamp = (timestamp.nil? ? [] : timestamp.split(","))

increment counter and add current timestamp to timestamp array

count = count + 1
timestamp << Time.now().strftime("%Y-%m-%d %H:%M:%S")

construct content of page body

page = ""

page << cgi.p {"This session has been active for #{count} requests."}
page << cgi.p {"The requests occurred at these times:"}
page << cgi.ol { timestamp.collect { |t| cgi.li { t.to_s } } }

21.2. Using MySQL-Based Storage in Ruby Applications | 737

www.it-ebooks.info

http://www.it-ebooks.info/

page << cgi.p {"Reload page to send next request."}

if count < 10 # save modified values into session
 # convert session variables back to strings before saving
 session["count"] = count.to_s
 session["timestamp"] = timestamp.join(",")
 session.close()
else # destroy session after 10 invocations
 session.delete()
end

dbh.disconnect

generate the output page

cgi.out {
 cgi.html {
 cgi.head { cgi.title { title } } + cgi.body() { page }
 }
}

CGI::Session makes no provision for expiring sessions, but you can discard old session
records using a technique similar to that discussed in Recipe 21.1. Should you do this,
index the update_time column to make DELETE statements faster:

ALTER TABLE ruby_session ADD INDEX (update_time);

21.3. Using MySQL-Based Storage with the PHP
Session Manager
Problem
You want to use session storage for PHP scripts.

Solution
PHP includes session management. By default, it uses temporary files for backing store,
but you can configure it to use MySQL instead.

Discussion
This section shows how to use the PHP native session manager and how to extend it by
implementing a storage module that saves session data in MySQL. If your PHP config‐
uration has the track_vars configuration variable enabled (which it is by default), ses‐
sion variables are available as elements of the $_SESSION superglobal array. If the reg
ister_globals configuration variable is enabled as well, session variables also exist in
your script as global variables of the same names. This is less secure, so this variable is

738 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

assumed not to be enabled here. (Recipe 20.5 discusses the security implications of
register_globals, although it is no longer an issue as of PHP 5.4, when it was re‐
moved.)

The PHP session management interface

PHP’s session management is based on a small number of functions, all of which are
documented in the PHP manual. The following list describes those we use:
session_start ()

Opens a session and extracts any variables previously stored in it, making them
available in the script’s global namespace. For example, a session variable named x
becomes available as $_SESSION["x"]. This function must be called first before
using the relevant session variable array.

session_write_close ()

Writes the session data and closes the session. The PHP documentation indicates
that normally you need not call this function because PHP saves an open session
automatically when your script ends. However, it appears that in PHP 5, that might
not always be true when you provide your own session handler. To be safe, call this
function to save your changes.

session_destroy ()

Removes the session and any data associated with it.

Specifying a user-defined storage module

The PHP session management interface just described specifies nothing about backing
store or how session information actually gets saved. By default, PHP uses temporary
files to store session data, but the session interface is extensible to permit other storage
modules. To override the default storage method and store session data in MySQL, do
this:

1. Set up a table to hold session records, and write the routines that implement the
storage module. These actions are done once, prior to writing any scripts that use
the new module.

2. Tell PHP that you’re supplying a user-defined storage manager. Do this globally in
php.ini (in which case you make the change once), or within individual scripts (in
which case it’s necessary to declare your intent in each script).

3. Register the storage module routines within each script that uses the module.

Creating the session table. Any MySQL-based storage module needs a table in which to
store session information. Create a table named php_session defined as follows:

21.3. Using MySQL-Based Storage with the PHP Session Manager | 739

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE php_session
(
 id CHAR(32) NOT NULL,
 data LONGBLOB,
 update_time TIMESTAMP NOT NULL,
 PRIMARY KEY (id),
 INDEX (update_time)
);

The id column holds session identifiers, which are unique 32-character MD5 values.
The data column holds session information. PHP serializes session data into a string
before storing it, so php_session needs only a large generic string column to hold the
resulting serialized value. The update_time column is a TIMESTAMP, so MySQL updates
it automatically whenever a session record is updated. This column is not required by
PHP, but it’s useful for implementing a garbage collection policy based on each session’s
most recent update time.

A small number of statements suffice to manage the contents of the php_session table
as we have defined it:

• To retrieve a session’s data, use a simple SELECT based on the session identifier:
SELECT data FROM php_session WHERE id = 'sess_id';

• To write session data, a REPLACE updates an existing row, or creates a new one if no
such row exists:

REPLACE INTO php_session (id,data) VALUES('sess_id','sess_data');

REPLACE also updates the timestamp in the row when creating or updating a row,
which is important for garbage collection.
Some storage manager implementations use a combination of INSERT and a fallback
to UPDATE if the INSERT fails because a row with the given session ID already exists
(or an UPDATE with a fallback to INSERT if the UPDATE fails because a row with the
ID does not exist). In MySQL, REPLACE performs the required task with a single
statement.

• To destroy a session, delete the corresponding row:
DELETE FROM php_session WHERE id = 'sess_id';

• To perform garbage collection, remove old rows. The following statement deletes
rows that have a timestamp value more than sess_life seconds old:

DELETE FROM php_session
WHERE update_time < NOW() - INTERVAL sess_life SECOND;

The PHP session manager supplies the value of sess_life when it invokes the
garbage collection routine. (The table definition for php_session indexes up
date_time to make DELETE statements faster.)

740 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

These statements form the basis of the routines that make up our MySQL-backed storage
module. The primary function of the module is to open and close MySQL connections
and issue the proper statements at the appropriate times.

Writing the storage management routines. A user-defined session storage module is im‐
plemented as a set of handler routines. To register them with PHP’s session manager,
call session_set_save_handler(), where each argument is a handler routine name
specified as a string:

session_set_save_handler (
 "mysql_sess_open", # function to open a session
 "mysql_sess_close", # function to close a session
 "mysql_sess_read", # function to read session data
 "mysql_sess_write", # function to write session data
 "mysql_sess_destroy", # function to destroy a session
 "mysql_sess_gc" # function to garbage-collect old sessions
);

The order of the handler routines must be as shown, but you can name them as you
like. They need not necessarily be named mysql_sess_open(), mysql_sess_close(),
and so forth. Write the routines according to the following specifications:
mysql_sess_open ($save_path, $sess_name)

Performs any actions necessary to begin a session. $save_path is the name of the
location where sessions should be stored; this is useful for file storage only.
$sess_name indicates the name of the session identifier (for example, PHPSESSID).
A MySQL-based storage manager can ignore both arguments. The function returns
TRUE or FALSE to indicate whether the session was opened successfully.

mysql_sess_close ()

Closes the session, returning TRUE for success or FALSE for failure.

mysql_sess_read ($sess_id)

Retrieves the data associated with the session identifier and returns it as a string. If
there is no such session, the function returns an empty string. If an error occurs, it
returns FALSE.

mysql_sess_write ($sess_id, $sess_data)

Saves the data associated with the session identifier, returning TRUE for success or
FALSE for failure. PHP itself takes care of serializing and unserializing the session
contents, so the read and write functions need deal only with serialized strings.

mysql_sess_destroy ($sess_id)

Destroys the session and any data associated with it, returning TRUE for success or
FALSE for failure. For MySQL-based storage, destroying a session amounts to de‐
leting the row from the php_session table associated with the session ID.

21.3. Using MySQL-Based Storage with the PHP Session Manager | 741

www.it-ebooks.info

http://www.it-ebooks.info/

mysql_sess_gc ($gc_maxlife)

Performs garbage collection to remove old sessions. This function is invoked on a
probabilistic basis. When PHP receives a request for a page that uses sessions, it
calls the garbage collector with a probability defined by the session.gc_probabil
ity configuration variable in php.ini. For example, if the probability value is 1 (that
is, 1%), PHP calls the collector approximately once every hundred requests. If the
value is 100, it calls the collector for every request—probably more processing
overhead than you’d want.

The argument to gc() is the maximum session lifetime in seconds. Sessions older
than that are considered subject to removal. The function returns TRUE for success
or FALSE for failure.

To register the handler routines, call session_set_save_handler(), which should be
done in conjunction with informing PHP that you’ll be using a user-defined storage
module. The default storage management method is defined by the session.save_han
dler configuration variable. You can change the method globally by modifying the
php.ini initialization file, or within individual scripts:

• To change the storage method globally, edit php.ini. The default configuration set‐
ting specifies the use of file-based session storage management:

session.save_handler = files;

Modify this to indicate that sessions will be handled by a user-level mechanism:
session.save_handler = user;

If you use PHP as an Apache module, restart Apache after modifying php.ini so that
PHP notices the changes.
If you change the storage method globally, every PHP script that uses sessions will
be expected to provide its own storage management routines. This may have un‐
intended side effects for other script writers if they are unaware of the change. For
example, other developers that use the web server may want to continue using file-
based sessions.

• As an alternative to making a global change, specify a different storage method by
calling ini_set() on a per-script basis:

ini_set ("session.save_handler", "user");

ini_set() is less intrusive than a global configuration change. The storage manager
we develop here uses ini_set(), to trigger database-backed session storage only
for those scripts that request it.

To make it easy to access an alternative session storage module, it’s useful to create a
library file, Cookbook_Session.php. The only thing a script need do to use the library file
is include it prior to starting the session. The outline of the file looks like this:

742 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

<?php
Cookbook_Session.php: MySQL-based session storage module

require_once "Cookbook.php";

Define the handler routines

function mysql_sess_open ($save_path, $sess_name) ...
function mysql_sess_close () ...
function mysql_sess_read ($sess_id) ...
function mysql_sess_write ($sess_id, $sess_data) ...
function mysql_sess_destroy ($sess_id) ...
function mysql_sess_gc ($gc_maxlife) ...

Initialize the connection identifier, select user-defined
session handling, and register the handler routines

$mysql_sess_dbh = NULL;
ini_set ("session.save_handler", "user");
session_set_save_handler (
 "mysql_sess_open",
 "mysql_sess_close",
 "mysql_sess_read",
 "mysql_sess_write",
 "mysql_sess_destroy",
 "mysql_sess_gc"
);
?>

The library file includes Cookbook.php so that it can access the connection routine for
opening a connection to the cookbook database. Then it defines the handler routines
(we’ll get to the details of these functions shortly). Finally, it initializes the connection
identifier, tells PHP to get ready to use a user-defined session storage manager, and
registers the handler functions. Thus, a PHP script that wants to store sessions in MySQL
performs all the necessary setup simply by including the Cookbook_Session.php file:

require_once "Cookbook_Session.php";

The interface provided by the Cookbook_Session.php library file ex‐
poses a global database connection identifier variable
($mysql_sess_conn) and a set of handler routines named
mysql_sess_open(), mysql_sess_close(), and so forth. Scripts that
use the library should avoid using these global names for other pur‐
poses.

Now let’s implement each handler routine.

Opening a session. PHP passes two arguments to this function: the save path and the
session name. The save path applies to file-based storage, and we don’t need the session

21.3. Using MySQL-Based Storage with the PHP Session Manager | 743

www.it-ebooks.info

http://www.it-ebooks.info/

name, so both arguments can be ignored. The function therefore does nothing but open
a connection to MySQL:

function mysql_sess_open ($save_path, $sess_name)
{
global $mysql_sess_dbh;

 # open connection to MySQL if it's not already open
 if ($mysql_sess_dbh === NULL)
 {
 try
 {
 $mysql_sess_dbh = Cookbook::connect ();
 }
 catch (PDOException $e)
 {
 $mysql_sess_dbh = NULL;
 return (FALSE);
 }
 }
 return (TRUE);
}

Closing a session. The close handler checks whether a connection to MySQL is open and
closes it if so:

function mysql_sess_close ()
{
global $mysql_sess_dbh;

 if ($mysql_sess_dbh !== NULL) # close connection if it's open
 $mysql_sess_dbh = NULL;
 return (TRUE);
}

Reading session data. The mysql_sess_read() function uses the session ID to look up
the data for the corresponding session record and returns it. It returns the empty string
if no such record exists, or FALSE if an error occurs:

function mysql_sess_read ($sess_id)
{
global $mysql_sess_dbh;

 try
 {
 $stmt = "SELECT data FROM php_session WHERE id = ?";
 $sth = $mysql_sess_dbh->prepare ($stmt);
 $sth->execute (array ($sess_id));
 list ($data) = $sth->fetch (PDO::FETCH_NUM);
 if (isset ($data))
 return ($data);

744 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 catch (PDOException $e) { /* do nothing */ }
 return ("");
}

Writing session data. mysql_sess_write() creates a new record if there is none for the
session yet, or replaces the existing record if there is one:

function mysql_sess_write ($sess_id, $sess_data)
{
global $mysql_sess_dbh;

 try
 {
 $stmt = "REPLACE php_session (id, data) VALUES(?,?)";
 $sth = $mysql_sess_dbh->prepare ($stmt);
 $sth->execute (array ($sess_id, $sess_data));
 return (TRUE);
 }
 catch (PDOException $e)
 {
 return (FALSE);
 }
}

Destroying a session. When a session is no longer needed, mysql_sess_destroy() re‐
moves the corresponding record:

function mysql_sess_destroy ($sess_id)
{
global $mysql_sess_dbh;

 try
 {
 $stmt = "DELETE FROM php_session WHERE id = ?";
 $sth = $mysql_sess_dbh->prepare ($stmt);
 $sth->execute (array ($sess_id));
 return (TRUE);
 }
 catch (PDOException $e)
 {
 return (FALSE);
 }
}

Performing garbage collection. The TIMESTAMP column update_time in each session re‐
cord indicates when the session was last updated. mysql_sess_gc() uses this value to
implement garbage collection. The argument $sess_maxlife specifies how old sessions
can be (in seconds). Older sessions are considered expired and candidates for removal,

21.3. Using MySQL-Based Storage with the PHP Session Manager | 745

www.it-ebooks.info

http://www.it-ebooks.info/

which is easily done by deleting session records having a timestamp older than the
current time more than the permitted lifetime:

function mysql_sess_gc ($sess_maxlife)
{
global $mysql_sess_dbh;

 try
 {
 $stmt = "DELETE FROM php_session
 WHERE update_time < NOW() - INTERVAL ? SECOND";
 $sth = $mysql_sess_dbh->prepare ($stmt);
 $sth->execute (array ($sess_maxlife));
 }
 catch (PDOException $e) { /* do nothing */ }
 return (TRUE); # ignore errors
}

Using the storage module. Install the Cookbook_Session.php file in a public library direc‐
tory accessible to your scripts. On my system, I put PHP library files in /usr/
local/lib/mcb and modify php.ini so that the include_path variable names that directory
(see Recipe 2.3). To try the storage module, install the following example script,
sess_track.php, in your web tree and invoke it a few times to see how the information
display changes:

<?php
sess_track.php: session request counting/timestamping demonstration

require_once "Cookbook_Session.php";
require_once "Cookbook_Webutils.php"; # for make_ordered_list()

$title = "PHP Session Tracker";

Open session and extract session values

session_start ();
$count = $_SESSION["count"];
$timestamp = $_SESSION["timestamp"];

If the session is new, initialize the variables

if (!isset ($count))
 $count = 0;
if (!isset ($timestamp))
 $timestamp = array ();

Increment counter, add current timestamp to timestamp array

++$count;
$timestamp[] = date ("Y-m-d H:i:s T");

746 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

if ($count < 10) # save modified values into session
{
 $_SESSION["count"] = $count;
 $_SESSION["timestamp"] = $timestamp;
 session_write_close (); # save session changes
}
else # destroy session after 10 invocations
{
 session_destroy ();
}

Produce the output page
?>
<html>
<head><title><?php print ($title); ?></title></head>
<body>

<?php
print ("<p>This session has been active for $count requests.</p>");
print ("<p>The requests occurred at these times:</p>");
print make_ordered_list ($timestamp);
print ("<p>Reload page to send next request.</p>");
?>

</body>
</html>

The script includes the Cookbook_Session.php library file to enable the MySQL-based
storage module, then uses the PHP session manager interface in typical fashion. First,
it opens the session and attempts to extract the session variables. For the first request,
the session variables are not set and must be initialized. This is determined by the
isset() tests. The scalar variable $count starts out at zero, and the nonscalar variable
$timestamp starts out as an empty array. For successive requests, the session variables
have the values assigned to them by the previous request.

Next, the script increments the counter, adds the current timestamp to the end of the
timestamp array, and calls session_write_close() to write the changes to session data.
If the session limit of 10 invocations has been reached, the script destroys the session.
This causes the session to restart on the next request.

After updating the session data, sess_track.php produces an output page that displays
the count and the access times.

The output page is produced after updating the session record because PHP might
determine that a cookie containing the session ID must be sent to the client. That de‐
termination must be made before generating the page body because cookies are sent in
the headers.

21.3. Using MySQL-Based Storage with the PHP Session Manager | 747

www.it-ebooks.info

http://www.it-ebooks.info/

To access session variables, use the $_SESSION superglobal array after calling ses
sion_start(). For example, the session variable named count is available as $_SES
SION["count"].

21.4. Using MySQL for Session-Backing Store with Tomcat
Problem
You want to use session storage for Java-based scripts.

Solution
Tomcat handles session management for you. By default, it uses temporary files for
backing store. To configure it to use MySQL instead, modify the appropriate Tomcat
configuration file to supply JDBC parameters.

Discussion
The Perl, Ruby, and PHP session mechanisms described earlier in this chapter require
applications to indicate explicitly that they want to use MySQL-based session storage.
For Perl and Ruby, a script must state that it wants to use the appropriate session module.
For PHP, the session manager is built into the language, but each application that uses
a MySQL storage module must register it.

For Java applications that run under Tomcat, a different framework applies. Tomcat
itself manages sessions, so to store session information in MySQL, reconfigure Tomcat,
not your applications. This relieves web-based Java programs of some of the messy
session-related details handled at the application level in other languages. For example,
the Tomcat server rather than your application handles session IDs. If cookies are en‐
abled, Tomcat uses them. Otherwise, it uses URL rewriting to encode the session ID in
the URL. Application developers need not care which method Tomcat uses because the
ID is available the same way for either method.

To illustrate the independence of applications from the session management method
used by Tomcat, this section shows simple JSP application scripts that use a session.
Then it shows how to reconfigure Tomcat to store session information in MySQL rather
than in the default session store—without requiring any changes at all to the application
scripts.

This section assumes that the mcb application has been installed into and unpacked
under the Tomcat webapps directory (see Recipe 18.3). For background on Tomcat itself,
read “JSP, JSTL, and Tomcat Primer” on the companion website (see the Preface).

748 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

The servlet and JSP session interface

Tomcat uses the standard session interface described in the Java Servlet Specification.
This interface can be used both by servlets and by JSP pages. Within a servlet, access
the session by importing the javax.servlet.http.HttpSession class and invoking the
getSession() method of your HttpRequest object:

import javax.servlet.http.*;
HttpSession session = request.getSession ();

In JSP pages, session support is enabled by default, so it’s as though those statements
have already been issued by the time the page begins executing. The session is available
implicitly through a session variable that’s already set up for you.

The HttpSession section of the Java Servlet Specification defines the complete session
interface. Some representative session object methods are listed here:
isNew ()

Returns true or false to indicate whether the session began with the current request.

getAttribute (String attrName)

Session contents consist of attributes, which are objects bound to names. To access
a session attribute, specify its name. getAttribute() returns the Object bound to
the named session attribute, or null if there is no object with that name.

setAttribute (String attrName, Object obj)

Adds the object to the session and binds it to the given name.

removeAttribute (String attrName)

Removes the named attribute from the session.

invalidate ()

Invalidates the session and any data associated with it. The next request from the
client will begin a new session.

A sample JSP session application

The following example shows a JSP page, sess_track.jsp, that maintains a session request
counter and a log of the request times. To illustrate the session-related operations more
explicitly, this page consists primarily of embedded Java code that uses the HttpSes
sion session interface directly:

<%--
 sess_track.jsp: session request counting/timestamping demonstration
--%>

<%@ page import="java.util.*" %>
<%
 // get session variables, initializing them if not present

 int count;

21.4. Using MySQL for Session-Backing Store with Tomcat | 749

www.it-ebooks.info

http://www.it-ebooks.info/

 Object obj = session.getAttribute ("count");
 if (obj == null)
 count = 0;
 else
 count = Integer.parseInt (obj.toString ());

 ArrayList timestamp = (ArrayList) session.getAttribute ("timestamp");
 if (timestamp == null)
 timestamp = new ArrayList ();

 // increment counter, add current timestamp to timestamp array

 count = count + 1;
 timestamp.add (new Date ());

 if (count < 10) // save updated values in session object
 {
 session.setAttribute ("count", String.valueOf (count));
 session.setAttribute ("timestamp", timestamp);
 }
 else // restart session after 10 requests
 {
 session.invalidate ();
 }
%>

<html>
<head><title>JSP Session Tracker</title></head>
<body>

<p>This session has been active for <%= count %> requests.</p>
<p>The requests occurred at these times:</p>

<%
 for (int i = 0; i < timestamp.size (); i++)
 out.println ("" + timestamp.get (i) + "");
%>

<p>Reload page to send next request.</p>

</body>
</html>

sess_track.jsp is included in the mcb application (see Recipe 18.3). Invoke it from your
browser and reload it a few times to see how the display changes.

The session.setAttribute() method used in sess_track.jsp places information into
the session so that it can be found by later invocations of the script. But session attributes
also can be shared with other scripts in the same application context, which have access
to the same information. You’ll see this with our next version of the script, which when
you invoke it accesses the same session information as sess_track.jsp.

750 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

Some session-related operations shown in sess_track.jsp can be done using tags from
the JSTL tag library, which provides a sessionScope variable for accessing the implicit
JSP session object. The following script, sess_track2.jsp, uses that variable. One differ‐
ence in approach is that sess_track.jsp terminates the session by calling session.inva
lidate(), but the sessionScope variable provides no access to that method. Instead,
sess_track2.jsp terminates the session by deleting the session contents, causing the ses‐
sion to restart with the next client request:

<%--
 sess_track2.jsp: session request counting/timestamping demonstration
--%>

<%@ page import="java.util.*" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:if test="${empty sessionScope.count}">
 <c:set var="count" scope="session" value="0"/>
</c:if>
<c:set var="count" scope="session" value="${sessionScope.count+1}"/>

<%
 ArrayList timestamp = (ArrayList) session.getAttribute ("timestamp");
 if (timestamp == null)
 timestamp = new ArrayList ();
 // add current timestamp to timestamp array, store result in session
 timestamp.add (new Date ());
 session.setAttribute ("timestamp", timestamp);
%>

<html>
<head><title>JSP Session Tracker</title></head>
<body>

<p>This session has been active for
<c:out value="${sessionScope.count}"/>
requests.</p>
<p>The requests occurred at these times:</p>

<c:forEach items="${sessionScope.timestamp}" var="t">
 <c:out value="${t}"/>
</c:forEach>

<p>Reload page to send next request.</p>

<%-- has session limit of 10 requests been reached? --%>

<c:if test="${sessionScope.count ge 10}">
 <c:remove var="count" scope="session"/>
 <c:remove var="timestamp" scope="session"/>
</c:if>

21.4. Using MySQL for Session-Backing Store with Tomcat | 751

www.it-ebooks.info

http://www.it-ebooks.info/

</body>
</html>

Telling Tomcat to save session records in MySQL

The default Tomcat default session storage mechanism uses temporary files. To save
sessions using JDBC with MySQL instead, follow this procedure:

1. Create a table to hold session records.
2. Make sure that Tomcat can access the proper JDBC driver.
3. Modify the appropriate Tomcat configuration file to specify use of a persistent ses‐

sion manager for the relevant application context.

None of these steps involve modifying the sample session script in any way, which
reflects how Tomcat implements session support above the application level.

1. Create the Tomcat session table.
Tomcat stores several types of information in the session table:

• The session ID. By default, IDs are 32-character MD5 values.
• The application name.
• The session data. This is a serialized string.
• Whether the session is valid, as a single byte.
• The maximum permitted inactivity time, as a 32-bit integer measured in seconds.
• The last access time, as a 64-bit integer.

The following table satisfies those specifications; create it now before proceeding:
CREATE TABLE tomcat_session
(
 id VARCHAR(32) NOT NULL,
 app VARCHAR(255),
 data LONGBLOB,
 valid_session CHAR(1) NOT NULL,
 max_inactive INT NOT NULL,
 update_time BIGINT NOT NULL,
 PRIMARY KEY (id),
 INDEX (app)
);

2. Place the JDBC driver where Tomcat can find it.
Because Tomcat itself manages sessions, it must be able to access the JDBC driver
used to store sessions in a database. It’s common to install drivers in the lib directory
of the Tomcat tree so that they’re available both to Tomcat and to applications. Install

752 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

the MySQL Connector/J driver there now if you haven’t already (see Recipe 18.3).
After a restart, Tomcat will be able to use it.

3. Modify the Tomcat configuration file.
To tell Tomcat to use the tomcat_session table, modify the mcb application context
file. Change location into the webapps/mcb/META-INF under the Tomcat we
bapps directory, copy context.xml.jdbc to context.xml, and restart Tomcat.
If you look in context.xml, you’ll find a <Context> element containing a <Manag
er> element that specifies the use of JDBC for MySQL-based session storage:

<Context path="/mcb" docBase="mcb" debug="0" reloadable="true">
 <Manager
 className="org.apache.catalina.session.PersistentManager"
 debug="0"
 saveOnRestart="true"
 maxIdleBackup="600">
 maxIdleSwap="1200"
 minIdleSwap="900"
 <Store
 className="org.apache.catalina.session.JDBCStore"
 driverName="com.mysql.jdbc.Driver"
 connectionURL=
 "jdbc:mysql://localhost/cookbook?user=cbuser&password=cbpass"
 sessionTable="tomcat_session"
 sessionIdCol="id"
 sessionAppCol="app"
 sessionDataCol="data"
 sessionValidCol="valid_session"
 sessionMaxInactiveCol="max_inactive"
 sessionLastAccessedCol="update_time"
 />
 </Manager>
</Context>

The <Manager> element attributes specify general session-related options. Within the
<Manager> element body, the <Store> element provides attributes pertaining to the
JDBC driver. The following discussion focuses on the attributes shown in the example,
but there are others you can use. For more information, see the Tomcat session-
management documentation.

The <Manager> attributes shown in the example have the following meanings:
className

The Java class that implements persistent session storage. It must be
org.apache.catalina.session.PersistentManager.

debug

The logging detail level. A value of zero disables debug output; higher numbers
generate more output.

21.4. Using MySQL for Session-Backing Store with Tomcat | 753

www.it-ebooks.info

http://bit.ly/tc-session
http://bit.ly/tc-session
http://www.it-ebooks.info/

saveOnRestart

Whether application sessions survive server restarts. Set it to true to have Tomcat
save current sessions when it shuts down (and reload them when it starts up).

maxIdleBackup

The number of seconds before inactive sessions are eligible for being saved to
MySQL. A value of -1 (the default) means “never.”

maxIdleSwap

The number of seconds before idle sessions should be swapped (saved to MySQL
and passivated out of server memory). A value of -1 (the default) means “never.”
If not -1, the value should be at least as great as maxIdleBackup.

minIdleSwap

The number of seconds before idle sessions are eligible to be swapped. A value of
-1 (the default) means “never.” If not -1, the value should be less than maxIdleSwap.

Within the <Manager> element, the <Store> element indicates how to connect to the
database server, the names of the database and table for storing session records, and the
names of the columns in the table:
className

The name of a class that implements the org.apache.catalina.Store interface.
For JDBC-based storage managers, the value is org.apache.catalina.ses
sion.JDBCStore.

driverName

The class name for the JDBC driver. For the Connector/J driver, the value is
com.mysql.jdbc.Driver.

connectionURL

The URL for connecting to the database server, with characters that are special in
XML properly encoded. The following URL connects to the MySQL server on the
local host, using a database, username, and password of cookbook, cbuser, and
cbpass, respectively. Notice that the & character that separates the user and pass
word connection parameters is written as the & entity:

jdbc:mysql://localhost/cookbook?user=cbuser&password=cbpass

sessionTable

The table in which to store session records. For our example, this is the tomcat_ses
sion table described earlier. (The database that contains the table appears in the
connectionURL value.)

The remaining <Store> attributes in the example indicate the column names in the
session table. These attributes are sessionIdCol, sessionAppCol, sessionDataCol,
sessionValidCol, sessionMaxInactiveCol, and sessionLastAccessedCol, which
correspond in the obvious way to columns of the tomcat_session table.

754 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

After you create context.xml and restart Tomcat, invoke the sess_track.jsp or
sess_track2.jsp scripts a few times to initiate a session. Each should behave the same as
before you reconfigured Tomcat, but now session information will be stored in MySQL.
After a period of inactivity equal to the <Manager> element maxIdleBackup attribute
value, you should see a session record appear in the tomcat_session table. If you watch
the MySQL query log, you should also see sessions being saved to MySQL when you
stop Tomcat.

Session expiration in Tomcat

Sessions persist for 30 minutes by default. To provide an explicit duration for a session
manager, add a maxInactiveInterval attribute (in seconds) to your <Manager> ele‐
ment. To provide a duration specific to a particular application context, add a <session-
config> element to the application’s WEB-INF/web.xml file, specifying a timeout in
minutes. For example, to use a value of 60 minutes:

<session-config>
 <session-timeout>60</session-timeout>
</session-config>

If you modify either the file containing the <Manager> element or the web.xml file, restart
Tomcat.

Session tracking in Tomcat

Although your JSP pages need do nothing to have Tomcat set up sessions or to use JDBC
for session storage, they may need to take a small step to make sure that sessions move
from request to request properly. This is necessary if you generate pages that contain
hyperlinks to other pages that participate in the same session.

Tomcat generates a session identifier and tracks the session using cookies if it receives
a cookie from the client that contains the session ID. If the client has cookies disabled,
Tomcat tracks the session by rewriting URLs to include the session ID. You need not
determine which method Tomcat is using, but you must ensure proper propagation of
the session ID in case it is being passed by URL rewriting. When you create a page that
includes a link to another page that is part of the session, do not list the path to the page
like this:

To go to the next page,
click here.

That link doesn’t contain the session ID. If Tomcat is tracking the session using URL
rewriting, the ID is lost when the user selects the link. Instead, pass the link to enco
deURL() to enable Tomcat to add the session ID to the URL as necessary:

To go to the next page,
<a href="<%= response.encodeURL ("nextpage.jsp") %>">click here.

21.4. Using MySQL for Session-Backing Store with Tomcat | 755

www.it-ebooks.info

http://www.it-ebooks.info/

If Tomcat is tracking the session with cookies, encodeURL() returns the URL unchanged.
However, if Tomcat is tracking the session by means of URL rewriting, encodeURL()
adds the session ID to the page path automatically, so that it looks something like this:

mypage.jsp;jsessionid=xxxxxxxxxxxxxxxx

Generate URLs using encodeURL() like this for links in any tag that takes the user to a
page in the current session. This includes <a>, <form>, and <frame> tags, and possibly
 tags, if those tags invoke a script that generates images on a session-specific basis.

It’s probably best to develop the habit of using encodeURL() as a matter of routine when
writing URLs for session-based applications. Even if you think everyone who uses the
application will have cookies enabled, your assumption may prove incorrect some day.

The java.net.URLEncoder.encode() method has a name similar to encodeURL(), but
it’s different. It performs conversion of special characters to %xx notation to make them
safe for use in URLs.

756 | Chapter 21: Using MySQL-Based Web Session Management

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22

Server Administration

22.0. Introduction
This chapter covers how to perform operations involved in administering a MySQL
server:

• General server configuration
• The plug-in interface
• Controlling server logging
• Server monitoring
• Backup and recovery

The chapter doesn’t cover managing MySQL user accounts. That is an administrative
task, but is covered in Chapter 23.

Many of the techniques shown here require administrative access,
such as the ability to modify tables in the mysql system database or
use statements that require the SUPER privilege. For this reason, to
carry out the operations described here, you’ll likely need to con‐
nect to the server as root rather than as cbuser.

22.1. Configuring the Server
Problem
You want to change the server settings, and also verify that your changes took effect.

757

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
To change settings, specify them at server startup or at runtime. To verify the changes,
examine the relevant system variables at runtime.

Discussion
The MySQL server places many configuration parameters under your control. For ex‐
ample, resources that require memory can be adjusted up or down to tailor resource
usage. A heavily used server requires more memory; a lightly used one, less. You can
set command options and system variables at server startup, and many system variables
are settable at runtime as well. You can also examine your settings at runtime to verify
that the configuration is as you intend.

Configuration control at server startup

To configure the server at startup time, specify options on the command line or in an
option file. The latter is usually preferable because you can specify settings once and
they’ll apply at each startup. (For background on using command-line options and
option files, see Recipe 1.4.)

Command option names typically use dashes, whereas system variable names use un‐
derscores. However, the server is more permissive at startup and recognizes command
options and system variables written using dashes or underscores interchangeably. For
example, sql_mode and sql-mode are equivalent on the command line or in an option
file. This differs from runtime, when references to system variables must be written
using underscores.

To specify server parameters in an option file, list them in the [mysqld] group of a file
the server reads. To illustrate, here are some parameters you might set:

• The default character set is latin1. To use a more general character set, change this
to utf8, or even utf8mb4 to include the 4-byte supplemental characters not part of
utf8.

• The default SQL mode is NO_ENGINE_SUBSTITUTION (empty before MySQL 5.6.6).
To be more restrictive by default, enable strict SQL mode. Or be even more restric‐
tive, like “traditional” database servers.

• The event scheduler is disabled by default. If you plan to use scheduled events (see
Recipe 9.8), you must enable it.

• If your users run a lot of queries on InnoDB tables, it might be a good idea to increase
the InnoDB buffer pool size from its default of 128MB.

To implement these configuration ideas, write the [mysqld] group in your option file
like this:

758 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

[mysqld]
character_set_server=utf8
sql_mode=TRADITIONAL
event_scheduler=1
innodb_buffer_pool_size=256M

Those are just suggestions; adjust the server configuration for your own requirements.
For information about plug-in and logging options in particular, see Recipes 22.2 and
22.3.

Configuration control and verification at runtime

After the server starts, you can make runtime adjustments by changing system variables
using the SET statement:

SET GLOBAL var_name = value;

That statement sets the global value of var_name; that is, the value that applies to all
clients by default. Changes to the global value at runtime require the SUPER privilege.
Many system variables also have a session value, which is the value specific to a particular
client session. The session value of a given variable is initialized from the global value
when the client connects, but the client can change it thereafter. For example, the DBA
might set the sort buffer size at server startup:

[mysqld]
sort_buffer_size=512K

That sets the global value. A DBA with the SUPER privilege can change the global value
at runtime:

SET GLOBAL sort_buffer_size = 1024 * 256;

Each client that connects subsequently has its session variable initialized to the same
value, but can change the value as it likes. A client that performs large sorts might
increase the value:

SET SESSION sort_buffer_size = 1024 * 1024;

A SET statement that includes no GLOBAL or SESSION modifier changes the session value,
if there is one.

There is alternative syntax for writing system variable references:
SET @@GLOBAL.var_name = value;
SET @@SESSION.var_name = value;

The @@ syntax is more flexible. It can be used in statements other than SET, enabling you
to retrieve or examine individual system variables:

22.1. Configuring the Server | 759

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT @@GLOBAL.secure_auth, @@SESSION.sql_mode;
+----------------------+--------------------+
| @@GLOBAL.secure_auth | @@SESSION.sql_mode |
+----------------------+--------------------+
| 1 | STRICT_ALL_TABLES |
+----------------------+--------------------+

References to system variables using @@ syntax with no GLOBAL. or SESSION. modifier
access the session value if there is one, or the global value otherwise.

Other ways to access system variables include the SHOW VARIABLES statement and se‐
lecting from the INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES
tables.

If a setting exists only as a command option with no corresponding system variable,
you cannot check its value at runtime. Fortunately, such options are rare. Nowadays,
most new settings are created as system variables that can be examined at runtime.

22.2. Managing the Plug-In Interface
Problem
You want to exploit the capabilities offered by certain server plug-ins.

Solution
Learn how to control the plug-in interface.

Discussion
MySQL supports the use of plug-ins that extend server capabilities. There are plug-ins
that implement storage engines, authentication methods, password policy, INFORMA
TION_SCHEMA tables, and more. The server enables you to specify which plug-ins to use,
so that you can load just those you want, with no memory or processing overhead
incurred for plug-ins you don’t want.

This section provides the general background on controlling which plug-ins the server
loads. Discussion elsewhere describes specific plug-ins and what they can do for you,
including the authentication plug-ins (see Recipe 23.1), and validate_password (see
Recipes 23.3 and 23.4).

The examples here refer to plug-in files using the .so (“shared object”) filename suffix.
If the suffix differs on your system, adjust the names accordingly (for example,
use .dll on Windows). If you don’t know the name of a given plug-in file, look in the
directory named by the plugin_dir system variable, which is where the server expects
to find plug-in files. For example:

760 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SELECT @@plugin_dir;
+------------------------------+
| @@plugin_dir |
+------------------------------+
| /usr/local/mysql/lib/plugin/ |
+------------------------------+

To see which plug-ins are installed, use SHOW PLUGINS or query the INFORMATION_SCHE
MA PLUGINS table.

Some plug-ins are built in, need not be enabled explicitly, and can‐
not be disabled. The mysql_native_password and sha256_pass
word authentication plug-ins fall into this category.

Plug-in control at server startup

To install a plug-in only for a given server invocation, use the --plugin-load-add
option at server startup, naming the file that contains the plug-in. To name multiple
plug-ins as the option value, separate them with semicolons. Alternatively, use the op‐
tion multiple times, with each instance naming a single plug-in. That makes it easy to
enable or disable individual plug-ins by using the # character to selectively comment
the corresponding lines:

[mysqld]
plugin-load-add=validate_password.so
plugin-load-add=adt_null.so
#plugin-load-add=semisync_master.so
#plugin-load-add=semisync_slave.so

The --plugin-load-add option was introduced in MySQL 5.6. In MySQL 5.5, you must
use a single --plugin-load option that names all the plug-ins to be loaded in a
semicolon-separated list:

[mysqld]
plugin-load=validate_password.so;adt_null.so

Clearly, for dealing with more than one plug-in, --plugin-load-add is superior for ease
of administration.

Plug-in control at runtime

To install a plugin at runtime and make it persistent, use INSTALL PLUGIN. The server
loads the plug-in (which becomes available immediately) and registers it in the
mysql.plugin system table to cause it to load automatically for subsequent restarts. For
example:

INSTALL PLUGIN validate_password SONAME 'validate_password.so';

22.2. Managing the Plug-In Interface | 761

www.it-ebooks.info

http://www.it-ebooks.info/

The SONAME (“shared object name”) clause specifies the file that contains the plug-in.

To disable a plug-in at runtime, use UNINSTALL PLUGIN. The server unloads the plug-in
and removes its registration from the mysql.plugin table:

UNINSTALL PLUGIN validate_password;

INSTALL PLUGIN and UNINSTALL PLUGIN require the INSERT and DELETE privilege, re‐
spectively, for the mysql.plugin table.

22.3. Controlling Server Logging
Problem
You want to take advantage of log information the server can provide.

Solution
Learn the server options that control logging.

Discussion
The MySQL server can produce several logs:
The error log

The error log contains information about problems or exceptional conditions the
server encounters. This is useful information for debugging. In particular, if the
server exits, check the error log for the reason. For example, if an exit occurs im‐
mediately after startup, it’s likely that some setting in the server option file is mis‐
spelled or was set to an invalid value. The error log will contain a message to that
effect.

The general query log
The general query log indicates when each client connected and disconnected and
what SQL statements it executed. This tells you how much and what activity each
client is engaged in.

The slow query log
The slow query log records statements that took a long time to execute (see the
MySQL Reference Manual for the meaning of “a long time” because it can be in‐
fluenced by several options). Queries that appear repeatedly in this log may be
bottlenecks worth investigating to see whether they can be made more efficient.

The binary log
The binary log contains a record of data changes made by the server. To set up
replication, you must enable the binary log on the master server: it serves as the

762 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

storage medium for changes to be sent to slave servers. The binary log is also used,
together with backup files, during data recovery operations.

Each log serves a different purpose and most can be turned on at your discretion, ena‐
bling you to use those that suit your administrative requirements. Each log can be
written to a file, and some can be written to other destinations. The error log can be
sent to your terminal or to the syslog facility. The general and slow query logs can be
written to a file, to a table in the mysql database, or both.

To control server logging, add lines to your server option file that specify the desired
types of logging. (Some settings can also be changed at runtime, as indicated later.) For
example, the following lines in a server option file send the error log to the err.log file
in the data directory, enable writing the general query and slow query logs to tables in
the mysql database, and enable writing the binary log to the /var/mysql-logs directory
using files having names beginning with binlog:

[mysqld]
log_error=err.log
log_output=TABLE
general_log=1
slow_query_log=1
log-bin=/var/mysql-logs/binlog

For filenames in options that produce log output to files, logfiles are written under the
data directory unless specified using full pathnames. The usual reason to use full path‐
names is to write logfiles to a filesystem different from the one containing the data
directory, a useful technique for dividing disk space use and I/O activity among physical
devices.

The rest of this section provides details specific to controlling individual logs. The ex‐
amples show the lines to include in your server option file to produce specific logging
behavior. For some ideas about using the logs for diagnostic or activity assessment pur‐
poses, see Recipe 22.6.

For any log that you enable, see also Recipes 22.4 and 22.5 for log
maintenance techniques. Logs increase in size over time, so you’ll
want to have a plan for managing them.

The error log

The error log cannot be disabled, but you can control where it’s written. By default, on
Unix, the error output goes to your terminal on Unix or to host_name.err in the data
directory if you start the server using mysqld_safe. On Windows the default is
host_name.err in the data directory. To specify the error log filename, set the log_er
ror system variable.

22.3. Controlling Server Logging | 763

www.it-ebooks.info

http://www.it-ebooks.info/

Examples:

• Write the error log to the err.log file in the data directory:
[mysqld]
log_error=err.log

• As of MySQL 5.7.2, you can influence the amount of error log output by setting the
log_error_verbosity system variable. Permitted values range from 1 (errors only)
to 3 (errors, warnings, notes; the default). To see errors only, do this:

[mysqld]
log_error=err.log
log_error_verbosity=1

• On Unix, if you start the server using mysqld_safe, it’s possible to redirect the error
log to the syslog facility:

[mysqld_safe]
syslog

The general query and slow query logs

Several system variables control the general query and slow query logs. Each variable
can be set at server startup or changed at runtime:

• log_output controls the log destinations. The value is FILE (log to files, the default),
TABLE (log to tables), NONE (disable logging), or a comma-separated combination
of values, in any order. NONE overrides any other value. If the value is NONE, other
settings for these logs have no effect. Destination control applies to the general query
and slow query logs together; you cannot write one to a file and the other to a table.

• general_log and slow_query_log enable or disable the respective logs. By default,
each log is disabled. If you enable either of them, the server writes the log to the
destinations specified by log_output, unless that variable is NONE.

• general_log_file and slow_query_log_file specify log filenames. The default
names are host_name.log and host_name-slow.log; however, these settings have no
effect unless log_output specifies FILE logging.

Examples:

• Write the general query log to the query.log file in the data directory:
[mysqld]
log_output=FILE
general_log=1
general_log_file=query.log

764 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

• Write the general and slow query logs to tables in the mysql database (the table
names are general_log and slow_log and cannot be changed):

[mysqld]
log_output=TABLE
general_log=1
slow_query_log=1

• Write the general query log to a file named query.log and to the general_log table:
[mysqld]
log_output=FILE,TABLE
general_log=1
general_log_file=query.log

The binary log

To enable the binary log, use the --log-bin option, optionally specifying the logfile
basename as the option value. The default basename is host_name-bin. The value for
this option is a basename because the server creates binary logfiles in numbered se‐
quence, automatically adding to the basename suffixes of .000001, .000002, and so forth.
The server advances to the next file in the sequence when it starts, when the logs are
flushed, and when the current file reaches the maximum logfile size (controlled by the
max_binlog_size system variable). To have the server expire logfiles for you, set the
expire_logs_days system variable to the age in days at which files become eligible for
removal.

Examples:

• Enable the binary log, writing numbered files in the data directory having names
beginning with host_name-bin:

[mysqld]
log-bin

• Enable the binary log, writing numbered files in the data directory having names
beginning with binlog. Additionally, expire logfiles after a week:

[mysqld]
log-bin=binlog
max_binlog_size=4G
expire_logs_days=7

22.4. Rotating or Expiring Logfiles
Problem
Files used for logging grow indefinitely unless managed.

22.4. Rotating or Expiring Logfiles | 765

www.it-ebooks.info

http://www.it-ebooks.info/

Problem
Available strategies include rotating a logfile through a set of names and expiring files
by age. But different strategies apply to different logs, so consider the log type before
choosing a strategy.

Discussion
Logfile rotation is a technique that renames a logfile through a series of one or more
names. This maintains the file for a certain number of rotations, at which point it reaches
the end of the sequence and its contents are discarded by being overwritten. Rotation
can be applied to the error log, general query log, or slow query log.

Logfile expiration removes files when they reach a certain age. This technique applies
to the binary log.

Both log management methods rely on log flushing to make sure that the current logfile
has been closed properly. When you flush the logs, the server closes and reopens
whichever of the files it is writing. If you rename the error, general query, or slow query
logfile first, the server closes the current file and reopens a new one using the original
name; this is what enables rotation of the current file while the server runs. The server
also closes the current binary logfile and opens a new one with the next number in the
sequence.

To flush the server logs, execute a FLUSH LOGS statement or use the mysqladmin flush-
logs command. (Log flushing requires the RELOAD privilege.) The following discussion
shows maintenance operations as performed at the command line, so it uses mysqlad‐
min. The examples use mv as the file renaming command, which is applicable on Unix.
On Windows, use rename instead.

Rotating the error, general query, or slow query log

To maintain a single file in a log rotation, rename the current logfile and flush the logs.
Suppose that the error logfile is named err.log in the data directory. To rotate it, change
location to the data directory, then execute these commands:

% mv err.log err.log.old
% mysqladmin flush-logs

When you flush the logs, the server opens a new err.log file. You can remove err.log.old
at your leisure. To maintain an archive copy, include it in your filesystem backups before
removing it.

To maintain a set of multiple rotated files, it’s convenient to use a sequence of numbered
suffixes. For example, to maintain a set of three old general query logfiles, do this:

% mv query.log.2 query.log.3
% mv query.log.1 query.log.2

766 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

% mv query.log query.log.1
% mysqladmin flush-logs

The first few times you execute the command sequence, the initial commands are un‐
needed until the respective query.log.N files exist.

Successive executions of that command sequence rotate query.log through the names
query.log.1, query.log.2, and query.log.3; then query.log.3 is overwritten and its contents
lost. To maintain an archive copy, include the rotated files in your filesystem backups
before removing them.

Rotating the binary log

The server creates binary logfiles in numbered sequence. To expire them, you need only
arrange that it removes files when they’re old enough. Several factors affect how many
files the server creates and maintains:

• The frequency of server restarts and log flushing operations: one new file is gen‐
erated each time either of those occurs.

• The size to which files can grow: larger sizes lead to fewer files. To control this size,
set the max_binlog_size system variable.

• How old files are permitted to become: longer expiration times lead to more files.
To control this age, set the expire_logs_days system variable. The server makes
expiration checks at server startup and when it opens a new binary logfile.

The following settings enable the binary log, set the maximum file size to 4GB, and
expire files after four days:

[mysqld]
log-bin=binlog
max_binlog_size=4G
expire_logs_days=4

You can also remove binary logfiles manually with the PURGE BINARY LOGS statement.
For example, to remove all files up to and including the one named binlog.001028, do
this:

PURGE BINARY LOGS TO 'binlog.001028';

If your server is a replication master, don’t be too aggressive about removing binary
logfiles. No file should be removed until you’re certain its contents have been completely
transmitted to all slaves.

Automating logfile rotation

To make it easier to perform a rotation operation, put the commands that implement
it in a file to create a shell script. To perform the rotation automatically, arrange to
execute the script from a job scheduler such as cron. The script will need to access

22.4. Rotating or Expiring Logfiles | 767

www.it-ebooks.info

http://www.it-ebooks.info/

connection parameters that enable it to connect to the server to flush the logs, using an
account that has the RELOAD privilege. One strategy is to put the parameters in an option
file and pass the file to mysqladmin using a --defaults-file=file_name option. For
example:

#!/bin/sh
mv err.log err.log.old
mysqladmin --defaults-file=/usr/local/mysql/data/flush-opts.cnf flush-logs

22.5. Rotating Log Tables or Expiring Log Table Rows
Problem
Tables used for logging grow indefinitely unless managed.

Problem
Rotate the tables or expire rows within them.

Discussion
Recipe 22.4 discusses rotation and expiration of logfiles. Analogous techniques apply
to log tables:

• To rotate a log table, rename it and open a new table with the original name.
• To expire log table contents, remove rows older than a certain age.

The examples here demonstrate how to implement these methods using the general
query log table, mysql.general_log. The same methods apply to the slow query log
table, mysql.slow_log, or to any other table containing rows that have a timestamp.
Prime examples are the Apache log table in Recipe 20.14, and the session-storage tables
in Chapter 21.

To employ log table rotation, create an empty copy of the original table to serve as the
new table (see Recipe 4.1), then rename the original table and rename the new one to
take its place:

DROP TABLE IF EXISTS mysql.general_log_old, mysql.general_log_new;
CREATE TABLE mysql.general_log_new LIKE mysql.general_log;
RENAME TABLE mysql.general_log TO mysql.general_log_old,
 mysql.general_log_new TO mysql.general_log;

To employ log row expiration, you can either empty the table completely or selectively:

• To empty a log table completely, truncate it:
TRUNCATE TABLE mysql.general_log;

768 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

• To expire a table selectively, removing only rows older than a given age, you must
know the name of the column that indicates row-creation time:

DELETE FROM mysql.general_log WHERE event_time < NOW() - INTERVAL 1 WEEK;

For automatic expiration, the statements for any of the techniques just described can be
executed within a scheduled event (see Recipe 9.8). For example:

CREATE EVENT expire_general_log
 ON SCHEDULE EVERY 1 WEEK
 DO DELETE FROM mysql.general_log
 WHERE event_time < NOW() - INTERVAL 1 WEEK;

22.6. Monitoring the MySQL Server
Problem
You want to check how the server is operating.

Solution
Let the server tell you about itself.

Discussion
As your MySQL server runs, you’ll have questions about aspects of its operation or
performance. Or maybe it’s not running and you want to know why. Here are some
example questions:

• Is the server running? If so, how long has it been up?
• Why does the server quit immediately after I start it?
• How many queries is my server processing?
• How many simultaneous connections does the server permit? Is it close to running

out?
• Is my slave replication server communicating with the master, or has replication

stopped?
• Are the key caches sized properly for efficient operation?

This section discusses what you can find out, and how, by surveying the types of infor‐
mation available and how to use that information to answer questions. The purpose is
not so much to consider specific monitoring problems as to illustrate your options so
you can begin to answer your own questions, whatever they are.

To answer a question like any of those just posed, do this:

22.6. Monitoring the MySQL Server | 769

www.it-ebooks.info

http://www.it-ebooks.info/

1. Determine which of the available information sources pertain to the problem at
hand.

2. Choose an approach for using the information: Are you asking a one-time question?
If so, maybe a few interactive queries are sufficient. If you’re trying to solve an issue
that may recur or for which you need continuous monitoring, a program-oriented
approach is better. Will a script written entirely in SQL do the job, or do you need
to write a program that queries the server and performs additional manipulation
of the information obtained? (This is typical for operations that cannot be done in
pure SQL, that have special output formatting requirements, and so forth.) If a task
must run periodically, maybe you need to set up a scheduled event or cron job. For
browser display, write a web script.

Sources of monitoring information

To follow the procedure just outlined, consider what information sources are available
so that you can evaluate which are applicable and how usable they are for particular
questions:

• System variables tell you how the server is configured. (Recipe 22.1 covers how to
check these values.)

• Status variables provide information about operations the server is performing,
such as number of statements executed, number of disk accesses, memory use, or
cache efficiency. Status information can help indicate when configuration changes
are needed, such as increasing the size of a too-small buffer to improve performance,
or decreasing the size of an underused resource to reduce the server’s memory
footprint.

• SHOW statements and tables in the INFORMATION_SCHEMA database provide informa‐
tion ranging from processes running in the server to active storage engines and
plug-ins to system and status variables. In many cases, these two sources provide
the same or similar information, but in different display formats. (For example, the
SHOW PLUGINS statement and the PLUGINS table are related.) Familiarity with both
sources helps you choose which is more usable in a given situation:
— For interactive use, SHOW is often more convenient because it involves less typing

than INFORMATION_SCHEMA queries. Compare these two statements, which pro‐
duce the same result:

SHOW GLOBAL STATUS LIKE 'Threads_connected';

SELECT VARIABLE_VALUE FROM INFORMATION_SCHEMA.GLOBAL_STATUS
WHERE VARIABLE_NAME = 'Threads_connected';

— INFORMATION_SCHEMA queries use SELECT, which is more expressive than SHOW
and can be used for highly specific or complex queries, including joins.

770 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

— SHOW output cannot be saved using only SQL. Should you require further pro‐
cessing of an INFORMATION_SCHEMA query result, you can use INSERT INTO …
SELECT to save the results in a table for further analysis (see Recipe 4.2). To obtain
an individual value, assign a scalar subquery result to a variable:

SET @queries = (SELECT VARIABLE_VALUE
FROM INFORMATION_SCHEMA.GLOBAL_STATUS
WHERE VARIABLE_NAME = 'Queries');

• Some storage engines make information available about themselves. InnoDB, for
example, has its own system and status variables. It also provides its own INFORMA
TION_SCHEMA tables and a set of InnoDB Monitors. The INFORMATION_SCHEMA tables
provide more structured information and thus are more amenable to analysis using
SQL, if they contain the information you want. To see which InnoDB-related tables
are available, use this statement:

SHOW TABLES FROM INFORMATION_SCHEMA LIKE 'innodb%';

The Monitors produce unstructured output. You can eyeball it, but for program‐
matic use, you must parse or extract the information somehow. In some cases, a
simple grep command might suffice:

% mysql -E -e "SHOW ENGINE INNODB STATUS" | grep "Free buffers"
Free buffers 4733

• The Performance Schema is designed for monitoring and provides a wealth of
measurements, from high-level information such as which clients are connected
down to fine-grained information such as which locks a statement holds or which
files it has open. To use the Performance Schema, it must be enabled. This is the
default as of MySQL 5.6.6; to enable it explicitly at server startup, use this config‐
uration setting:

[mysqld]
performance_schema=1

• Server logs provide several types of information. Here are some suggestions for
using them:
— The error log alerts you to serious problems the server encounters. It’s most

suited to visual inspection because messages can originate from anywhere in the
server and there is no fixed format to aid programmatic analysis. It’s often only
the last part of the file that’s of interest, anyway, because you typically check this
file to find the reason for the most recent problems.

— The general query log indicates what queries clients are running. It can aid as‐
sessing the nature of the server’s workload.

— The slow log contains queries that may be inefficient. It can help you find can‐
didates for optimization.

22.6. Monitoring the MySQL Server | 771

www.it-ebooks.info

http://www.it-ebooks.info/

The server is able to write the general query and slow query logs to files, tables, or
both. Log tables facilitate analysis better than the files; they are more structured and
hence subject to analysis using SQL statements. The contents are also easier to
interpret. Each query row in the general_log table shows the user associated with
it. With the logfile, users are named only on connection lines. To identify a user’s
queries, you must extract the connection ID from the connection line and look for
subsequent query lines with the same ID.
In addition, log tables are managed by the CSV storage engine, so the table datafiles
are written in comma-separated values format. Look in the mysql directory under
the server’s data directory for files named general_log.CSV and slow_log.CSV. You
can process them with tools that read CSV files.
To get information from a log, it must be enabled (see Recipe 22.3 for instructions).

• The EXPLAIN statement can be useful for checking long-running queries. Although
EXPLAIN is most often used to see execution plans for prospective queries, MySQL
5.7.2 and up has the capability of using EXPLAIN to examine queries currently exe‐
cuting in other sessions. If a query seems to be stuck, this may help you understand
why. Use SHOW PROCESSLIST or the INFORMATION_SCHEMA PROCESSLIST table to de‐
termine the connection ID of the session running the problem query, then point
EXPLAIN at it:

EXPLAIN FOR CONNECTION connection_id;

EXPLAIN can produce output in tabular or JSON format. The latter can be parsed
and manipulated by standard JSON modules in your programming language of
choice.

Using monitoring information

After considering the information sources available to you, think about which is best
suited to the question you seek to answer. If multiple sources apply, the best choice may
depend on the context in which you intend to use it. The preceding summary of sources
includes some remarks about their suitability to different contexts. Let’s see how that
works out in practice, by revisiting the original monitoring questions given at the be‐
ginning of this discussion and considering how to go about answering them. Keep in
mind that these examples are illustrative, not exhaustive. For most, you can make im‐
plementation choices other than those shown.

Is the server running? If so, how long has it been up? To tell whether the server is running,
just try connecting to it. If the connection succeeds or you get an error that’s from the
server itself, the server is up. mysqladmin ping is a good choice here, for interactive use
or from within shell scripts. This result indicates the server is running:

772 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

% mysqladmin ping
mysqld is alive

This connection attempt fails, but the server itself returns the second error message, so
it’s not down:

% mysqladmin -u baduser ping
mysqladmin: connect to server at '127.0.0.1' failed
error: 'Access denied for user 'baduser'@'localhost' (using password: YES)'

This result indicates complete connection failure; the server is down:
% mysqladmin ping
mysqladmin: connect to server at '127.0.0.1' failed
error: 'Can't connect to MySQL server on '127.0.0.1' (61)'

If the server is not up, check the error log to find out why.

If the server is up, its uptime (in seconds) can be determined multiple ways:

• Use mysqadmin status:
% mysqladmin status
Uptime: 22158655 Threads: 2 Questions: 65733141 Slow queries: 34
Opens: 6570 Flush tables: 1 Open tables: 95 Queries per second
avg: 2.966

A disadvantage of this approach for programmatic use is that you must parse the
output to extract the value of interest.

• Examine the Uptime status variable:
SHOW GLOBAL STATUS LIKE 'Uptime';

A server not running is obviously cause for concern. But there may be issues even if it
is running. If you frequently find that server uptime resets in the absence of scheduled
restarts, something may be causing the server to exit, and you should investigate. Again,
check the error log to see why.

Why does the server quit immediately after I start it? If the server stops shortly after you
start it, a likely cause is misconfiguration in the server option file. The error log helps
you here. But don’t be misled by mere warnings, which do not signify that the server
quit. For example, the following message means only that explicit_de

faults_for_timestamp need be set to make the warning go away:
2014-02-23T14:35:17.085998Z 0 [Warning] TIMESTAMP with implicit
DEFAULT value is deprecated. Please use --explicit_defaults_for_timestamp
server option (see documentation for more details).

Instead, check for [ERROR] lines, such as this:
2014-03-01T03:36:48.756313Z 0 [ERROR] mysqld: Error while setting
value 'TRADITONAL' to 'sql_mode'

22.6. Monitoring the MySQL Server | 773

www.it-ebooks.info

http://www.it-ebooks.info/

The problem here is that TRADITIONAL was spelled incorrectly; correct it and start the
server again.

How many queries is my server processing? This question might be prompted by simple
curiosity, or there might be a performance issue. Monitoring statement execution over
time and summarizing the results can reveal patterns, such as a time of day or day of
week when activity is especially heavy. Perhaps several report generators are configured
to start at the same time. Staggering them will help your server by spreading the load.

To answer the “how many queries” question, use status variable information:
mysql> SHOW GLOBAL STATUS LIKE 'Queries';
+---------------+----------+
| Variable_name | Value |
+---------------+----------+
| Queries | 65743031 |
+---------------+----------+

That tells you the number of statements executed since server startup, but it’s an absolute
value. You’ll likely find a rate more useful: get the Uptime value and determine the
Queries / Uptime ratio for a rate in statements per second. For a rate in a different unit,
adjust the expression accordingly. For example, this tells you statements per minute:

mysql> SHOW GLOBAL STATUS LIKE 'Uptime';
+---------------+----------+
| Variable_name | Value |
+---------------+----------+
| Uptime | 22164600 |
+---------------+----------+
mysql> SELECT (65743031 * 60) / 22164600 AS 'statements/minute';
+-------------------+
| statements/minute |
+-------------------+
| 177.9677 |
+-------------------+

In programmatic context, you might write a long-running application that probes the
server periodically for the Queries and Uptime values, to determine a running display
of statement-execution activity. To avoid reconnecting each time you issue the state‐
ments, ask the server for its session timeout period and probe it at intervals shorter than
that value. To get the session timeout value (in seconds), use this statement:

SELECT @@wait_timeout;

The default value is 28,800 (8 hours). If it’s configured to a value shorter than your
desired probe interval, set it higher:

SET wait_timeout = seconds;

774 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

The “MySQL Uncertainty Principle”
Heisenberg’s uncertainty principle for measurement of quantum phenomena has a
MySQL analog. If you monitor MySQL’s status to see how it changes over time, you
might notice the curious effect that, for some of the indicators, each time you take a
measurement, you change the value you’re measuring! For example, to determine the
number of statements the server has received, use this statement:

SHOW GLOBAL STATUS LIKE 'Queries'

However, that statement is itself a statement, so each time you issue it, you cause the
Queries value to change. In effect, your performance assessment instrument contami‐
nates its own measurements, something you might want to take into account.

The preceding discussion uses Queries, which indicates the total number of statements
executed. Options for more fine-grained analysis are available:

• The server maintains a set of Com_xxx status variables that count executions of
particular statements. For example, Com_insert and Com_update count INSERT and
UPDATE statements, respectively.

• To find out which queries were executed, check the general query log. To discover
which ones were slow, check the slow query log. As mentioned previously, log tables
are easier to analyze than logfiles because you can apply SQL statements to them.
For example, this query summarizes number of statements per user, most active
users first:

SELECT COUNT(*), user_host FROM mysql.general_log
GROUP BY user_host ORDER BY COUNT(*) DESC;

A similar query shows which statements appear most often in the slow query log:
SELECT COUNT(*), sql_text FROM mysql.slow_log
GROUP BY sql_text ORDER BY COUNT(*) DESC;

For information about summary and statistical techniques, see Chapter 8 and
Chapter 15. Recipe 20.14 shows log-analysis queries in a related context (Apache
logging).

How many simultaneous connections does the server permit? Is it close to running out? It’s
often the case that a server function is assessed using a combination of configuration
settings plus current operational status. Typically, the former comes from system vari‐
ables, whereas the latter comes from status variables. Connection management is an
example of this concept. The max_connections system variable indicates the maximum
number of simultaneous connections the server permits, and the Threads_connected
status variable shows how many clients are currently connected. If Threads_connected

22.6. Monitoring the MySQL Server | 775

www.it-ebooks.info

http://www.it-ebooks.info/

is regularly close to the value of max_connections, you might need to bump up the value
of the latter. If there is always a wide gap, you can decrease max_connections to reduce
resource allocation.

Is my slave replication server communicating with the master, or has replication stopped? If
your server is a replication slave, having replication stop is something you want to avoid.
Determining why replication stopped may involve some investigation, but finding out
that a problem has occurred is a good first step toward resolving it.

The SHOW SLAVE STATUS statement helps you here. Alternatively, in MySQL 5.7.2 and
up, the Performance Schema provides a set of tables containing replication configura‐
tion and status information.

Executing SHOW SLAVE STATUS on the slave provides columns showing the status of the
I/O and SQL threads, and columns containing error information:

mysql> SHOW SLAVE STATUS\G
…
 Slave_IO_Running: Connecting
Slave_SQL_Running: Yes
…
 Last_IO_Errno: 2003
 Last_IO_Error: error reconnecting to master
 'account' - retry-time: 60
 retries: 7
 Last_SQL_Errno: 0
 Last_SQL_Error:
…

In this case, the slave is having trouble connecting to the master. If the slave is failing to
execute the statements received from the master, Slave_SQL_Running will be No and the
SQL error columns will show the error.

For communication problems, the Performance Schema replication_connec

tion_status table provides information similar to that just shown:
mysql> SELECT * FROM performance_schema.replication_connection_status\G
…
 SOURCE_UUID: a2813915-ae3d-11e0-a30e-0019d1911a72
 THREAD_ID: NULL
 SERVICE_STATE: CONNECTING
RECEIVED_TRANSACTION_SET:
 LAST_ERROR_NUMBER: 2003
 LAST_ERROR_MESSAGE: error reconnecting to master
 'account' - retry-time: 60
 retries: 7
 LAST_ERROR_TIMESTAMP: 2014-03-01 09:17:28

For statement execution status, check the replication_execute_status table.

776 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Are the key caches sized properly for efficient operation? The InnoDB and MyISAM stor‐
age engines each have a key cache. They serve to improve performance of index key
lookups, so it’s critical that they operate well. The main configuration setting for each
is the cache size, and the operational status indicators are the number of requests for
keys from the cache and the number of disk reads to pull values into the cache.

To determine the cache sizes, check the relevant system variables:
mysql> SELECT @@innodb_buffer_pool_size, @@key_buffer_size;
+---------------------------+-------------------+
| @@innodb_buffer_pool_size | @@key_buffer_size |
+---------------------------+-------------------+
| 134217728 | 8388608 |
+---------------------------+-------------------+

You can also use SHOW VARIABLES or the INFORMATION_SCHEMA GLOBAL_VARIABLES table.
For example:

mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_VARIABLES WHERE
 -> VARIABLE_NAME IN ('INNODB_BUFFER_POOL_SIZE','KEY_BUFFER_SIZE');
+-------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+-------------------------+----------------+
| KEY_BUFFER_SIZE | 8388608 |
| INNODB_BUFFER_POOL_SIZE | 134217728 |
+-------------------------+----------------+

The efficiency measure that determines how well a key cache is operating is its hit rate:
the rate at which key requests are satisfied from the cache without reading keys from
disk. If a key is in the cache, it’s a hit; if not, it’s a miss. The following expression computes
the hit rate, where reads and requests indicate the number of disk reads and number
of requests, respectively:

1 - (reads / requests)

To apply the expression to InnoDB or MyISAM, plug in the appropriate status variables:
1 - (Innodb_buffer_pool_reads / Innodb_buffer_pool_read_requests)
1 - (Key_reads / Key_read_requests)

If there have been no read requests, the expressions involve a division-by-zero opera‐
tion, so it’s necessary to account for that.

Values close to 1 indicate a high hit rate, which means that the key cache is very efficient.
Values close to 0 indicate a low hit rate. If the value is not close to 1, consider making
the cache larger by increasing the appropriate system variable (in
nodb_buffer_pool_size or key_buffer_size).

Suppose that you want to access the hit rate for the two caches by executing a SQL script
from the command line. Because the status variables are not simply displayed but are
used in a calculation, we require their values in a form that permits that use. @@ syntax

22.6. Monitoring the MySQL Server | 777

www.it-ebooks.info

http://www.it-ebooks.info/

does not apply here because that works only for system variables. Nor can we capture
the result from a SHOW statement using only SQL. However, we can obtain any individual
status variable value as a scalar subquery result. The following SQL script uses that
approach to fetch the relevant status variables into user-defined variables and compute
the hit rates:

hitrate.sql: Show InnoDB and MyISAM key cache hit rate statistics
USE INFORMATION_SCHEMA;
SET @reads = (SELECT VARIABLE_VALUE FROM GLOBAL_STATUS
 WHERE VARIABLE_NAME = 'INNODB_BUFFER_POOL_READS');
SET @requests = (SELECT VARIABLE_VALUE FROM GLOBAL_STATUS
 WHERE VARIABLE_NAME = 'INNODB_BUFFER_POOL_READ_REQUESTS');
SET @hit_rate = TRUNCATE(IFNULL(1 - (@reads/@requests), 0), 4);
SELECT 'InnoDB key cache hit rate' AS Message,
 @reads, @requests, @hit_rate;
SET @reads = (SELECT VARIABLE_VALUE FROM GLOBAL_STATUS
 WHERE VARIABLE_NAME = 'KEY_READS');
SET @requests = (SELECT VARIABLE_VALUE FROM GLOBAL_STATUS
 WHERE VARIABLE_NAME = 'KEY_READ_REQUESTS');
SET @hit_rate = TRUNCATE(IFNULL(1 - (@reads/@requests), 0), 4);
SELECT 'MyISAM key cache hit rate' AS Message,
 @reads, @requests, @hit_rate;

Invoke the script to determine the key cache hit rates on demand:
% mysql -t < hitrate.sql
+---------------------------+--------+-----------+-----------+
| Message | @reads | @requests | @hit_rate |
+---------------------------+--------+-----------+-----------+
| InnoDB key cache hit rate | 6280 | 70138276 | 0.9999 |
+---------------------------+--------+-----------+-----------+
+---------------------------+--------+-----------+-----------+
| Message | @reads | @requests | @hit_rate |
+---------------------------+--------+-----------+-----------+
| MyISAM key cache hit rate | 23269 | 8902674 | 0.9973 |
+---------------------------+--------+-----------+-----------+

It looks like both caches are large enough to operate well.

The hitrate.sql script does the job, but four queries to get four status variables seems
inefficient. You can see from the example how cumbersome it is to fetch their values
individually. Manipulating status variables using a programming API permits a more
straightforward process:

• Retrieve the entire set of status variables with a single query and store the result in
a data structure that associates variable names with their values. This structure
suffices no matter how many variables you monitor.

• Furthermore, it’s reasonable to suppose that if we have one task that requires status
variable values, we’ll have other such tasks in the future. So it makes sense to write
a routine to extract this information. It’s necessary to write the routine only once

778 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

because it can be put in a library file for use from any number of monitoring ap‐
plications.

The required information can be obtained from either SHOW STATUS or the GLOBAL_STA
TUS table. However, when executing queries within a program and saving the results,
we must account for differences between SHOW statements and selecting from INFORMA
TION_SCHEMA tables. The following queries retrieve similar information, but the column
headings differ in lettercase and sometimes in name, and variable names differ in let‐
tercase:

mysql> SHOW GLOBAL STATUS;
+---+-------------+
| Variable_name | Value |
+---+-------------+
| Aborted_clients | 1 |
| Aborted_connects | 6 |
…
mysql> SELECT * FROM INFORMATION_SCHEMA.GLOBAL_STATUS;
+---+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+---+----------------+
| ABORTED_CLIENTS | 1 |
| ABORTED_CONNECTS | 6 |
…

To enable applications to be agnostic with respect to whether the variable information
comes from SHOW or INFORMATION_SCHEMA, force variable names to a consistent letter‐
case and use that case in expressions that reference the variables. It doesn’t matter which
lettercase you choose, as long as you use it consistently. The following discussion uses
uppercase.

Here’s a simple routine (in Ruby) that takes a database handle, fetches the status vari‐
ables, and returns them as a hash of values keyed by names:

def get_status_variables(dbh)
 vars = {}
 query = "SELECT VARIABLE_NAME, VARIABLE_VALUE FROM
 INFORMATION_SCHEMA.GLOBAL_STATUS"
 dbh.select_all(query).each { |name, value| vars[name.upcase] = value }
 return vars
end

To get the information using a SHOW statement instead, replace the query with this one:
query = "SHOW GLOBAL STATUS"

The code applies the upcase method to the variable names. That way, no matter whether
the routine uses GLOBAL_STATUS or SHOW to obtain the information, the resulting hash
has elements accessed by uppercase variable names.

22.6. Monitoring the MySQL Server | 779

www.it-ebooks.info

http://www.it-ebooks.info/

To calculate a hit rate, pass the variable hash and the names of the reads and requests
variables to this routine:

def cache_hit_rate(vars,reads_name,requests_name)
 reads = vars[reads_name].to_f
 requests = vars[requests_name].to_f
 hit_rate = requests == 0 ? 0 : 1 - (reads/requests)
 printf " Key reads: %12d (%s)\n", reads, reads_name
 printf "Key read requests: %12d (%s)\n", requests, requests_name
 printf " Hit rate: %12.4f\n", hit_rate
end

Now we’re all set. Call the routines that fetch status information and calculate the hit
rates like this:

statvars = get_status_variables(dbh)
cache_hit_rate(statvars,
 "INNODB_BUFFER_POOL_READS",
 "INNODB_BUFFER_POOL_READ_REQUESTS")
cache_hit_rate(statvars,
 "KEY_READS",
 "KEY_READ_REQUESTS")

Run the script to see your server’s hit rates:
% hitrate.rb
 Key reads: 6280 (INNODB_BUFFER_POOL_READS)
Key read requests: 70138276 (INNODB_BUFFER_POOL_READ_REQUESTS)
 Hit rate: 0.9999
 Key reads: 23269 (KEY_READS)
Key read requests: 8902674 (KEY_READ_REQUESTS)
 Hit rate: 0.9974

For tasks involving system variables, code similar to get_status_variables() suffices.
This implementation uses the GLOBAL_VARIABLES table:

def get_system_variables(dbh)
 vars = {}
 query = "SELECT VARIABLE_NAME, VARIABLE_VALUE FROM
 INFORMATION_SCHEMA.GLOBAL_VARIABLES"
 dbh.select_all(query).each { |name, value| vars[name.upcase] = value }
 return vars
end

To use SHOW instead, replace the query with this one:
query = "SHOW GLOBAL VARIABLES"

22.7. Creating and Using Backups
Problem
You want to protect yourself against data loss.

780 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use mysqldump to back up your databases.

Discussion
The mysqldump program provides an easy way to back up database contents. This pro‐
gram is discussed elsewhere, but primarily as a means of copying individual files (see
Recipe 4.6). For administrative purposes, you’re likely more interested in backing up
entire databases, including nontable objects such as stored programs. This section shows
some simple techniques for backup and recovery.

The mysqldump commands shown here include the --routines and --events options
so that dump output includes definitions for stored functions and procedures and
scheduled events. (There is also a --triggers option, but it’s not used here because
mysqldump dumps triggers with their associated tables by default.) To omit stored rou‐
tine or scheduled event definitions from dump output, omit the --routines or --
events option. To omit trigger definitions, use --skip-triggers.

To back up a single database:
% mysqldump --routines --events db1 > dump.sql

To reload the dump file:
% mysql db1 < dump.sql

That command reloads the file into the database from which it was dumped (db1),
thereby restoring it to its state at the time of the dump. To make a copy of the original
database, specify the name of a different database. (Create the database first if it doesn’t
exist.)

To back up multiple databases:
% mysqldump --routines --events --databases db1 db2 db3 > dump.sql

Normally, mysqldump treats nonoption arguments following the first as table names.
The --databases option causes mysqldump to treat all such arguments as database
names. That option also causes dump output to include CREATE DATABASE and USE
statements for each database. This causes the reload operation to create each database
as necessary, and makes it the default database so the following contents reload into it.

To reload the dump file:
% mysql < dump.sql

In this case, no database name is needed on the command line (and in fact is ignored
if given) due to the USE statements in the dump file.

To back up all databases:

22.7. Creating and Using Backups | 781

www.it-ebooks.info

http://www.it-ebooks.info/

% mysqldump --routines --events --all-databases > dump.sql

No database names are given with this command. mysqldump asks the server which
databases exist and dumps them all.

To reload the dump file:
% mysql < dump.sql

An all-databases dump can take a long time to produce and reload. Using several single-
or multiple-database dumps may be a better strategy because you can work with smaller
parts of your installation.

782 | Chapter 22: Server Administration

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23

Security

23.0. Introduction
This chapter covers security-related topics:

• The mysql.user table that contains MySQL account information
• Statements for managing MySQL user accounts
• Password strength checking and policy
• Password expiration
• Finding and fixing insecure accounts
• Finding and removing anonymous accounts and accounts that permit connections

from many hosts

If you like, you can skip over the initial section that describes the mysql.user table, but
I think you’ll find that reading it will help you better understand later sections, which
often discuss how SQL operations map onto underlying changes in that table.

Scripts shown in this chapter are located in the routines directory of the recipes dis‐
tribution.

Whether you use the MySQL 5.5, 5.6, or 5.7 release series, it is best to
use a recent version within the series. Changes to the authentication
system occur in early development versions that may produce re‐
sults that differ from the descriptions here.

783

www.it-ebooks.info

http://www.it-ebooks.info/

Many of the techniques shown here require administrative access,
such as the ability to modify tables in the mysql system database or
use statements that require the SUPER privilege. For this reason, to
carry out the operations described here, connect to the server as root
rather than as cbuser.

23.1. Understanding the mysql.user Table
MySQL stores user account information in tables in the mysql system database. The
user table is the most important because it contains account names and credentials. To
see its structure, use this statement:

SHOW CREATE TABLE mysql.user;

The user table columns that concern us here specify account names and authentication
information:

• The User and Host columns identify the account. MySQL account names comprise
a combination of username and hostname values. For example, in the user table
row for a 'cbuser'@'localhost' account, the User and Host column values are
cbuser and localhost, respectively. For a 'myuser'@'myhost.example.com' ac‐
count, those columns are myuser and myhost.example.com.

• The plugin, Password, and authentication_string columns store authentication
credentials. MySQL does not store literal passwords in the user sytem table because
that is insecure. Instead, the server computes a hash value from the password and
stores the hash string.
— The plugin column indicates which authentication plugin the server uses to

check credentials for clients that attempt to use the account. Different plug-ins
implement password hashing methods of varying encryption strength. The fol‐
lowing table shows the plug-ins this chapter discusses:

Plug-in Authentication method

mysql_native_password Native password hashing

mysql_old_password “Old” native password hashing (deprecated)

sha256_password SHA-256 password hashing (MySQL 5.6.6 or later)

MySQL Enterprise, the commercial version of MySQL, includes additional plug-
ins for authenticating using PAM or Windows credentials. These enable use of
passwords external to MySQL, such as Unix login passwords or native Windows
services.

— The Password column is used if the plugin column is mysql_native_pass
word or mysql_old_password. An empty Password value means “no password,”

784 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

which is insecure. A nonempty value represents a hashed password in the format
required by the respective plug-in.

— The authentication_string column is for use by plug-ins that do not use the
Password column. For example, sha256_password uses authentica

tion_string to store SHA-256 password hash values, which are cryptographi‐
cally superior to native hashing but too long for the Password column.

Before MySQL 5.7.2, the server permits the plugin value to be empty. As of MySQL
5.7.2, the plugin column must be nonempty and the server disables any empty-plug-in
account until a nonempty plug-in is assigned. However, even before 5.7.2, it’s best if
every account has a nonempty value:

• If the plugin column for an account is empty, the server authenticates clients using
either mysql_native_password or mysql_old_password implicitly, making the
choice based on the format of the hash value stored in the Password column. A
nonempty plug-in makes the authentication method explicit.

• If you’re running a version older than 5.7, modifying all accounts now to have a
nonempty plugin value helps avoid issues when you upgrade to 5.7.

If your user table contains accounts that have an empty plugin value or use the dep‐
recated mysql_old_password plug-in, you can fix them. Recipe 23.8 provides upgrade
instructions.

23.2. Managing User Accounts
Problem
You are responsible for setting up accounts on your MySQL server.

Solution
Learn to use the account-management SQL statements.

Discussion
It’s possible to modify the grant tables in the mysql database directly with SQL statements
such as INSERT or UPDATE, but the MySQL account-management statements are more
convenient. This section describes their use and covers these topics:

• Creating accounts (CREATE USER, SET PASSWORD)
• Assigning and checking privileges (GRANT, REVOKE, SHOW GRANTS)

23.2. Managing User Accounts | 785

www.it-ebooks.info

http://www.it-ebooks.info/

• Removing and renaming accounts (DROP USER, RENAME USER)

Creating accounts

To create an account, use the CREATE USER statement, which creates a row in the
mysql.user table. But before you do so, decide these three things:

• The account name, expressed in 'user_name'@'host_name' format naming the
user and the host from which the user will connect

• The account password
• The authentication plug-in the server should execute when clients attempt to use

the account

Authentication plug-ins use hashing to encrypt passwords for storage and transmission.
MySQL has several built-in plug-ins from which to choose:

• mysql_native_password implements the default password hashing method.
• mysql_old_password is similar but uses a hashing method that is less secure and is

now deprecated. Avoid choosing this plug-in for new accounts. If your server has
existing accounts that use it, Recipe 23.8 discusses how to identify and modify them
to use mysql_native_password instead.

• sha256_password authenticates using SHA-256 password hash values, which are
cryptographically more secure than hashes generated by mysql_native_pass
word. This plug-in is available as of MySQL 5.6.6. It provides security beyond that
afforded by mysql_native_password, but additional setup is required to use it.
(Clients must connect using SSL or provide an RSA certificate.)

The CREATE USER statement is commonly used in one of these forms:
CREATE USER 'user_name'@'host_name' IDENTIFIED BY 'password';
CREATE USER 'user_name'@'host_name' IDENTIFIED WITH 'auth_plugin';

The first syntax creates the account and sets its password with a single statement. It also
assigns an authentication plug-in implicitly, sort of:

• Before MySQL 5.6.6, the statement leaves the plugin column empty in the user
table row for the account. It’s preferable for the plug-in to be nonempty, for reasons
discussed in Recipe 23.1.

• As of 5.6.6, the statement assigns the plug-in named by the --default-
authentication-plugin setting (which is mysql_native_password, unless you
change it at server startup).

786 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

With the second syntax, you must set the password separately using a subsequent SET
PASSWORD statement, but because you specify the plug-in explicitly, it’s always clear which
one the user table row for the account will contain.

To create an account in a way that works consistently for any version of MySQL from
5.5 or later to ensure a designated nonempty plugin value, use this approach:

1. Create the account using a CREATE USER statement that names the authentication
plug-in explicitly. Also, set the old_passwords system variable to select the pass‐
word hashing method appropriate for the plug-in (this affects the PASSWORD()
function in the next step). The following sequences show how to do this for each
plug-in:

CREATE USER 'user_name'@'host_name' IDENTIFIED WITH 'mysql_native_password';
SET old_passwords = 0;

CREATE USER 'user_name'@'host_name' IDENTIFIED WITH 'mysql_old_password';
SET old_passwords = 1;

CREATE USER 'user_name'@'host_name' IDENTIFIED WITH 'sha256_password';
SET old_passwords = 2;

2. Set the account password:
SET PASSWORD FOR 'user_name'@'host_name' = PASSWORD('password');

The PASSWORD() function hashes the password according to the old_passwords
value just specified.

To assign privileges to the new account, which has none initially, use the GRANT statement
described later in this section.

CREATE USER fails if the account already exists.

Writing an account-creation helper procedure

To make it easier to create new accounts, we can write a helper stored procedure named
create_user() that does all the work, given the account username, hostname, pass‐
word, and authentication plug-in:

• It issues the proper CREATE USER statement to specify the plug-in explicitly.
• It sets the password, or, if the password is given as NULL, leaves the password unset.

(Presumably you’d specify NULL if you intend to assign the password later.)
• Before setting the password, it takes care of setting the old_passwords system vari‐

able to the appropriate value for the specified plug-in. It also saves and restores the
current old_passwords value, to leave its value in your session undisturbed.

• To implement a policy that users must select their own password, it uses ALTER USER
to expire the password immediately. The procedure skips this part if ALTER USER is

23.2. Managing User Accounts | 787

www.it-ebooks.info

http://www.it-ebooks.info/

not available (the server is older than MySQL 5.6.7) or the account is for an
anonymous user (who cannot set the account password to unexpire it). For more
information about password expiration, see Recipe 23.5.

To use the procedure, invoke it like this:
CALL create_user('user_name','host_name','password','auth_plugin');

The procedure definition is shown following. It requires the helper routines ex
ec_stmt() and server_version() from Recipes 9.9 and 10.9. Scripts to create these
routines are located in the routines directory of the recipes distribution:

CREATE PROCEDURE create_user(user TEXT, host TEXT,
 password TEXT, plugin TEXT)
BEGIN
 DECLARE account TEXT;
 SET account = CONCAT(QUOTE(user),'@',QUOTE(host));
 CALL exec_stmt(CONCAT('CREATE USER ',account,
 ' IDENTIFIED WITH ',QUOTE(plugin)));
 IF password IS NOT NULL THEN
 BEGIN
 DECLARE saved_old_passwords INT;
 SET saved_old_passwords = @@old_passwords;
 CASE plugin
 WHEN 'mysql_native_password' THEN SET old_passwords = 0;
 WHEN 'mysql_old_password' THEN SET old_passwords = 1;
 WHEN 'sha256_password' THEN SET old_passwords = 2;
 ELSE SIGNAL SQLSTATE 'HY000'
 SET MYSQL_ERRNO = 1525,
 MESSAGE_TEXT = 'unhandled auth plugin';
 END CASE;
 CALL exec_stmt(CONCAT('SET PASSWORD FOR ',account,
 ' = PASSWORD(',QUOTE(PASSWORD),')'));
 SET old_passwords = saved_old_passwords;
 END;
 END IF;
 IF server_version() >= 50607 AND user <> '' THEN
 CALL exec_stmt(CONCAT('ALTER USER ',account,' PASSWORD EXPIRE'));
 END IF;
END;

Assigning and checking privileges

Suppose that you have just created an account named 'user1'@'localhost'. You can
assign privileges to it with GRANT, remove privileges from it with REVOKE, and check its
privileges with SHOW GRANTS.

GRANT has this syntax:
GRANT privileges ON scope TO account;

788 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Here, account names the account to be granted the privileges, privileges indicates
what they are, and scope indicates the privilege scope, or level at which they apply. The
privileges value can be ALL (or ALL PRIVILEGES) to specify all privileges available at
the given level, or a comma-separated list of one or more privilege names such as SELECT
or CREATE. (For a full discussion of available privileges and GRANT syntax not shown here,
see the MySQL Reference Manual.)

The following examples illustrate the syntax for granting privileges at each level.

• Granting privileges globally enables the account to perform administrative opera‐
tions or operations on any database:

GRANT FILE ON *.* TO 'user1'@'localhost';
GRANT CREATE TEMPORARY TABLES, LOCK TABLES ON *.* TO 'user1'@'localhost';

• Granting privileges at the database level enables the account to perform operations
on objects within the named database:

GRANT ALL ON cookbook.* TO 'user1'@'localhost';

• Granting privileges at the table level enables the account to perform operations on
the named table:

GRANT SELECT ON mysql.user TO 'user1'@'localhost';

• Granting privileges at the column level enables the account to perform operations
on the named table column:

GRANT SELECT(User,Host), UPDATE(password_expired)
ON mysql.user TO 'user1'@'localhost';

• Granting privileges at the procedure level enables the account to perform operations
on the named stored procedure:

GRANT EXECUTE ON PROCEDURE cookbook.exec_stmt TO 'user1'@'localhost';

Use FUNCTION rather than PROCEDURE if the routine is a stored function.

To verify the privilege assignments, use SHOW GRANTS:
mysql> SHOW GRANTS FOR 'user1'@'localhost';
+--+
| Grants for user1@localhost |
+--+
| GRANT FILE, CREATE TEMPORARY TABLES, LOCK TABLES |
| ON *.* TO 'user1'@'localhost' |
| GRANT ALL PRIVILEGES ON `cookbook`.* TO 'user1'@'localhost' |
| GRANT SELECT, SELECT (User, Host), UPDATE (password_expired) |
| ON `mysql`.`user` TO 'user1'@'localhost' |
| GRANT EXECUTE ON PROCEDURE `cookbook`.`exec_stmt` TO 'user1'@'localhost' |
+--+

To see your own privileges, omit the FOR clause.

23.2. Managing User Accounts | 789

www.it-ebooks.info

http://www.it-ebooks.info/

REVOKE syntax is generally similar to GRANT but uses FROM rather than TO:
REVOKE privileges ON scope FROM account;

Thus, to remove the privileges just granted to 'user1'@'localhost', use these RE
VOKE statements (and SHOW GRANTS to verify that they were removed):

mysql> REVOKE FILE ON *.* FROM 'user1'@'localhost';
mysql> REVOKE CREATE TEMPORARY TABLES, LOCK TABLES
 -> ON *.* FROM 'user1'@'localhost';
mysql> REVOKE ALL ON cookbook.* FROM 'user1'@'localhost';
mysql> REVOKE SELECT ON mysql.user FROM 'user1'@'localhost';
mysql> REVOKE SELECT(User,Host), UPDATE(password_expired)
 -> ON mysql.user FROM 'user1'@'localhost';
mysql> REVOKE EXECUTE ON PROCEDURE cookbook.exec_stmt
 -> FROM 'user1'@'localhost';
mysql> SHOW GRANTS FOR 'user1'@'localhost';
+---+
| Grants for user1@localhost |
+---+
| GRANT USAGE ON *.* TO 'user1'@'localhost' |
+---+

Removing accounts

To get rid of an account, use the DROP USER statement:
DROP USER 'user1'@'localhost';

The statement removes all rows associated with the account in all grant tables; you need
not use REVOKE to remove its privileges first. An error occurs if the account does not
exist.

Renaming accounts

To change an account name, use RENAME USER, specifying the current and new names:
RENAME USER 'currentuser'@'localhost' TO 'newuser'@'localhost';

An error occurs if the current account does not exist or the new account already exists.

23.3. Implementing a Password Policy
Problem
You want to ensure that MySQL accounts do not use weak passwords.

790 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Use the validate_password plug-in to implement a password policy. New passwords
must satisfy the policy, whether those chosen by the DBA for new accounts or by existing
users changing their password.

Discussion
This technique requires the validate_password plug-in to be enabled. For plug-in
installation instructions, see Recipe 22.2.

When validate_password is enabled, it exposes a set of system variables that enable
you to configure it. These are the default values:

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	8
validate_password_mixed_case_count	1
validate_password_number_count	1
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

Suppose that you want to implement a policy that enforces these requirements for pass‐
words:

• At least 10 characters long
• Contains uppercase and lowercase characters
• Contains at least two digits
• Contains at least one special (nonalphanumeric) character

To put that policy in place, start the server with options that enable the plug-in and set
the values of the system variables that configure the policy requirements. For example,
put these lines in your server option file:

[mysqld]
plugin-load-add=validate_password.so
validate_password_length=10
validate_password_mixed_case_count=1
validate_password_number_count=2
validate_password_special_char_count=1

After starting the server, verify the settings:

23.3. Implementing a Password Policy | 791

www.it-ebooks.info

http://www.it-ebooks.info/

mysql> SHOW VARIABLES LIKE 'validate_password%';
+--------------------------------------+--------+
| Variable_name | Value |
+--------------------------------------+--------+
validate_password_dictionary_file	
validate_password_length	10
validate_password_mixed_case_count	1
validate_password_number_count	2
validate_password_policy	MEDIUM
validate_password_special_char_count	1
+--------------------------------------+--------+

Now the validate_password plug-in prevents assigning passwords too weak for the
policy:

mysql> SET PASSWORD = PASSWORD('weak-password');
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements
mysql> SET PASSWORD = PASSWORD('Str0ng-Pa33w@rd');
Query OK, 0 rows affected (0.00 sec)

The preceding instructions leave the validate_password_policy system variable set
to its default value (MEDIUM), but you can change it to control how the server tests pass‐
words:

• MEDIUM enables tests for password length and the number of numeric, uppercase/
lowercase, and special characters.

• To be less rigorous, set the policy to LOW, which enables only the length test. To also
permit shorter passwords, decrease the required length (validate_pass
word_length).

• To be more rigorous, set the policy to STRONG, which is like MEDIUM but also enables
you to have passwords checked against a dictionary file, to prevent use of passwords
that match any word in the file. Comparisons are not case sensitive.
To use a dictionary file, set the value of validate_password_dictionary_file to
the filename at server startup. The file should contain lowercase words, one per
line. MySQL distributions include a dictionary.txt file in the share directory that
you can use, and Unix systems often have a /usr/share/dict/words file.

Putting a password policy in place has no effect on existing passwords. To require users
to choose a new password that satisfies the policy, expire their current password (see
Recipe 23.5).

792 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

23.4. Checking Password Strength
Problem
You want to assign or change a password but verify first that it’s not weak.

Solution
Use the VALIDATE_PASSWORD_STRENGTH() function.

Discussion
The validate_password plug-in not only implements policy for new passwords, it
provides a SQL function, VALIDATE_PASSWORD_STRENGTH(), that enables strength test‐
ing of prospective passwords. Uses for this function include:

• An administrator wants to check passwords to be assigned to new accounts.
• An individual user wants to choose a new password but seeks assurance in advance

how strong it is.

To use VALIDATE_PASSWORD_STRENGTH(), the validate_password plug-in must be en‐
abled. For plug-in installation instructions, see Recipe 22.2.

VALIDATE_PASSWORD_STRENGTH() returns a value from 0 (weak) to 100 (strong):
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('abc') ;
+-----------------------------------+
| VALIDATE_PASSWORD_STRENGTH('abc') |
+-----------------------------------+
| 0 |
+-----------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak-password');
+---+
| VALIDATE_PASSWORD_STRENGTH('weak-password') |
+---+
| 50 |
+---+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('Str0ng-Pa33w@rd');
+---+
| VALIDATE_PASSWORD_STRENGTH('Str0ng-Pa33w@rd') |
+---+
| 100 |
+---+

23.4. Checking Password Strength | 793

www.it-ebooks.info

http://www.it-ebooks.info/

23.5. Expiring Passwords
Problem
You want users to pick a new MySQL password.

Solution
The ALTER USER statement expires passwords.

Discussion
MySQL 5.6.7 and up provides an ALTER USER statement that enables an administrator
to expire an account’s password:

ALTER USER 'cbuser'@'localhost' PASSWORD EXPIRE;

Here are some uses for password expiration:

• You can implement a policy that new users must select a new password when first
connecting: immediately expire the password for each new account you create.

• If you impose a stricter policy on acceptable passwords (see Recipe 23.3), you can
expire all existing passwords to require each user to choose a new one that meets
the more stringent requirements.

ALTER USER affects a single account. It works by setting the password_expired column
to Y for the appropriate mysql.user row. To “cheat” and expire passwords for all non‐
anonymous accounts at once, do this (anonymous users cannot reset their password,
so expiring those would be unfriendly):

UPDATE mysql.user SET password_expired = 'Y' WHERE User <> '';
FLUSH PRIVILEGES;

Alternatively, to affect all accounts but avoid modifying the grant tables directly, use a
stored procedure that loops through all accounts and executes ALTER USER for each:

CREATE PROCEDURE expire_all_passwords()
BEGIN
 DECLARE done BOOLEAN DEFAULT FALSE;
 DECLARE account TEXT;
 DECLARE cur CURSOR FOR
 SELECT CONCAT(QUOTE(User),'@',QUOTE(Host)) AS account
 FROM mysql.user WHERE User <> '';
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur;
 expire_loop: LOOP
 FETCH cur INTO account;
 IF done THEN

794 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

 LEAVE expire_loop;
 END IF;
 CALL exec_stmt(CONCAT('ALTER USER ',account,' PASSWORD EXPIRE'));
 END LOOP;
 CLOSE cur;
END;

The procedure requires the exec_stmt() helper routine (see Recipe 9.9). Scripts to
create these routines are located in the routines directory of the recipes distribution.

23.6. Assigning Yourself a New Password
Problem
You want to change your password.

Solution
Use the SET PASSWORD statement.

Discussion
To assign yourself a new password, use the SET PASSWORD statement and the PASS
WORD() function:

SET PASSWORD = PASSWORD('my-new-password');

SET PASSWORD permits a FOR clause that enables you to specify which account gets the
new password:

SET PASSWORD FOR 'user_name'@'host_name' = PASSWORD('my-new-password');

This latter syntax is primarily for DBAs because it requires the UPDATE privilege for the
mysql database.

If SET PASSWORD complains about the password hash being in the wrong format, try
again after setting old_passwords to select the hashing method appropriate for the
authentication plug-in associated with your account. Recipe 23.2 provides these values.

To check the strength of a password you’re considering, use the VALIDATE_PASS
WORD_STRENGTH() function (see Recipe 23.4).

23.7. Resetting an Expired Password
Problem
You cannot use MySQL because your DBA expired your password.

23.6. Assigning Yourself a New Password | 795

www.it-ebooks.info

http://www.it-ebooks.info/

Solution
Assign yourself a new password.

Discussion
If the MySQL administrator has expired your password, MySQL will let you connect,
but not do much of anything else:

% mysql --user=cbuser --password
Enter password: ******
mysql> SELECT CURRENT_USER();
ERROR 1820 (HY000): You must SET PASSWORD before executing this statement

If you see that message, reset your password so that you can work normally again:
mysql> SET PASSWORD = PASSWORD('my-new-password');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT CURRENT_USER(); -- now you can work again
+------------------+
| CURRENT_USER() |
+------------------+
| cbuser@localhost |
+------------------+
1 row in set (0.00 sec)

Technically, MySQL does not require a new password to replace an expired password,
so you can assign yourself your current password to unexpire it. The exception is that
if the password policy has become more restrictive and your current password no longer
satisfies it, a stronger password must be chosen.

For more information about changing your password, see Recipe 23.6.

23.8. Finding and Fixing Insecure Accounts
Problem
Your MySQL installation includes accounts that have no password or use deprecated
and insecure password hashing.

Solution
Upgrade those accounts to use a better password hashing method.

Discussion
Security is important and MySQL has improved user account security over time. An
early change occurred way back in MySQL 4.1, with the introduction of a better pass‐

796 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

word hashing method than the original pre-4.1 method. (MySQL does not store literal
passwords in the mysql.user system table because that is insecure. Instead, the server
computes a hash value from the password and stores the hash string.) More recent
authentication changes include the introduction in MySQL 5.6 of the sha256_pass
word plug-in that implements SHA-256 password hashing and the validate_pass
word plug-in that implements password policy and password strength assessment. This
section describes characteristics of the 4.1 and (less secure) original hashing methods
and shows how to upgrade accounts that use the original method so they use the 4.1
method instead. For information about the sha256_password and validate_pass
word plug-ins, see Recipes 23.2 and 23.4.

For any account with a nonempty Password value in its user table row, you can tell
which hashing method generated it:

• The hashing method introduced in MySQL 4.1 produces 41-character hash values
beginning with a * character. This is the “4.1” or “native” hashing method. For
accounts that have this type of password hash, the server authenticates connection
attempts using the mysql_native_password plug-in.

• The original hashing method produces 16-character hash values. This is the
“pre-4.1” or “old” hashing method. The server authenticates accounts that have this
type of password hash using the mysql_old_password authentication plug-in.

To see the difference between the two hash formats, generate hash values explicitly:
mysql> SET old_passwords = 0;
mysql> SELECT OLD_PASSWORD('mypass') AS old, PASSWORD('mypass') AS new\G
*************************** 1. row ***************************
old: 6f8c114b58f2ce9e
new: *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4

The example sets old_passwords to 0 because PASSWORD() uses the pre-4.1 hashing
method and returns the same result as OLD_PASSWORD() if old_passwords is set to 1.

Administrators should avoid creating accounts that use the older, less secure pre-4.1
hashing method. If your MySQL installation has accounts that have old password hash‐
es, you can upgrade them to use the 4.1 hashing method. (This will become necessary
eventually, anyway. Pre-4.1 hashing is deprecated as of MySQL 5.6 and support for it
will be dropped at some point.)

Additionally, each account should have a nonempty password.

To identify and upgrade insecure accounts, use this procedure:

1. Determine whether your user table contains accounts with weak security. A “weak”
account has either of these characteristics:

23.8. Finding and Fixing Insecure Accounts | 797

www.it-ebooks.info

http://www.it-ebooks.info/

• The plugin column is mysql_native_password but the Password column is
empty.

• The plugin column is empty or mysql_old_password. (If the value is empty, the
server authenticates clients using either mysql_native_password or
mysql_old_password, making the choice based on the hash format of the value
stored in the Password column. To prevent the possibility of implicit authenti‐
cation using mysql_old_password, set the plug-in to mysql_native_password.)

Use this query to find weak accounts with those characteristics:
SELECT User, Host, plugin, Password FROM mysql.user
WHERE (plugin = 'mysql_native_password' AND Password = '')
 OR plugin IN ('','mysql_old_password');

2. Before upgrading a weak account, consider whether the account is even necessary.
Perhaps it was created long ago for a project that’s no longer used and you can simply
remove it:

DROP USER 'olduser'@'localhost';

The result is one less account to be protected and one less point of exploit.
3. If a weak account must be retained, upgrade it:

• If the plug-in is empty or mysql_old_password, change it to mysql_native_pass
word so that pre-4.1 password hashing cannot be used.

• If the password is empty or in pre-4.1 hash format, assign a new password using
4.1 hashing.

Suppose that a server’s user population includes accounts with the following authenti‐
cation characteristics, most of which need improvement. (All have a Host value of
localhost, although it’s not shown here.)

mysql> SELECT User, plugin, Password FROM mysql.user
 -> WHERE User LIKE 'user%' AND Host = 'localhost' ORDER BY User;
+-------+-----------------------+---+
| User | plugin | Password |
+-------+-----------------------+---+
user1	mysql_native_password	*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4
user2		
user3	mysql_old_password	
user4		6f8c114b58f2ce9e
user5	mysql_old_password	6f8c114b58f2ce9e
user6	mysql_native_password	
user7		*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4
+-------+-----------------------+---+

The requirements for better security are that each account names the mysql_na
tive_password plug-in explicitly and has a nonempty password in 4.1 hash format.

798 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Measured against those requirements, only the user1 account has acceptable values.
(It’s the only account not selected by the “identify weak accounts” query shown earlier.)
Each of the other accounts is deficient in some way. The following instructions describe
how to address their weaknesses.

In general, it’s preferable to manipulate MySQL accounts using SQL statements intended
for that purpose, such as CREATE USER or SET PASSWORD, and to avoid modifying the
grant tables directly using statements such as INSERT or UPDATE. But some operations
are more straightforward using direct manipulation (and sometimes not possible to
perform otherwise), so the following instructions include some direct modifications of
the user table, even though that goes against convention. A consequence of direct ma‐
nipulation is that FLUSH PRIVILEGES is required following UPDATE, to ensure that the
server refreshes the account information it caches in memory.

For each account for which you reassign the password, you must
either know the current password or assign a temporary password.
In the latter case, contact the account owner, provide the temporary
password, and ask the owner to choose a new one.

Begin by setting the old_passwords system variable to 0, to ensure that PASSWORD()
uses the 4.1 hashing method, not the pre-4.1 method:

SET old_passwords = 0;

That done, upgrade each account per its particular weaknesses. Note that the UPDATE
statements specify both User and Host (not just User) to uniquely identify the single
account to update:

• user1 weaknesses: None. The account specifies the native plug-in explicitly and the
password is nonempty in 4.1 hash format. Actions: None needed.

• user2 through user5 have different weaknesses, but in each case the statements to
implement the required security upgrade are the same:
— user2 weaknesses: No plug-in named; password is empty. Actions: Specify the

native plug-in; assign a password.
— user3 weaknesses: Uses the old plug-in; password is empty. Actions: Change to

the native plug-in; assign a password.
— user4 weaknesses: No plug-in named; password uses pre-4.1 hash. Actions:

Specify the native plug-in; upgrade password to 4.1 hash.
— user5 weaknesses: Uses the old plug-in; password uses pre-4.1 hash. Actions:

Change to the native plug-in; upgrade password to 4.1 hash.
To address the issues for any of user2 through user5, use the following statements
(substituting the proper username for user2 as necessary):

23.8. Finding and Fixing Insecure Accounts | 799

www.it-ebooks.info

http://www.it-ebooks.info/

UPDATE mysql.user
SET plugin = 'mysql_native_password', Password = PASSWORD('mypass')
WHERE User = 'user2' AND Host = 'localhost';
FLUSH PRIVILEGES;

• user6 weakness: Password is empty. Action: Assign a password.
SET PASSWORD FOR 'user6'@'localhost' = PASSWORD('mypass');

• user7 weakness: No plug-in named. Action: Specify the native plug-in.
UPDATE mysql.user
SET plugin = 'mysql_native_password'
WHERE User = 'user7' AND Host = 'localhost';
FLUSH PRIVILEGES;

23.9. Disabling Use of Accounts with Pre-4.1 Passwords
Problem
The original pre-4.1 hashing method is less secure than other methods and you want
to prevent accounts from using it.

Solution
Set the secure_auth system variable to prevent such accounts from connecting to the
server. To be more user friendly, upgrade affected accounts first.

Discussion
The hashing method used by the mysql_old_password authentication plug-in is not as
secure as the method used by mysql_native_password. In addition, mysql_old_pass
word is deprecated and eventually will no longer be supported. To prevent its use and
prepare for the day when support for it ceases, take these steps:

1. Identify accounts that use mysql_old_password and upgrade them to use mysql_na
tive_password (see Recipe 23.8). Do this first so as not to lock out accounts in the
next step.

2. Start the server with the secure_auth system variable enabled. That’s been the de‐
fault value since MySQL 5.6.5, but you can check whether your server’s setting
differs:

mysql> SELECT @@secure_auth;
+---------------+
| @@secure_auth |
+---------------+
| 0 |
+---------------+

800 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

If the value is 0, enable the variable by starting the server with the value set to 1.
For example, use these lines in an option file:

[mysqld]
secure_auth=1

At this point, accounts that use pre-4.1 password hashes can no longer connect.

23.10. Finding and Removing Anonymous Accounts
Problem
You want to ensure that your MySQL server can be used only by accounts associated
with specific usernames.

Solution
Identify and remove anonymous accounts.

Discussion
An “anonymous” account is one that has an empty user part in the account name, such
as ''@'localhost'. An empty user matches any name because the purpose of an
anonymous account is to permit anyone who knows its password to connect from the
named host (localhost in this case). This is a convenience because the DBA need not
set up individual accounts for separate users. But there are security implications as well:

• Such accounts often are given no password, enabling their use with no authenti‐
cation at all.

• You cannot associate database activity with specific users (for example, by checking
the server query log or examining SHOW PROCESSLIST output), making it more dif‐
ficult to tell who is doing what.

If the preceding points persuade you that anonymous accounts are not a good thing,
use the following instructions to identify and remove them:

1. The User column is empty in the mysql.user rows for anonymous accounts, so
you can identify them like this:

mysql> SELECT User, Host FROM mysql.user WHERE User = '';
+------+---------------+
| User | Host |
+------+---------------+
| | %.example.com |
| | localhost |
+------+---------------+

23.10. Finding and Removing Anonymous Accounts | 801

www.it-ebooks.info

http://www.it-ebooks.info/

2. The SELECT output shows two anonymous accounts. Remove each using a DROP
USER statement with the corresponding account name:

mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'%.example.com';

23.11. Modifying “Any Host” and “Many Host” Accounts
Problem
You want to ensure that MySQL accounts cannot be used from an overly broad set of
hosts.

Solution
Find and fix accounts containing % or _ in the host part.

Discussion
The host part of MySQL account names can contain the SQL pattern characters % and
_ (see Recipe 5.8). These names match client connection attempts from any host that
matches the pattern. For example, the account 'user1'@'%' permits user1 to connect
from any host whatsoever, and 'user2'@'%.example.com' permits user2 to connect
from any host in the example.com domain.

Patterns in the host part of account names provide a convenience that enables a DBA
to create an account that permits connections from multiple hosts. They correspond‐
ingly increase security risks by increasing the number of hosts from which intruders
can attempt to connect. If you consider this a concern, identify the accounts and either
remove them or change the host part to be more specific.

There are several ways to find accounts with % or _ in the host part. Here are two:
WHERE Host LIKE '%\%%' OR Host LIKE '%_%';
WHERE Host REGEXP '[%_]';

The LIKE expression is more complex because we must look for each pattern character
separately and escape it to search for literal instances. The REGEXP expression requires
no escaping because those characters are not special in regular expressions, and a char‐
acter class permits both to be found with a single pattern. So let’s use that expression:

1. Identify pattern-host accounts in the mysql.user table like this:
mysql> SELECT User, Host FROM mysql.user WHERE Host REGEXP '[%_]';
+-------+---------------+
| User | Host |
+-------+---------------+

802 | Chapter 23: Security

www.it-ebooks.info

http://www.it-ebooks.info/

user1	%
user2	%.example.com
user3	_.example.com
+-------+---------------+

2. To remove an identified account, use DROP USER:
mysql> DROP USER 'user1'@'%';
mysql> DROP USER 'user3'@'_.example.com';

Alternatively, rename an account to make the host part more specific:
mysql> RENAME USER 'user2'@'%.example.com' TO 'user2'@'host17.example.com';

23.11. Modifying “Any Host” and “Many Host” Accounts | 803

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
!~ operator, 415
" (double quote), 90, 148–150, 370
(hash sign), 11, 627
$ (dollar sign)

Perl pattern element, 416
regular expressions and, 161

% (percent sign)
as literal character, 87, 186, 360
pattern-matching wildcard, 108, 158
as shell prompt, 3

' (single quote), 90, 148–150
() (parentheses), 164, 417, 421
* (asterisk)

Boolean searches and, 177
Perl pattern element, 416
regular expressions and, 161
Ruby operator, 84
SELECT shortcut specifier, 106

+ (plus sign)
Perl pattern element, 416
regular expressions and, 161

+ INTERVAL operator, 210–211
- INTERVAL operator, 210–211
. (dot)

Perl pattern element, 416
regular expressions and, 161

/ (forward slash)
in directory pathnames, 11

in URLs, 425
: (colon), 21, 54, 382
; (semicolon)

comments and, 11
compound statements and, 308, 310
multiple input lines and, 13
pathname separators and, 54

<=> comparison operator, 114
== (equal to) operator, 93
=== (triple equal) operator, 93
? (question mark)

Perl support, 84, 417
Ruby support, 86

[] (square brackets), 163
\ (backward slash)

as pathname separator, 11, 374
as string escape character, 12, 149, 360

\0 (ASCII NULL), 150
^ (caret)

Perl pattern element, 416
regular expressions and, 161

_ (underscore), 149, 158, 360
` (backtick), 89, 295, 328

A
<a> (anchor) tag (HTML), 623
a() function (Perl), 624
a() method (Ruby), 624
absolute pathnames, 373

805

www.it-ebooks.info

http://www.it-ebooks.info/

absolute values, 531, 534
access denied message, 8, 373
access privileges, library files, 54
action attribute (forms), 651
ADD clause, 463
--add-century option, 437
ADDTIME() function, 210
AFTER INSERT trigger, 316
AFTER keyword, 463
AGAINST() function, 170
ages, calculating, 215
aggregate functions, 272, 479

(see also specific functions)
about, 272
descriptive statistics and, 512
WHERE clause and, 281

aliases (column)
benefits of, 481
HAVING clause and, 291
naming query result columns, 109–111, 130
quoted, 295
referring to join output columns, 509
sorting expressions and, 239

[:alnum:] character class (POSIX), 163
[:alpha:] character class (POSIX), 163
alphabetic characters, matching, 418
ALTER EVENT statement, 326
ALTER TABLE statement

adding AUTO_INCREMENT columns, 462
adding indexes, 462
changing data types, 157
changing storage engines, 453
column names and, 108
ENUM string type and, 269
removing columns, 459
resetting sequence counter, 461
table storage engine and, 135–136
transactional tables, 567
UNSIGNED keyword and, 460

ALTER USER statement, 366, 787, 794
alternations, 163
anonymous accounts, removing, 801
ANSI_QUOTES SQL mode

backticks and, 89
quotation marks and, 80, 89, 148

“any host” accounts, modifying, 802
Apache server

logging web page access, 717–724
Perl support, 582, 585–587

PHP support, 582, 589
port numbers, 581
Python support, 590
Ruby support, 582, 587–589
running web scripts, 581–584

Apache::Session module (Perl), 729–734
API operations (MySQL)

about, 25–29
client architecture, 28
collecting web input, 679–689
connecting to databases, 29–42
disconnecting from databases, 29–42
error checking, 42–49
executing statements, 65–79
NULL values in result sets, 91–94
NULL values in statements, 79–89
obtaining connection parameters, 95–103
processing file uploads, 694–695
retrieving statement results, 65–79
selecting databases, 29–42
special characters in identifiers, 89–90
special characters in statements, 79–89
transaction abstraction and, 571
words of advice, 104
writing library files, 51–64

AS clause, 109, 125, 481
ascii() method (Ruby), 354
assignment operators, 24
associative arrays, 430
asterisk (*)

Boolean searches and, 177
Perl pattern element, 416
regular expressions and, 161
Ruby operator, 84
SELECT shortcut specifier, 106

auto-commit mode, 568
--auto-vertical-output option, 14
AutoCommit attribute (Perl), 32, 44, 572
autocommit session variable, 568
AUTO_INCREMENT value

associating tables, 465–467
choosing sequence column definition, 450–

451
effect of row deletions on sequences, 451–

453
extending ranges, 460
generating sequences, 445–449
LAST_INSERT_ID() function and, 23, 464
managing multiple sequences, 464

806 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

NULL values and, 448, 450
renumbering sequences, 457–459, 461
retrieving sequence values, 453–457
saving query results and, 130
sequence generators and, 467–471
sequencing tables, 462
storage engines and, 567
unique identifiers and, 551

AVG() function
about, 272
NULL values and, 289, 497
summarizing with, 276, 285

B
-B (--batch) option, 18
\b (backspace), 150
%b format sequence, 185
%b format specifier, 720
backspace (\b), 150
backtick (`), 89, 295, 328
backups (server), 780
backward slash (\)

as pathname separator, 11, 374
as string escape character, 12, 149, 360

banner ads, 641–643, 712
Basic Multilingual Plane (BMP), 140
--batch (-B) option, 18
BEFORE INSERT trigger, 316, 321, 332–333
BEFORE UPDATE trigger, 321, 333
BEGIN … END compound statement

about, 308
creating compound-statement objects, 310–

312
ignoring errors, 330
scheduling database actions, 325
triggers and, 317

beginTransaction() method (PHP), 574
begin_work() method (Perl), 573
BIGINT data type, 450, 460
binary data

retrieving, 638–641
storing, 631–638

BINARY data type, 139, 144
binary log

about, 762
enabling, 765
rotating, 767
stored programs and, 309

binary strings
about, 140, 282
case sensitivity and, 243–246, 282
comparison operators and, 155
converting, 139, 154
data types supported, 139, 144–146
hexadecimal notation and, 148
sort order for, 143, 243

[:blank:] character class (POSIX), 163
BLOB data type

about, 139, 145
storing values, 319

BMP (Basic Multilingual Plane), 140
Boolean mode search, 175–178
br() method (Perl), 586

C
%c format sequence, 184, 185
<c:forEach> JSTL tag, 673
<c:out> JSTL tag, 603, 656, 668
<c:param> JSTL tag, 603
<c:url> JSTL tag, 603
Cache-Control: header, 642
caret (^)

Perl pattern element, 416
regular expressions and, 161

carriage return (\r), 150, 369
case sensitivity

in collation, 142, 243–246
duplicate identification and, 560
pattern matching and, 415, 426, 429
in string comparisons, 155–157, 282
URLs and, 425

CASE statement, 310
CAST() function, 268
CCYY-MM-DD format

converting to, 440
DATE data type and, 181, 183–184
requiring, 420

central tendency, measures of, 513
cgi module (Python)

about, 580, 590
encoding special characters, 602
processing file uploads, 699
web input-extraction support, 686

cgi module (Ruby)
about, 580, 587
encoding special characters, 601
query results as hyperlinks, 624

Index | 807

www.it-ebooks.info

http://www.it-ebooks.info/

query results as lists, 611
query results as paragraphs, 607
single-pick form elements, 659
web form support, 652
web input-extraction support, 682

CGI.pm module (Perl)
about, 580, 585–587
cookie support, 733
creating navigation indexes, 629
encoding special characters, 601, 668
hit counters, 715
loading database content into forms, 675–

678
multiple-pick form elements, 670
processing file uploads, 695–698
query results as hyperlinks, 624
query results as lists, 611
query results as paragraphs, 606
query results as tables, 620
single-pick form elements, 657–659
web form support, 651
web input-extraction support, 682
web-based database searches, 702

CGI::Session class (Ruby), 734–738
CHAR data type

about, 139, 144
date values and, 184
NULL values and, 356
sort order of, 269

character classes, 162, 420
CHARACTER SET attribute, 139, 145
character sets

about, 139
case sensitivity and, 243–246
checking or changing in strings, 150–152
default, 758
nonbinary strings and, 140
setting client connection, 146

characterEncoding property, 147
character_set_server system variable, 146
CHARSET() function, 150, 154
CHAR_LENGTH() function, 141, 167
CHECK TABLE statement, 621
checkboxes, 669–674
checkbox_group() function (Perl), 670
checked attribute (HTML), 675
check_enum_value() function, 426
check_set_value() function, 427
chmod program, 13

Class class (Java), 41
class statement (Java), 40, 62
CLASSPATH environment variable

about, 53
setting, 41
usage considerations, 63, 102

client-side processing
MySQL client API, 28
retrieving sequence values, 456
setting connection character set, 146
setting time zones, 187–189
validating data, 410, 413

cloning tables, 127
close() method (Python), 37
[:cntrl:] character class (POSIX), 163
COLLATE attribute

about, 139
applying, 142, 150–152
nonbinary strings and, 145

collation (strings)
about, 139
case sensitivity in, 142, 243–246
checking or changing, 150–152

COLLATION() function, 150
collation_server system variable, 146
collect! method (Ruby), 93
colon (:), 21, 54, 382
columnCount() method (PHP), 74, 346
ColumnInfo object (Ruby), 344
columns, 239

(see also aliases (column); sequence col‐
umns; sorting query results)

accessing definitions, 356–361
comparing to NULL values, 114–116
controlling column names, 108–111
copying into tables, 129
duplicate names in output, 509
dynamic default column values, 315–317
extracting and rearranging in datafiles, 393–

395
getting ENUM information, 361–363
getting SET information, 361–363
ignoring in datafiles, 382
preprocessing values before insertion, 380–

381
removing, 459
selecting specific, 106–108
simulating function-based indexes, 317–320
specifying delimiters, 374–376

808 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

specifying input order, 380
suppressing headings, 20
views for table access, 117

--columns option, 380, 382, 437
column_info() method (Ruby), 344
comma-separated values (CSV) format, 21, 369,

383
command line

getting connection parameters from, 97
specifying mysql command options, 8–13

COMMIT statement, 568, 569
commit() method

Java support, 576
Perl support, 572
PHP support, 574
Python support, 76, 575
Ruby support, 573

comparison operators
case sensitivity and, 155–157
NULL values and, 114–117

compound-statement objects
creating, 310–312
defining, 308

CONCAT() function
about, 165
calculating dates, 219
combining date/time parts, 199–201
combining multiple column values, 253
composite values in email addresses, 108
converting initial letters of strings, 154
ISO format and, 227

configuration variables, 52
configuring servers

about, 758
at runtime, 759
at startup, 758
verification and, 759

connect() method
Java support, 62
Perl support, 31, 44, 99, 338
PHP support, 58
Python support, 37, 60, 339
Ruby support, 34, 57

Connection object (Java), 77, 355, 576
connection parameters

alternatives for obtaining, 95–96
getting from command line, 97
getting from option files, 9–13, 97–103

containsKey() method (Java), 430

content summary type, 271
Content-Disposition: header, 644
Content-Length: header, 639
Content-Type: header, 579, 639, 644
<Context> element (JDBC), 753
continuation character, 371
CONTINUE handler, 313
conversions

between temporal values and basic units, 213
between UTC and time zones, 181, 187
binary with nonbinary strings, 139
datafile formats, 392–393
reformatting data values, 411–414
string lettercase, 153–155
between temporal values and basic units,

201–205
transactional tables, 567
year formats, 431–432

CONVERT() function, 150–152
CONVERT_TZ() function, 189–190
cookie() function (Perl), 733
correlation coefficients, calculating, 522–524
COUNT() function

about, 272
calculating repetitive values, 296
counting rows containing specific words,

174
counting rows in groups, 557–560
counting rows in result sets, 123
counting unique values, 113, 272–273, 278
HAVING clause and, 290–293
NULL values and, 274, 278, 287–290, 521
one-to-many relationships, 496
summarizing with, 273–275, 285

counting summary type, 271
CPAN website, 412
CREATE DATABASE statement, 5–6, 146
CREATE EVENT statement, 325, 326
CREATE ROUTINE privilege, 309
CREATE TABLE statement

about, 5–6, 15
accessing table column definitions, 357, 361
column names and, 108
copying tables, 136
generating sequences and, 448
storage engines and, 567
string data types and, 145
unique table names, 134

CREATE TABLE … LIKE statement, 127, 562

Index | 809

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE … SELECT statement, 128–
131

CREATE TEMPORARY TABLE statement,
131–134

CREATE USER statement, 2–4, 786
CREATE VIEW statement, 280
createStatement() method (Java), 77
credit card numbers, 419
CSV (comma-separated values) format, 21, 369,

383
cumulative sums, finding, 533–538
CURDATE() function, 190, 197, 321
CURRENT_DATE() function, 191
CURRENT_TIME() function, 191
CURRENT_TIMESTAMP() function, 191
CURTIME() function, 190, 197, 321
CustomLog directive, 718, 723
cvt_date.pl script, 437–439

D
%d format sequence, 184–186
%d format specifier, 68
\d pattern element (Perl), 416
\D pattern element (Perl), 416
data retrieval from tables

about, 105–106
controlling column names, 108–111
LIMIT clause sort order, 124
LIMIT values from expressions, 125
NULL values and, 114–117
removing duplicate rows, 113
selecting from multiple tables, 119–121
selecting specific columns, 106–108
selecting specific rows, 106–108, 121–124
simplifying table access, 117
sorting query results, 112

data source name (DSN)
Perl support, 31
PHP support, 36
Ruby support, 34

data transference (see exporting data; importing
data)

data types
choosing temporal, 180–182
for dates and times, 179
NULL values and, 356
simulating TIMESTAMP properties, 320–

322
for strings, 139, 144–146

validating data values, 412
data validation (see validating data)
Data::Validate::MySQL module (Perl), 412
database option

Perl support, 31
Ruby support, 34

DATABASE() function, 606
DatabaseError class (Ruby), 46
DatabaseMetaData object (Java), 355
databases, 4

(see also summaries)
avoiding unnecessary lookups, 430
checking existence of, 354–355
connecting to, 29–42
creating, 4–6
creating multiple-pick form elements, 669–

674
creating single-pick form elements, 653–668
disconnecting from, 29–42
joining tables from different, 481
listing, 354–355
loading content into forms, 674–679
metadata about, 335
referential integrity, 490
scheduling actions, 325–327
selecting, 29–42
setting up logging for, 718–721
storing images in, 632
storing web input in, 691–693
table setup in, 4–6
uploading datafiles, 694–700
validating data against, 425–428
web-based searches, 700–703

--databases option, 781
datafiles, 369

(see also exporting; importing data)
about, 367
converting formats, 392–393
CSV format, 21, 383
extracting and rearranging columns, 393–

395
format considerations, 369
guessing table structure from, 404–406
ignoring columns, 382
import and export issues, 368
processing uploads, 694–700
skipping lines, 379
specifying location, 372–374
writing input-processing loops, 413

810 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

DATE data type
about, 181
calculating day intervals, 205, 208
changing date format, 183–185
converting values, 205
date-based sorting, 246
extracting dates, 195
reformatting dates, 442
simulating TIMESTAMP properties, 320–

321
validating values, 412

DATE() function (MySQL), 195
date() function (PHP), 226
Date::Calc module, 208
Date::Manip module, 208
DATEDIFF() function, 205
dates and times

adding values, 210–215
calculating ages, 215
calculating by substring replacement, 219–

220
calculating intervals between, 205–209
changing MySQL date format, 183–187
choosing temporal data types, 180–182
converting between basic units and, 201–205
converting year formats, 431–432
data types for, 179–180
date-based sorting, 246–250
date-based summaries, 298–300
determining, 190
exporting non-ISO formats, 441–442
extracting parts of, 194–198
finding dates for weekdays, 221–223
finding day of week, 220
finding first day of month, 216–218
finding last day of month, 216–219
finding length of month, 216, 218
fractional seconds, 182
importing non-ISO values, 440
ISO format date strings, 227
leap-year calculations, 224–227
pattern matching for, 420–424
selecting rows on temporal characteristics,

228–231
setting client time zone, 187–189
shifting values between time zones, 189–190
simulating TIMESTAMP properties, 320–

322

synthesizing from component values, 199–
201

tracking row modification times, 191–194
validating subparts, 432–435
writing date-processing utilities, 435–440
zero parts in, 411

DATETIME data type
about, 179
adding date-and-time values, 212
calculating date-and-time intervals, 205, 208
comparing times, 231
converting values, 204
date-based sorting, 246–247
date-based summaries, 299
DATE_FORMAT() function and, 185
extracting dates and times, 195, 198, 202–

203
fractional seconds support, 182
initializing, 316
NULL values, 194
reformatting dates, 442
TIMESTAMP data type and, 181, 320–321
tracking row modification, 191–194

DATE_ADD() function, 211–213, 222, 230
DATE_FORMAT() function

about, 183–187
calculating dates, 219
combining date/time parts, 199–200
extracting parts of dates, 195
reformatting values, 198, 442–442

DATE_SUB() function, 211–213, 222, 229
daylight saving time, 190
DAYNAME() function, 195–196, 220–223, 249
DAYOFMONTH() function, 160, 195, 217
DAYOFWEEK() function, 195–196, 221–223,

249–250
DAYOFYEAR() function

about, 195
date-based sorting and, 248
leap-year calculations and, 226, 231

days_in_month() function, 434
DB API (Python)

connecting to databases, 37–39
determining number of rows affected by

statements, 339
disconnecting from databases, 37–39
identifying NULL values in, 94
placeholder support, 87
result set metadata, 347

Index | 811

www.it-ebooks.info

http://www.it-ebooks.info/

retrieving sequence values, 455
selecting databases, 37–39
SQL statement execution, 75–77
transaction support, 76, 575

DBD::mysql module (Perl), 30
DBI module (Perl)

adapting to server versions, 365
connecting to databases, 30–33
determining number of rows affected by

statements, 337
disconnecting from databases, 30–33
error checking, 44–46
identifying NULL values in, 92
listing tables, 355
parameters from option files, 98–99
placeholder support, 84–86
result set metadata, 340–343
selecting databases, 30–33
SQL statement execution, 67–72
transaction support, 571–573

DBI module (Ruby)
connecting to databases, 33–35
determining number of rows affected by

statements, 338
disconnecting from databases, 33–35
error checking, 46
identifying NULL values in, 93
mysql-session package and, 734–736
parameters from option files, 99
placeholder support, 86
result set metadata, 343–345
retrieving sequence values, 455
selecting databases, 33–35
SQL statement execution, 72–74
transaction support, 573

DBI::Utils::TableFormatter module (Ruby), 354
dbname option, 37
dd() method

Perl support, 616
Ruby support, 615

DD-MM-CCYY format, 184
DD-MM-YY format, 421
debugging web scripts, 584
DEFAULT clause, 316
--default-authentication-plug-in option, 786
--default-character-set option, 147
--default-time-zone option, 187
DEFAULT_CURRENT_TIMESTAMP attribute,

192

defined() function (Perl), 92
definition lists, 614–616
DELETE privilege, 762
DELETE statement

about, 66
determining number of rows affected, 337
effect on sequence generation, 452
LIMIT clause and, 124
logging changes to tables, 324
removing mismatched rows, 487–489
security vulnerabilities, 692
temporary tables, 132
triggers and, 307

DELETE … LIMIT statement, 561–564
--delim option, 388
delimiter command, 310–312
denial-of-service attacks, 691
DESC clause, 112, 236, 247
DESCRIBE statement, 67
descriptive statistics

calculating, 512–515
per-group, 515–517

[:digit:] character class (POSIX), 163
displaying current engine for tables, 453
displayResultSet() method (Java), 351–354
DISTINCT clause

HAVING clause and, 291
obtaining unique values, 272, 479, 489
removing duplicates, 113, 277–279, 493

DISTINCTROW clause, 277
division-by-zero operation, 777
<dl> tag (HTML), 614
do() method (Perl)

determining number of rows affected by
statements, 337

error handling, 45
placeholders and, 84
undef argument and, 68

dollar sign ($)
Perl pattern element, 416
regular expressions and, 161

dot (.)
Perl pattern element, 416
regular expressions and, 161

dotted-quad notation, 261–263
double quote (“), 90, 148–150, 370
downloading query results, 643–645
DriverManager class (Java), 41
DROP DATABASE statement, 569

812 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

DROP EVENT statement, 326
DROP TABLE statement, 131, 134
DROP TEMPORARY TABLE statement, 133
DROP USER statement, 330, 790, 802, 803
DSN (data source name)

Perl support, 31
PHP support, 36
Ruby support, 34

dt() method
Perl support, 616
Ruby support, 615

duplicate key values, 377
duplicate rows

counting, 556–560
handling, 549–550
identifying, 556–560
preventing, 550–552
removing, 113, 277–279, 560–564
when loading into tables, 552–556

E
-e (--execute) option, 14, 385, 388
-E (--vertical) option, 14
%e format sequence, 185
email addresses

composite values creating, 108
pattern matching for, 424

empty value pattern, 418
encapsulating calculations, 312–314
ENCLOSED BY subclause, 377
encode() method (Java), 756
encodeURL() method (Java), 755
enctype attribute (HTML), 694
end-of-data condition, 329
end_form() method (Perl), 651
end_html() method (Perl), 586
ENGINE clause, 135–136, 170
ENUM string type

about, 146, 357
default values and, 674
getting column information, 361–363
modifying columns in place, 167
multiple-pick form elements, 670
single-pick form elements, 664–667
sorting by, 267–269
validating data, 425–428
validating values, 412
validating web input, 690

environment variables, 52
(see also specific environment variables)
obtaining connection parameters, 96
setting, 52

--eol option, 389
equal to (==) operator, 93
error checking

access denied messages, 8
API operations, 42–49
diagnostics about input data, 378–379
end-of-data conditions, 329
handling duplicate key values, 377
PATH environment variable and, 3
quoted strings, 149
SQL statements and, 67
stored programs and, 328–332

error log, 762–764, 766, 771
errorCode() method (PHP), 47
errorInfo() method (PHP), 47
ErrorLog directive, 584
ERROR_FOR_DIVISION_BY_ZERO SQL

mode, 331
escape sequences, 150, 372, 376
escape() method

Perl support, 601
Python support, 602, 664
Ruby support, 601

ESCAPED BY subclause, 377
escapeHTML() method

Perl support, 601, 606
Ruby support, 601, 607, 664

euc-jp encoding, 148
EVENT privilege, 310
events

counting, 467–471
privilege requirements, 310
scheduled, 307
scheduling database actions, 325–327

--events option, 137, 781
Excel, exchanging data with, 396–398
Excel::Writer::XLSX module (Perl), 396
Exception class (Java), 49
exec() method (PHP), 74, 338
--execute (-e) option, 14, 385, 388
EXECUTE privilege, 309
execute() method

Java support, 77, 88, 340, 350
Perl support, 68, 84, 337, 340, 455
PHP support, 87, 338, 345

Index | 813

www.it-ebooks.info

http://www.it-ebooks.info/

Python support, 75, 87
Ruby support, 72, 86, 338, 343

executeQuery() method (Java), 77, 88
executeUpdate() method (Java), 77, 88, 339
exec_stmt() helper routine, 507, 788, 795
exit command, 3
Expires: header, 642
expire_logs_days system variable, 765, 767
EXPLAIN statement, 67, 772
explicit_defaults_for_timestamp system vari‐

able, 194, 773
exporting data

about, 367
CSV format, 369
to Excel, 396–398
general issues, 368
non-ISO formats, 441–442
NULL values, 385–387
query results, 383–385
query results as XML, 398–401
TSV format, 369
writing programs for, 387–392

expressions
grouping summaries by calculated values,

292
for sorting query results, 238

EXTRACT() function, 195, 197

F
fetch() method

PHP support, 75
Ruby support, 73

fetchAll() method (PHP), 75
fetchall() method (Python), 76, 94, 347
fetchone() method (Python), 76, 347
fetchrow_array() method (Perl), 69
fetchrow_arrayref() method (Perl), 69
fetchrow_hashref() method (Perl), 70
fetch_all method (Ruby), 73
fetch_hash method (Ruby), 73
FIELD() function, 266
FIELDS clause, 374, 376, 378
--fields-enclosed-by option, 377
--fields-escaped-by option, 377
FieldStorage() method (Python), 686, 699
FieldType class (Python), 348
FILE privilege, 373, 384, 633
files (see datafiles)
$_FILES array, 698

file_uploads variable (PHP), 698
finish() method

Perl support, 69, 341
Ruby support, 72, 343

FIRST keyword, 459, 463
FLOOR() function

mail message example, 238
noncategorical data example, 294
time example, 202, 209

FLUSH LOGS statement, 766
FLUSH PRIVILEGES statement, 799
flush-logs command, 766
foreign keys, 490
<form> tag (HTML), 651, 681, 694
form() method (Ruby), 652
--format option, 437
format sequences (temporal), 184
format specifiers (data values), 87, 720
forms (see web forms)
forName() method (Java), 41
forward slash (/)

in directory pathnames, 11
in URLs, 425

FOUND_ROWS() function, 124
fractional seconds, 182
frequency distributions, generating, 517–520
FROM clause

controlling query sort order, 509
multiple tables and, 474–477
subqueries in, 501–504
table names and, 125

FROM_DAYS() function
adding to date values, 214
calculating day intervals, 207
converting between dates and days, 201, 203

FROM_UNIXTIME() function
adding date-and-time values, 215
converting intervals, 207
converting values, 201, 204

ft_min_word_len system variable, 174
FULLTEXT searches

about, 169–173
performing for phrases, 177
prohibiting, 175–177
requiring, 175–177
with short words, 173–175

func() method (Ruby), 455
function-based indexes, 317–320

814 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

G
\g (terminator), 13
garbage collection, 740
general query log

about, 762, 771
examples, 764
rotating, 766

general_log system variable, 764
general_log_file system variable, 764
get request (HTTP), 680
getAttribute() method (Java), 749
getCode() method (PHP), 47
getColumnCount() method (Java), 348
getColumnDisplaySize() method, 351
getColumnMeta() method (PHP), 346, 709
getConnection() method (Java), 41
getDate() method (Java), 78
getEnumOrSetValues() function (Java), 666, 673
getErrorCode() method (Java), 49
getFloat() method (Java), 78
getGeneratedKeys() method (Java), 456
getInt() method (Java), 78
getlist() method (Python), 687
getMessage() method

Java support, 49
PHP support, 47

getMetaData() method (Java), 348, 355
getObject() method (Java), 78, 94
getParameterNames() method (Java), 688
getParameterValue() method (Java), 688
getParameterValues() method (Java), 688
getProperty() method (Java), 103
getRequestURI() method (Java), 652
getResultSet() method (Java), 78
getSession() method (Java), 749
getSQLState() method (Java), 49
getString() method (Java), 78, 111
getUpdateCount() method (Java), 340
get_enumorset_info() function, 362, 664
get_hit_count() method (Perl), 715
get_param_names() function, 686
get_param_val() function, 645, 684
get_status_variables() function, 780
get_upload_info() function, 699
GLOBAL keyword, 363
GRANT statement, 2–5, 788
[:graph:] character class (POSIX), 163
Gregorian calendar, 208

GROUP BY clause
about, 272
arranging observations, 516
arranging rows by names, 288–290
arranging rows into groups, 283–287
date-based summaries and, 298–300
grouping by expression results, 292
grouping values into categories, 293–296
identifying and counting duplicates, 557–

560
ORDER BY clause and, 293
WITH ROLLUP clause, 300–302

Group directive, 585

H
-h (--hostname) option, 3, 8, 97
-H (--html) option, 18
%H format sequence, 186
%h format specifier, 720
hash sign (#), 11, 627
hashes

avoiding database lookups, 430
constructing from lookup tables, 429
session information, 730

HashMap object (Java), 430
has_key() method (Python), 430, 687
has_key?() method (Ruby), 430, 682
HAVING clause

COUNT() function and, 290–293
DISTINCT clause and, 291
per-group summaries and, 301
restricting output, 559
selecting groups by characteristics, 290
WHERE clause and, 290

header() function (PHP), 644
Heisenberg’s uncertainty principle, 775
helper routines executing dynamic SQL, 327–

328
hex dump program, 376
hexadecimal notation, 148
hh:mm:ss format, 181
hidden values, sorting, 239–242
hit counters, 712–716
hit logs, 716
host option

Perl support, 31
PHP support, 37
Ruby support, 34

--hostname (-h) option, 3, 8, 97

Index | 815

www.it-ebooks.info

http://www.it-ebooks.info/

hostnames
obtaining connection parameters, 95
setting up user accounts, 3
sorting by hidden values, 242
sorting in domain order, 258–261

HOUR() function, 195, 206
href attribute (HTML)

about, 623
encoding special characters, 600
hash sign in, 627

HTML
encoding special characters, 597–603
producing output, 18–20
row fetching and, 612
web page generation, 579–581

--html (-H) option, 18
htmlspecialchars() function (PHP), 602
httpd.conf file, 582, 718
HttpRequest object (Java), 749
HttpSession class (Java), 749
hyperlinks

“click to sort” table headings and, 708–712
displaying query results as, 622–625
encoding for web output, 598
navigation indexes as, 626–631

I
%i format sequence, 186
identifiers, special characters in, 89–90
IF EXISTS clause, 330
IF statement, 310, 321
IF() function

counting column values, 275
mapping NULL values, 115, 264–266
team standings example, 543

IFNULL() function
dislaying sum or average, 497
mapping NULL values, 116, 289, 387

--iformat option, 437
IGNORE keyword, 377
IGNORE LINES clause, 379
--ignore option, 378
--ignore-lines option, 379
images

banner ads and, 641–643
retrieving, 638–641
storing, 631–638

 tag (HTML), 633, 639

import statement
Java support, 41
Python support, 60

importing data
about, 367
CSV format, 369, 383
from Excel, 396–398
general issues, 368
guessing table structure from datafiles, 404–

406
LOAD DATA statement, 371–382
mysqlimport program, 371–382
non-ISO date values, 440
NULL values, 385–387
TSV format, 369
XML documents, 401–404

IN BOOLEAN MODE clause, 176
@INC variable (Perl), 56
include statement (PHP), 60
include_once statement (PHP), 60
include_path variable (PHP)

about, 53
configuration file and, 583
library files and, 59, 746

indexed element (Ruby), 344
indexes

enforcing uniqueness, 451
FULLTEXT, 169
function-based, 317–320
handling duplicate key values, 377
join and, 477
navigation, 626–631
preventing duplicate values, 550–552
table creation and, 462

INET_ATON() function, 261–263
INET_NTOA() function, 263
INFORMATION_SCHEMA database

accessing table column definitions, 356–359
COLUMNS table, 359, 362, 654, 673, 710
counting number of tables, 616
displaying current storage engine, 135
GLOBAL_VARIABLES table, 760, 777
handling identifiers, 90
metadata and, 336
monitoring information and, 770
PLUGINS table, 761
PROCESSLIST table, 772
SCHEMATA table, 354
SELECT statement and, 336, 770

816 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

SESSION_VARIABLES table, 760
SHOW statement and, 336, 359
TABLES table, 354–355, 453
validating data against, 425
validating web input, 690

INNER JOIN clause, 476–481, 494
InnoDB tables

foreign keys and, 490
FULLTEXT indexing and, 169
sequence generation and, 452
transaction support, 135, 567

innodb_buffer_pool_size system variable, 777
innodb_ft_min_token_size option, 175
INOUT parameter, 314
<input> element (HTML), 655, 669, 675
INSERT privilege, 762
INSERT statement

about, 66
associating tables example, 466
BEGIN … END block and, 310
copying tables, 136
determining number of rows affected, 337
dynamic default column values, 317
entering easily, 5
handling special characters, 80
importing XML documents, 401
initializing values, 318, 468
logging changes to tables, 324
NULL values and, 91
Perl support, 67
PHP support, 74
rejecting bad input values, 411
result sets and, 350
Ruby support, 72, 86
sequence values and, 448, 454, 457
session data and, 740
simulating TIMESTAMP properties, 320–

322
tracking row modification times, 192–193
triggers and, 307
user-defined variables in, 22

INSERT IGNORE statement, 552–556, 562
INSERT INTO … SELECT statement

copying cloned tables, 127–131, 462
processing query results, 771
removing duplicates with table replacement,

562
INSERT … ON DUPLICATE KEY UPDATE

statement, 552–556, 636, 715

INSTALL PLUGIN statement, 761
INT data type, 412
interactive mode (mysql), 17
intervals (dates and times)

calculating, 205–209
spans versus, 210

invalidate() method (Java), 749
IP numbers, sorting query results, 261–263
IS NOT NULL comparison operator, 114
IS NULL comparison operator, 114, 503
isNew() method (Java), 749
ISNULL() function (MySQL), 521
ISO 8601 standard, 183
ISO format

changing, 183–187
reformatting dates to, 412, 440
requiring, 420
returning for date strings, 227

isoize_date.pl script, 436–437
isset() method (PHP), 430, 747
is_ampm_time() function, 434
is_ddmmyy_date() function, 433
is_iso_date() function, 421, 433
is_leap_year() function, 434
is_mmddyy_date() function, 433
is_null() function (PHP), 93
is_positive_integer() function, 443
is_valid_date() function, 433, 440
is_valid_time() function, 435

J
Java

additional information, xxiii
column aliases, 111
connecting to databases, 39–42
determining number of rows affected by

statements, 339
disconnecting from databases, 39–42
displaying query results as lists, 609
encoding special characters, 603, 668
error checking, 48, 64
identifying NULL values in, 94
leap year tests, 226
listing databases, 355
listing tables, 355
loading database content into forms, 678
multiple-pick form elements, 673
parameters from option files, 102–103
pattern matching and, 360, 415

Index | 817

www.it-ebooks.info

http://www.it-ebooks.info/

performing lookups in, 430
placeholder support, 88, 693
query results as paragraphs, 607
result set metadata, 348–349
retrieving sequence values, 456
selecting databases, 39–42
sequence generators as counters, 469
session storage for scripts, 748–756
SQL statement execution, 77–79
transaction support, 576
web form support, 652
web input-extraction support, 688
web programming and, 580
writing library files, 61–64

Java Development Kit (JDK), 39
Java Servlet Specification, 749
java.util.regex package, 360, 415
javac compiler, 40
javax.servlet.http package, 749
JAVA_HOME environment variable, 39
JDBC interface

connecting to databases, 39–42
determining number of rows affected by

statements, 339
disconnecting from databases, 39–42
error checking, 48
identifying NULL values in, 94
listing databases, 355
listing tables, 355
parameters from option files, 102–103
placeholder support, 88
result set metadata, 348–349
retrieving sequence values, 456
selecting databases, 39–42
server metadata, 364
SQL statement execution, 77–79
Tomcat and, 593, 752
transaction support, 576

JDK (Java Development Kit), 39
join

about, 119
controlling query sort order, 507–509
duplicate column names and, 509
filling in missing values with, 299
finding matches between tables, 474–481
finding mismatches between tables, 482–487
finding values associated with other values,

281
identifying holes in lists, 504–507

identifying unmatched values in tables, 487–
489

indexes and, 477
many-to-many relationships, 498–501
multiple tables, 119–121
one-to-many relationships, 495–497
self-join, 490–494
tables from different databases, 481

JSP (JavaServer Pages)
about, 592
displaying query results as hyperlinks, 625
displaying query results as lists, 609, 613, 614
displaying query results as tables, 619
hit logs, 716
loading database content into forms, 678
multiple-pick form elements, 673
placeholder support, 693
query results as paragraphs, 607
sample session application, 749–752
session interface and, 749
single-pick form elements, 656, 666–668
Tomcat support, 592
web form support, 652
web input-extraction support, 688
writing web scripts using, 595

JSTL (JSP Standard Tag Library)
installing distribution, 594–596
single-pick form elements, 656, 666–668
Tomcat support, 592
web input-extraction support, 688

K
key caches, 777
key() method (Python), 687
key_buffer_size system variable, 777

L
--labels option, 388, 405
LANG environment variable, 147
lastInsertId() method (PHP), 455
lastrowid attribute (Python), 455, 469
LAST_DAY() function, 217–219, 226
LAST_INSERT_ID() function

associating tables example, 465
AUTO_INCREMENT value and, 23, 464
hit counters, 714
retrieving sequence values, 453–457
sequence generators as counters, 469

818 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

latin1 character set, 140, 146, 758
LC_ALL environment variable, 147
leap-year calculations, 224–227
least-squares regression, 522–524
LEFT JOIN clause

finding per-group values, 503
identifying unmatched values, 487–489
mismatches between tables and, 482–487
one-to-many relationships, 495–497
producing summaries, 504–506
self-join problems and, 494

LEFT() function
date or time extraction and, 196
fixed-length substrings and, 251–252
metacharacters and, 165
pattern matches and, 160
string extraction and, 165
variable-length substrings and, 254

LENGTH() function, 141
lettercase in strings

converting, 153–155
sort order and, 143, 243–246

 tag (HTML), 609–612
li() function (Perl), 611
library files

about, 27
choosing location for, 52, 746
setting access privileges, 54
writing, 51–64

LIKE operator
CREATE TABLE statement and, 127
pattern matching and, 108, 158–160, 360
SHOW COLLATION statement and, 141

LIMIT clause
calculating descriptive statistics, 514
finding set endpoints of values, 297–298
RAND() function and, 124, 531
selecting portions of result sets, 703
selecting random items from rows, 530–531
selecting rows from query results, 121–124
sorting query results, 124
usage precautions, 710
values from expressions, 125

linear regressions, calculating, 522–524
linefeed (\n), 150, 369
LINES clause, 374, 378
lists

displaying query results as, 608–618
generating, 303–306

identifying holes in, 504
navigation indexes for, 626–631
nested, 608, 616–618
of placeholders, 83
producing master-detail, 494–497
scrolling, 655–668, 670–674
single-pick elements, 653–668
of unique values, 271

literal characters
percent sign and, 87, 186, 360
writing in strings, 148–150

LOAD DATA statement
about, 371–372
diagnostics about input data, 378–379
duplicate key values, 377
file formats and, 370
handling duplicates, 552, 556
handling NULL values, 386–387
ignoring datafile columns, 382
importing CSV files, 383
preprocessing values before insertion, 380–

381, 440
quotes and special characters, 376
skipping datafile lines, 379
specifying column and line delimiters, 374–

376
specifying datafile location, 372–374
specifying input column order, 380

LoadModule directive, 583
LOAD_FILE() function, 150, 632
$LOAD_PATH variable (Ruby), 57
LOCAL keyword, 373
--local-infile option, 372
localhost (hostname), 9
LOCATE() function, 168
--log-bin option, 765
LOG10() function, 318–320
LogFormat directive, 718, 720, 722
logging

analyzing logfiles, 721–723
Apache server support, 717–724
changes to tables, 322–325
controlling for servers, 762–765
expiring log files, 765–768
expiring log table rows, 768
rotating log tables, 768
rotating logfiles, 765–768
setting up for databases, 718–721
web page access, 716

Index | 819

www.it-ebooks.info

http://www.it-ebooks.info/

login accounts, 4
log_bin_trust_function_creators system vari‐

able, 309
log_error system variable, 763
log_error_verbosity system variable, 764
log_output system variable, 764
LONGBLOB data type, 634
lookup tables, validating with, 428–431
[:lower:] character class (POSIX), 163
--lower option, 405
LOWER() function, 153
LPAD() function, 200, 228

M
%M format sequence, 184–186
%m format sequence, 185
%m format specifier, 720
magic_quotes_gpc variable (PHP), 684
MAKETIME() function, 199
make_checkbox_group() function, 671
make_date_list() procedure, 506
make_definition_list() function, 615
make_dup_count_query() function (Perl), 559,

564
make_ordered_list() function, 611
make_popup_menu() function (PHP), 662
make_radio_group() function (PHP), 661
make_scrolling_list() function (PHP), 662, 671
make_table_from_query() function (Perl), 621
<Manager> element (JDBC), 753–755
“many host” accounts, modifying, 802
many-to-many relationships (tables), 497–501
master-detail relationship (tables), 494–497
MATCH() function, 169, 175
MAX() function

finding values, 272, 296–298
finding values associated with, 280–282
NULL values and, 289
string case sensitivity and, 282
summarizing with, 275, 285

max_binlog_size system variable, 765, 767
max_connections system variable, 775
mcb application, 593, 748
MD5() function, 319
mean (statistical measure), 513
median (statistical measure), 514
MEDIUMINT data type, 450, 460
metacharacters

about, 158

regular expressions and, 161–165
metadata

about, 335–336
accessing column definitions, 356–361
applications adapting to server version, 364–

366
checking existence of databases, 354–355
checking existence of tables, 354–355
determining if statement produced result

sets, 350
determining number of rows affected by

statements, 337–340
ENUM column information, 361–363
formatting query output, 350–354
getting for servers, 363–364
listing databases, 354–355
listing tables, 354–355
multiple-pick form elements, 670
result set, 340–349
returning for columns, 709
SET column information, 361–363
single-pick form elements, 664–667
validating tables with, 425–428

method attribute (forms), 651
Microsoft Excel, exchanging data with, 396–398
MID() function

fixed-length substrings and, 251–252
string extraction and, 165
variable-length substrings and, 254

MIN() function
finding values, 272, 296–298
finding values associated with, 280–282
NULL values and, 289
string case sensitivity and, 282
summarizing with, 275, 285

MINUTE() function, 195–196, 206
missing values (see NULL values)
MM-DD-YY format, 421
MM/DD/YY format, 184
MOD() function, 249–250
mode (statistical measure), 513
modules (see library files)
mod_env module (Apache), 583
monddccyy_to_iso.pl script, 439
monitoring servers

about, 769
sources of information, 770–772
using monitoring information, 772–780

820 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

MONTH() function
about, 195–196
date-based summaries and, 300
pattern matching and, 160
testing date values, 228

MONTHNAME() function, 195
MULTIPART() function (Perl), 695
multiple attribute (HTML), 670
multiple tables

finding matches between, 474–481
finding mismatches between, 482–487
identifying unmatched values, 487–489
joining from different databases, 481
many-to-many relationships, 497–501
one-to-many relationships, 494–497
removing unattached rows, 487–489
selecting data from, 119–121

multiple-pick form elements, 669–674
my.cnf file, 9, 326
MyISAM tables

FULLTEXT indexing and, 169
multiple index considerations, 462
sequence generation and, 452
transaction support, 76, 135, 567

mysql client program
about, 1
alternatives to, 2
command interpreter can’t find, 6–7
compound statements and, 308, 310–312
connection parameters and, 9–13, 96
creating databases, 4–6
executing statements interactively, 13–15
exporting data, 384
output destination and format, 17–22
reading from files or programs, 15–17
setting up MySQL user accounts, 2–4
specifying command options, 8–13
table setup in databases, 4–6
verbosity level, 22

mysql-session package, 734–736
mysql.connector module (Python), 37
mysql.user table, 784, 797
mysqladmin program

flushing server logs, 766
obtaining connection parameters, 96
option files, 10
ping command, 772
specifying command options, 8

mysqld server program, 1

mysqldump program
backups and, 781
copying tables, 136–138
--no-data option, 361
option files, 10
specifying command options, 8

mysqlimport program
about, 371–372
diagnostics about input data, 378–379
duplicate key values, 377
handling NULL values, 386–387
ignoring datafile columns, 382
importing CSV files, 383
preprocessing values before insertion, 380–

381
quotes and special characters, 376
skipping datafile lines, 379
specifying column and line delimiters, 374–

376
specifying datafile location, 372–374
specifying input column order, 380

mysql_client_found_rows option, 338
mysql_flags element (Ruby), 344
mysql_insertid attribute (Perl), 455, 464
mysql_is_blob attribute (Perl), 341
mysql_is_key attribute (Perl), 341
mysql_is_num attribute (Perl), 341, 353
mysql_is_pri_key attribute (Perl), 341
mysql_length element (Ruby), 344
mysql_max_length attribute (Perl), 341
mysql_max_length element (Ruby), 344
mysql_native_password plug-in, 761, 784, 786,

797
mysql_old_password plug-in, 784, 786, 800
mysql_read_default_file option, 98
mysql_read_default_group option, 98
mysql_sess_close() routine (PHP), 741, 744
mysql_sess_destroy() routine (PHP), 741, 745
mysql_sess_gc() routine (PHP), 742, 745
mysql_sess_open() routine (PHP), 741, 743
mysql_sess_read() routine (PHP), 741, 744
mysql_sess_write() routine (PHP), 741, 745
mysql_socket option, 32
mysql_table attribute (Perl), 342
mysql_thread_id option, 134
mysql_type attribute (Perl), 342
mysql_type element (Ruby)e, 344
mysql_type_name attribute (Perl), 342
mysql_type_name element (Ruby), 344

Index | 821

www.it-ebooks.info

http://www.it-ebooks.info/

my_print_defaults utility, 12

N
\n (newline), 150, 369
NAME attribute (Perl), 341
name element (Ruby), 344
NAME_hash attribute (Perl), 342
NAME_hash_lc attribute (Perl), 342
NAME_hash_uc attribute (Perl), 342
NAME_lc attribute (Perl), 341
NAME_uc attribute (Perl), 341
navigating web pages, 703–708
navigation indexes, 626–631
 (nonbreaking space) entity, 622
NDB storage engine, 566
nested groups, 285
nested lists, 608, 616–618
nesting SELECT statement, 121
new PDO() class constructor

establishing connections, 37
exception handling, 47, 59
key/value array and, 339

newInstance() method (Java), 42
newline (\n), 150, 369
next-page links, 703–708
nil value (Ruby), 74, 86, 93
--no-data option, 361
nonbinary strings

about, 140, 282
case sensitivity and, 243–246, 282
comparison operators and, 156
converting, 139, 154
data types supported, 139, 144–146
sort order for, 142, 243

nonbreaking space () entity, 622
noncategorical data, summarizing, 293–296
nonempty value pattern, 418
noninteractive mode (mysql)

output column delimiters, 21
output destination and format, 18

NOT IN subqueries
finding mismatches between tables, 486
removing mismatched rows, 487–489

NOT LIKE operator, 158–160
NOT NULL constraint, 332, 551
NOT REGEXP operator, 161
NOW() function, 190, 197, 230
NO_BACKSLASH_ESCAPES SQL mode, 374

NO_ENGINE_SUBSTITUTION SQL mode,
758

NO_ZERO_DATE SQL mode, 411
NO_ZERO_IN_DATE SQL mode, 411
NUL character (ASCII), 145, 372
NULL values

about, 5
AUTO_INCREMENT and, 448, 450
comparison operators and, 114–117
COUNT() function and, 274, 278, 287–290,

521
counting, 520–522
data types and, 356
DATETIME data type, 194
escape sequences, 150
filling in with join, 299
floating in sort order, 264–266
handling in statements, 79–89
identifying in query results, 91–94
importing and exporting, 385–387
join and, 484
pattern matching and, 164
per-group summaries and, 302
primary keys and, 551
summaries and, 287–290
TIMESTAMP data type, 194

NULLABLE attribute (Perl), 341
nullable element (Ruby), 344
numeric values, matching, 418–420

O
--oformat option, 437
 tag (HTML), 608–612
ol() function (Perl), 611
ON clause, 477, 493
ON DUPLICATE KEY UPDATE statement,

468, 714
ON UPDATE_CURRENT_TIMESTAMP at‐

tribute, 192
one-to-many relationships (tables), 495–497
ONLY_FULL_GROUP_BY SQL mode, 287
option files, connection parameters from, 9–13,

97–103
<option> tag (HTML), 655
ORDER BY clause

column aliases, 239
date-based sorting, 247–250
date-based summaries and, 298
eliminating duplicates, 277

822 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

ENUM values and, 268
floating values in sort order, 263–266
full-text searches and, 171
general characteristics, 235
GROUP BY clause and, 293
INFORMATION_SCHEMA database and,

354–355
joined tables, 476
renumbering rows in particular order, 461
selecting rows from query results, 121–124
sorting by fixed-length substrings, 252–253
sorting by substrings of values, 250
sorting by variable-length substrings, 257
sorting dotted-quad IP values, 261–263
sorting hostnames in domain order, 261
sorting observations, 514
sorting query results, 507–509
sorting using expressions, 238
sorting using hidden values, 239–242
table definition order, 359
usage suggestions, 112, 233–237

ORDER BY RAND() clause, 527, 530
ordered lists, 608–612
os module (Python), 652
OUT parameter, 314
outer join, 480, 482–487
outliers, 513
output

controlling destination and format, 17–22
formatting using metadata, 350–354

P
-p (--password) option, 3, 8, 97
<p> tag (HTML), 606–607
p() function (Perl), 606
--password (-p) option, 3, 8
package statement (Java), 62
pager option, 11
paragraphs, displaying query results as, 606–607
param() function (Perl), 629, 682
params method (Ruby), 682
parentheses (), 164, 417, 421
parse_ini_file() function (PHP), 101
--password (-p) option, 97
PASSWORD() function, 787, 795
passwords

assigning new, 795
checking strength, 793
expiration considerations, 366, 794

finding and fixing insecure accounts, 796–
800

implementing policies for, 790–792
obtaining connection parameters, 95
resetting expired, 795
setting up user accounts, 3

PATH environment variable, 3, 6–7
pathnames

absolute, 373
configuring Apache, 583
relative, 373
separators in Windows systems, 11, 54, 374
socket file, 9

pattern matching
for broad content types, 417
for dates or times, 420–424
for email addresses, 424
for numeric values, 418–420
LIKE operator and, 108, 158–160, 360
with regular expressions, 160–165
with SQL patterns, 158–160
for URLs, 424
validating data and, 415–417

PDO (PHP Data Objects) interface
connecting to databases, 35–37
determining number of rows affected by

statements, 338
disconnecting from databases, 35–37
error checking, 47
identifying NULL values in, 93
parameters from option files, 100–102
placeholder support, 87
result set metadata, 345–347
retrieving sequence values, 455
selecting databases, 35–37
SQL statement execution, 74
transaction support, 574

PDO::MYSQL_ATTR_FOUND_ROWS at‐
tribute, 339

PDOException class (PHP), 47
per-group descriptive statistics, 515–517
per-group summaries

about, 283–287
working simultaneously, 300–302

per-group values, 501–504
percent sign (%)

as literal character, 87, 186, 360
pattern-matching wildcard, 108, 158
as shell prompt, 3

Index | 823

www.it-ebooks.info

http://www.it-ebooks.info/

Performance Schema, 771
Perl

adapting to server versions, 365
additional information, xxii
column aliases, 110
configuring Apache, 582, 585–587
connecting to databases, 30–33
cookie support, 733
CPAN website, 412
creating navigation indexes, 629
determining number of rows affected by

statements, 337
disconnecting from databases, 30–33
displaying query results as hyperlinks, 624
displaying query results as lists, 611, 616, 617
displaying query results as tables, 620
encoding special characters, 601, 668
error checking, 44–46
file formats and, 370
hex dump programs, 376
hit counters, 715
identifying NULL values in, 92
leap year tests, 225
loading database content into forms, 675–

678
multiple-pick form elements, 670
parameters from option files, 98–99
pattern matching and, 360, 415–417
performing lookups in, 430
placeholder support, 84–86, 692
processing file uploads, 695–698
query results as paragraphs, 606
result set metadata, 340–343
retrieving sequence values, 455
selecting databases, 30–33
session storage for scripts, 728–734
single-pick form elements, 657–659
SQL statement execution, 67–72
transaction support, 571–573
web form support, 651
web input-extraction support, 682
web programming and, 580
web-based database searches, 702
writing library files, 55–57

PERL5LIB environment variable, 53, 56
perldoc warnings command, 31
PHP

additional information, xxiii
collecting web input, 680

configuring Apache, 582, 589
connecting to databases, 35–37
determining number of rows affected by

statements, 338
disconnecting from databases, 35–37
displaying query results as lists, 609, 615
downloading query results, 644
encoding special characters, 602, 668
error checking, 47
generating table headings, 709
identifying NULL values in, 93
INFORMATION_SCHEMA tables and, 359
leap year tests, 225
multiple-pick form elements, 671–672
parameters from option files, 100–102
pattern matching and, 360, 415
performing lookups in, 430
placeholder support, 87, 693
processing file uploads, 698–699
query results as paragraphs, 607
randomizing a set of rows, 528–529
result set metadata, 345–347
retrieving sequence values, 455
selecting databases, 35–37
session storage for scripts, 738–748
single-pick form elements, 659–666
SQL statement execution, 74
transaction support, 574
web form support, 652
web input-extraction support, 683–686
web programming and, 580
writing library files, 58–60

PHP Data Objects interface (see PDO interface)
phpMyAdmin interface, 2
PID (process ID), 133
ping command, 772
placeholders

collecting web input and, 680
generating list of, 83
making data safe for insertion, 79–83
sanitizing data values, 691–693

plug-in interface, 760–762
--plugin-load option, 761
--plugin-load-add option, 761
plugin_dir system variable, 760
plus sign (+)

Perl pattern element, 416
regular expressions and, 161

pop-up menus, 655–668

824 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

popup_menu() function (Perl), 657–666
port numbers

Apache support, 581
Java support, 42
Perl support, 33
PHP support, 37
Python support, 39
Ruby support, 35
TCP/IP default, 9
Tomcat support, 581

POSIX character classes, 162
post request (HTTP), 681, 694
$_POST variable (PHP), 683
PowerShell, continuation character for, 371
Pragma: header, 642
PRECISION attribute (Perl), 341
precision element (Ruby), 344
prepare() method

Perl support, 68, 84, 340, 455
PHP support, 87, 338, 345
Ruby support, 86

PreparedStatement object (Java), 456, 464
prepareStatement() method (Java), 88
previous-page links, 703–708
primary element (Ruby), 344
primary keys

generating sequences and, 449, 451
handling duplicate values, 377
hit counters and, 714
indexes and, 131
NULL values and, 551
preventing duplicate values, 550–551
removing, 459

[:print:] character class (POSIX), 163
PrintError attribute (Perl), 32, 44–46, 572
privileges for stored programs, 309
process ID (PID), 133
properties

object, 308
simulating TIMESTAMP, 320–322
string, 140–143, 243–246

protocol designators, 41
--protocol option, 9
[:punct:] character class (POSIX), 163
PURGE BINARY LOGS statement, 767
Python

additional information, xxiii
configuring Apache, 590
connecting to databases, 37–39

determining number of rows affected by
statements, 339

disconnecting from databases, 37–39
displaying query results as lists, 610
encoding special characters, 602, 668
error checking, 48
format specifiers, 87
generating list of placeholders, 84
hex dump programs, 376
identifying NULL values in, 94
leap year tests, 226
multiple-pick form elements, 671–673
pattern matching and, 360, 415
performing lookups in, 430
placeholder support, 87, 693
processing file uploads, 699
query results as paragraphs, 607
result set metadata, 347
retrieving sequence values, 455
selecting databases, 37–39
sequence generators as counters, 469
serving banner ads, 641
single-pick form elements, 660–666
SQL statement execution, 75–77
transaction support, 76, 575
web form support, 652
web input-extraction support, 686
web programming and, 580
writing library files, 60

PYTHONPATH environment variable, 53, 61

Q
QUARTER() function, 300
Queries status variable, 774–776
query results, 121

(see also sorting query results; subqueries)
controlling column names, 108–111
displaying as hyperlinks, 622–625
displaying as lists, 608–618
displaying as paragraphs, 606–607
displaying as tables, 618–622
displaying in web pages, 708–712
downloading, 643–645
exporting as XML, 398–401
exporting from MySQL, 383–385
formatting output, 350–354
identifying NULL values in, 91–94
removing duplicate rows, 113
saving in tables, 128–131

Index | 825

www.it-ebooks.info

http://www.it-ebooks.info/

selecting rows from, 121–124
suppressing column headings, 20

query() method (PHP), 74, 345
question mark (?)

Perl support, 84, 417
Ruby support, 86

quit command, 3
" (double quotes) entity, 668
--quote option, 389
QUOTE() function, 328
quote() method

Perl support, 85, 692
Python support, 602
Ruby support, 86

--quote-names option, 405
quote_identifier() function (PHP), 712
quote_identifier() method (Perl), 90, 507
quoting mechanisms

importing data and, 376
making data safe for insertion, 79–83
shell commands and, 370
special characters in identifiers, 89–90
writing string literals, 148–150

R
\r (carriage return), 150, 369
%r format sequence, 185
radio buttons, 655–668
radio_group() function (Perl), 657–666
RaiseError attribute (Perl), 32, 44–46, 68, 572
RAND() function

generating random numbers, 525
LIMIT clause and, 124, 531
randomizing set of rows, 527

randomizing
item selection from rows, 529–531
number generation, 525–526
order of rows, 527–529

ranks, assigning, 538–540
re module (Python), 360
reading statements from files or programs, 15–

17
read_mysql_option_file() function (PHP), 100
referential integrity, 490
REGEXP operator, 161–165, 416, 802
register_globals variable (PHP), 683, 738
regular expressions, pattern matching with,

160–165
relative pathnames, 373

relative values, 531, 534
RELOAD privilege, 766
removeAttribute() method (Java), 749
RENAME USER statement, 790
REPAIR TABLE statement, 174
REPEAT statement, 310
--replace option, 378
REPLACE statement

determining number of rows affected, 337
handling duplicate values, 377, 552–556
replacing images, 636
session data and, 740

--report option, 405
require statement

PHP support, 60
Ruby support, 34

require_once statement (PHP), 60
result sets

determining if statement produced, 350
duplicate column names in, 509
formatting query output, 350–354
identifying NULL values in, 91–94
obtaining metadata, 340–349
selecting portions of, 703
selecting rows from, 121–124
statements returning, 67

ResultSet object (Java), 78, 348
ResultSetMetaData object (Java), 348
returning multiple values, 314
RETURNS FLOAT clause, 311
REVOKE statement, 790
RIGHT JOIN clause, 482, 485
RIGHT() function

fixed-length substrings and, 251–252
metacharacters and, 165
pattern matches and, 160
string extraction and, 165
variable-length substrings and, 254

ROLLBACK statement, 568
rollback() method

Java support, 576
Perl support, 572
PHP support, 574
Python support, 575
Ruby support, 573

root password, 3
--routines option, 137, 781
row fetching, 612
rowcount attribute (Python), 75, 339, 347

826 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

rowCount() method (PHP), 338
rows, 191

(see also sorting query results)
calculating successive-row differences, 531–

533
copying into tables, 129
determining number affected by statements,

337–340
duplicate, 113, 277–279, 549–564
effects of deletion on sequences, 451–453
randomizing item selection from, 529–531
randomizing order of, 527–529
removing mismatched or unattached, 487–

489
renumbering in particular order, 461
selecting on temporal characteristics, 228–

231
selecting specific, 106–108, 121–124
tracking modification times, 191–194

Ruby
additional information, xxiii
checking existence of databases, 354
checking existence of tables, 355
configuring Apache, 582, 587–589
connecting to databases, 33–35
determining number of rows affected by

statements, 338
disconnecting from databases, 33–35
displaying query results as hyperlinks, 624
displaying query results as lists, 611, 615
encoding special characters, 601, 668
error checking, 46
generating list of placeholders, 84
getting ENUM or SET information, 362
hex dump programs, 376
hit counters, 715
identifying NULL values in, 93
leap year tests, 226–227
multiple-pick form elements, 671
parameters from option files, 99
pattern matching and, 360, 415
performing lookups in, 430
placeholder support, 86, 693
query results as paragraphs, 607
result set metadata, 343–345
retrieving sequence values, 455
selecting databases, 33–35
session storage for scripts, 734–738
single-pick form elements, 659–666

SQL statement execution, 72–74
transaction support, 573
web form support, 652
web input-extraction support, 682
web programming and, 580
writing library files, 57

RUBYLIB environment variable, 53, 57
running averages, finding, 533–538

S
-s (--silent) option, 20, 22
-S (--socket) option, 9
%s format sequence, 186
%>s format specifier, 720
%s format specifier, 86, 87
\s pattern element (Perl), 416
\S pattern element (Perl), 416
SCALE attribute (Perl), 341
scale element (Ruby), 344
scheduled events

about, 307
for database actions, 325–327
privilege requirements, 310

ScriptAlias directive, 582
scripts (see web scripts)
script_name() method (Ruby), 652
scrolling lists

multiple-pick form elements, 670–674
single-pick form elements, 655–668

scrolling_list() function (Perl), 657–666, 670
searches

Boolean mode, 175–178
full-text, 169–178
web-based, 700–703

SECOND() function, 195, 206
secure_auth system variable, 800
security

assigning new passwords, 795
checking password strength, 793
disabling user accounts, 800
expiring passwords, 794
finding and fixing insecure user accounts,

796–800
implementing password policies, 790–792
managing user accounts, 785–790
modifying “any host” accounts, 802
modifying “many host” accounts, 802
mysql.user table and, 784
removing anonymous accounts, 801

Index | 827

www.it-ebooks.info

http://www.it-ebooks.info/

resetting expired passwords, 795
vulnerabilities from web input, 691–693
web security note, 584

SEC_TO_TIME() function, 201–202, 207, 277
sed utility, 21
<select> element (HTML), 675
SELECT statement, 108

(see also specific clauses)
about, 67, 105–106
BEGIN … END block and, 310
controlling column names, 108–111
detecting end-of-data conditions, 329
displaying all columns, 478
dynamic default column values, 317
generating metadata, 340, 345
handling special characters, 82, 90
hit counters, 715
identifying unique values, 113, 272, 277–279
INFORMATION_SCHEMA database and,

336, 770
logging changes to tables, 324
nesting, 121
NULL values and, 91, 114–117
obtaining table structure, 358
obtaining unique values, 489
Perl support, 69
PHP support, 74
Python support, 76
reformatting dates, 442
result sets and, 350
retrieving images and binary data, 638
Ruby support, 72
saving query results, 128–131
security vulnerabilities, 691
selecting from multiple tables, 119–121
selecting specific columns, 106–108
selecting specific rows, 106–108, 121–124
sequence values and, 454
session data and, 740
simplifying table access, 117
simulating function-based indexes, 319
sorting query results, 112
summarizing with COUNT(), 273–275
user-defined variables in, 22–24

SELECT COUNT() statement, 704–708
SELECT CURRENT_USER() statement, 364
SELECT DATABASE() statement, 363
SELECT … INTO OUTFILE statement

redirecting query results, 383–384

writing NULL values, 387
<select> tag (HTML), 655, 670
SELECT USER() statement, 364
SELECT VERSION() statement, 30, 363
selectall_arrayref() method (Perl), 70, 85, 343
selectall_hashref() method (Perl), 70, 343
selectcol_arrayref() method (Perl), 70, 658
selected attribute (HTML), 655, 670, 675
selectrow_array() method (Perl), 70, 85
selectrow_arrayref() method (Perl), 70
selectrow_hashref() method (Perl), 70
select_all method (Ruby), 74, 345
select_one method (Ruby), 74, 345
self-join

about, 490
calculating successive-row differences, 531–

533
comparing table to itself, 490–494
producing successive observations, 534–538

semicolon (;)
comments and, 11
compound statements and, 308, 310
multiple input lines and, 13
pathname separators and, 54

sequence columns
choosing definitions for, 449–451
creating, 446–449
extending ranges, 460
renumbering, 457–459

sequences, 445
(see also AUTO_INCREMENT value)
associating tables, 465–467
effects of row deletion on, 451–453
generating repeating, 471
generating values, 446–449
managing multiple, 446, 464
renumbering, 445, 457–459
renumbering in particular order, 461
retrieving values, 445, 453–457
reusing values at top of, 460
sequencing tables, 462
single-row generators, 446, 467–471

servers (MySQL)
applications adapting to version, 364–366
backups and, 780
configuring, 757–760
controlling logging, 762–765
copying tables between, 137
copying tables within single, 136

828 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

expiring log table rows, 768
expiring logfiles, 765–768
managing plug-in interface, 760–762
metadata about, 335, 363–364
monitoring, 769–780
obtaining connection parameters, 95–103
retrieving sequence values, 456
rotating log tables, 768
rotating logfiles, 765–768
setting up user accounts, 2–4
validating data, 410, 413

server_version() helper routine, 788
$_SESSION array (PHP), 738, 748
SESSION keyword, 363
session management

issues about, 725–728
session storage for Java scripts, 748–756
session storage for Perl scripts, 728–734
session storage for PHP scripts, 738–748
session storage for Ruby scripts, 734–738
terminating sessions, 3

sessionScope variable (JSTL), 751
session_destroy() function (PHP), 739
session_set_save_handler() routine (PHP), 741,

742
session_start() function (PHP), 739, 748
session_write_close() function (PHP), 739, 747
SET statement

changing system variables, 759
mapping special values, 386
preprocessing values before insertion, 380
setting variables explicitly, 24

SET GLOBAL statement, 326
SET NAMES statement, 146
SET PASSWORD statement, 787, 795
SET string type

about, 146, 357
default values and, 674
getting column information, 361–363
modifying columns in place, 167
multiple-pick form elements, 670
single-pick form elements, 664–667
validating data, 425–428
validating web input, 690

setAttribute() method
Java support, 749
PHP support, 75

SetEnv directive, 583, 720
setFetchMode() method (PHP), 75

setInt() method (Java), 88
setNull() method (Java), 89
setString() method (Java), 88
sha256_password plug-in, 761, 784, 786
shell commands, invoking, 370
SHOW statement

about, 28
INFORMATION_SCHEMA database and,

336, 356
monitoring information and, 770
returning result sets, 67

SHOW CHARACTER SET statement, 140
SHOW COLLATION statement, 141
SHOW COLUMNS statement

accessing table column definitions, 357,
359–360

INFORMATION_SCHEMA table and, 336
SHOW CREATE TABLE statement

determining current engine for tables, 135
displaying table structure, 357, 361

SHOW DATABASES statement, 336
SHOW GRANTS statement, 789
SHOW PLUGINS statement, 761, 770
SHOW PROCESSLIST statement, 801
SHOW SLAVE STATUS statement, 776
SHOW STATUS statement, 364
SHOW ENGINES statement, 136
SHOW TABLE STATUS statement, 135, 453
SHOW TABLES statement, 336
SHOW VARIABLES statement, 30, 364, 760,

777
SHOW WARNINGS statement

displaying diagnostic information, 372, 378–
379

displaying SIGNAL statement messages, 332
displaying unsuitable data values, 410

SIGNAL statement, 331
--silent (-s) option, 20, 22
single quote ('), 90, 148–150
single-pick form elements, 653–668
size attribute (forms), 655
sjis character set, 145
skip-auto-rehash option, 11
--skip-column-names option, 20, 385
--skip-quote-names option, 405
--skip-triggers option, 781
Slave_SQL_Running status variable, 776
slow query log, 762, 764, 766, 771
slow_query_log system variable, 764

Index | 829

www.it-ebooks.info

http://www.it-ebooks.info/

slow_query_log_file system variable, 764
SMALLINT data type, 450
--socket (-S) option, 9
socket file pathnames, 9
sorting query results

about, 233
controlling case sensitivity, 243–246
date-based, 246–250
defining custom order, 266
dotted-quad IP values, 261–263
by ENUM values, 267–269
expressions for, 238
by fixed-length substrings, 250–253
floating values when, 263–266
full-text searches and, 171
generating “click to sort” headings, 708–712
hidden values and, 239–242
hostnames in domain order, 258–261
join controlling, 507–509
LIMIT clause and, 124
ORDER BY clause and, 112, 234–237
by substrings of column values, 250
by variable-length substrings, 254–258

source command, 15
[:space:] character class (POSIX), 163
spans, intervals versus, 210
special characters

encoding in web output, 596–603, 668
handling in identifiers, 89–90
handling in statements, 79–89
importing data and, 376

split() function (Perl), 395
Spreadsheet::ParseExcel::Simple module (Perl),

396
Spreadsheet::WriteExcel::FromDB module

(Perl), 397
SQL (Structured Query Language)

client-server architecture and, 1
executing statements, 65–79
executing statements interactively, 13–15
getting server metadata, 363–364
NULL values in statements, 79–89
pattern matching with, 158–160
performing transactions, 567–569
reading from files or programs, 15–17
retrieving statement results, 65–79
special characters in identifiers, 89–90
special characters in statements, 79–89
statement categories, 66

user-defined variables in statements, 22–24
SQL injection attacks, 26, 79, 691
SQL mode (see also specific modes), 410
<sql:param> JSTL tag, 693
SQLException class (Java), 49
SQLSTATE error code, 43
SQLWarning class (Java), 49
SQL_CALC_FOUND_ROWS option, 124
--sql_mode option, 411
sql_mode system variable, 11, 410
sql_type element (Ruby), 344
square brackets [], 163
standard deviation, 513
START TRANSACTION statement, 568, 569
STARTING BY subclause, 375
start_form() method (Perl), 651, 695
start_html() method (Perl), 586
start_multipart_form() method (Perl), 695
Statement object (Java)

AUTO_INCREMENT values and, 464
execute() method, 77, 88, 340, 350
executeQuery() method, 77, 88
executeUpdate() method, 77, 88, 339
RETURN_GENERATED_KEYS argument,

456
statements (SQL), 121

(see also specific statements)
categories for, 66
compound, 308, 310–312, 317, 325, 330
determining if result sets were produced,

350
determining numbers of rows affected by,

337–340
dynamic, 327–328
error handling, 67
executing, 65–79
executing interactively, 13–15
metadata about, 335
nesting, 121
NULL values in, 79–89
processing, 67
reading from files or programs, 15–17
retrieving results, 65–79
special characters in, 79–89
special characters in identifiers, 89–90
user-defined variables in, 22–24
validating data with lookup tables, 428–431

static keyword (Java), 63

830 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

statistical techniques
assigning ranks, 538–540
calculating correlation coefficients, 522–524
calculating descriptive statistics, 512–515
calculating linear regressions, 522–524
calculating successive-row differences, 531–

533
computing team standings, 541–547
counting missing values, 520–522
finding cumulative sums, 533–538
finding running averages, 533–538
generating frequency distributions, 517–520
generating random numbers, 525–526
per-group descriptive statistics, 515–517
randomizing items selected from rows, 529–

531
randomizing set of rows, 527–529

status variables, 770
STD() function, 279
STDDEV() function, 513
STDDEV_POP() function, 513
STDDEV_SAMP() function, 513
storage engines

checking or changing, 135–136
effect of row deletions on, 451–453
transaction-safe, 566
usage considerations, 451

<Store> element (JDBC), 753
stored functions

about, 307
changing delimiters, 310
encapsulating calculations, 312–314
privilege requirements, 309

stored procedures
about, 307
privilege requirements, 309
returning multiple values, 314

stored programs
about, 308–309
dynamic default column values, 315–317
encacpsulating calculations, 312–314
error handling within, 328–332
helper routines executing dynamic SQL,

327–328
logging changes to tables, 322–325
preprocessing data, 332–334
privileges for, 309
rejecting data, 332–334
returning multiple values, 314

scheduling database actions, 325–327
simulating function-based indexes, 317–320
simulating TIMESTAMP properties, 320–

322
storing

images and other binary data, 631–638
session-based Java applications, 748–756
session-based Perl applications, 728–734
session-based PHP applications, 738–748
session-based Ruby applications, 734–738
web input in databases, 691–693

String object (Java), 688
strings

breaking apart, 165–168
case sensitivity in comparisons, 155–157,

282
character sets in, 139, 140, 146, 150–152
collation in, 139, 142, 150–152, 243–246
combining, 165–168
converting lettercase of, 153–155
data types supported, 139, 144–146
features of, 139
FULLTEXT searches, 169–178
ISO format date strings, 227
pattern matching with regular expressions,

160–165
pattern matching with SQL, 158–160
properties of, 140–143, 243–246
searching for substrings, 168
writing literals, 148–150

strip_slash_helper() helper function, 685
Structured Query Language (see SQL)
STR_TO_DATE() function, 184–186, 441
sub() method (Python), 360
subprotocol designators, 41
subqueries

about, 119
finding per-group values, 501–503
finding values associated with other values,

281
LIMIT clause sort order, 124
multiple tables and, 119–121
NOT IN, 486, 487–489

SUBSTRING() function, 166, 254–256
substrings

calculating dates by replacement, 219–220
pattern matching, 158, 161
searching for, 168
sorting by column values, 250

Index | 831

www.it-ebooks.info

http://www.it-ebooks.info/

sorting by fixed-length, 250–253
sorting by variable-length, 254–258

SUBSTRING_INDEX() function
about, 166
extracting hostname pieces, 259–261
INET_ATON() function and, 263
variable-length substrings and, 256–258

successive-row differences, calculating, 531–533
suEXEC mechanism (Apache), 585
SUM() function

about, 272
NULL values and, 289, 497, 521
summarizing with, 276, 285

summaries
about, 271–273
basic techniques, 273–279
controlling string case sensitivity, 282
date-based, 298–300
dividing into subgroups, 283–287
finding largest values, 296–298
finding smallest values, 296–298
finding values associated with other values,

280–282
generating specific reports, 303–306
grouping by expression results, 292
identifying holes in lists, 504–507
identifying unique values, 291–292, 557–560
joins and, 479
for noncategorical data, 293–296
NULL values and, 287–290
producing master-detail, 494–497
selecting specific groups, 290
simplifying usage with views, 279
working values simultaneously, 300–302

SUPER privilege
enabling event schedulers, 326
setting values at runtime, 411, 759
stored programs and, 309

sys module (Python), 61
syslog facility, 763
syslogd command (Unix), 325
system variables

changing, 759
monitoring information and, 770

T
-t (--table) option, 18, 388, 405
\t (tab), 150
%T format sequence, 185

tab (\t), 150
tab-delimited output (see TSV format)
tab-separated values (TSV) format

about, 369
producing output, 17
suppressing column headings, 20

--table (-t) option, 18, 388, 405
<table> tag (HTML), 618
table() function (Perl), 620
tables, 4

(see also columns; multiple tables; rows)
accessing column definitions, 356–361
Apache logging to, 717–724
associating, 465–467
checking existence of, 354–355
cloning, 127
comparing to itself, 490–494
converting to transactional, 567
copying using mysqldump, 136–138
creating, 4–6
creating temporary, 131–134
displaying query results as, 618–622
dynamic default column values, 315–317
ENUM column information, 361–363
finding per-group values, 501–504
generating unique names, 133–134
generating “click to sort” headings, 708–712
guessing structure from datafiles, 404–406
importing XML documents into, 401–404
listing, 354–355
logging considerations, 322–325, 768
lookup, 428–431
metadata about, 335
referential integrity, 490
saving query results in, 128–131
selecting data from, 105–126
selecting data from multiple, 119–121
sequencing, 462
SET column information, 361–363
setting up in databases, 4–6
simplifying table access, 117
storage engines, 135–136
validating with metadata, 425–428

tables() method (Perl), 355
TCP/IP connections

default port number, 9
Java support, 42
Perl support, 33
PHP support, 37

832 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Python support, 39
Ruby support, 35

<td> tag (HTML), 618
td() function (Perl), 620
team standings, computing, 541–547
temporal data types (see dates and times)
TEMPORARY keyword, 131–134
temporary tables, 131–134, 501–503
TERMINATED BY subclause, 375, 376
tests

checking values on web forms, 429
packaging in libraries, 414
patterning to break matched values, 415

TEXT data type, 139, 145, 319
Text::CSV_XS module (Perl), 22, 370, 388
<textarea> element (HTML), 675
textfield() function, 702
<th> tag (HTML), 618
th() function (Perl), 620
Threads_connected status variable, 775
TIME data type

about, 181
calculating time intervals, 206–208
comparing times, 231
converting between times and seconds, 202,

213
date-based sorting, 246
extracting times, 195
fractional seconds support, 182
numeric functions and, 277
simulating TIMESTAMP properties, 320–

321
synthesizing from component values, 199–

201
TIME_FORMAT() function and, 186–187

time zones
setting client-side, 181, 187–189
shifting values between, 189–190

TIME() function, 195
TIMEDIFF() function, 206
times (see dates and times)
TIMESTAMP data type

about, 179
adding date-and-time values, 212
calculating date-and-time intervals, 205, 207,

208
comparing dates, 230
comparing times, 231
converting values, 204

date-based sorting, 246–247
date-based summaries, 299
DATETIME data type and, 181, 320–322
DATE_FORMAT() function and, 185
extracting dates and times, 195, 202–203
fractional seconds support, 182
initializing, 316, 325
NULL values, 194
Perl session modifications and, 734
PHP session modifications, 740, 745
recording access times, 716
reformatting dates, 442
row order considerations, 462
simulating properties, 320–322
time zone settings, 187–189
tracking row modification, 191–194

TIMESTAMP() function, 211
TIMESTAMPADD() function, 213
TIMESTAMPDIFF() function, 206, 215
TIME_FORMAT() function

about, 184–187
combining date/time parts, 199–200
extracting parts of times, 195
reformatting values, 198

TIME_TO_SEC() function, 201–202, 207, 277
time_zone system variable, 187
TINYINT data type, 450
Tomcat

JDBC and, 593, 752
JSTL distribution and, 594–596
mcb application and, 593, 748
modifying configuration file, 753–755
port numbers, 581
running web scripts with, 591–592
session expiration in, 755
session tracking in, 755
session-backing store with, 748–756

toString() method (Java), 78
TO_DAYS() function

adding to date values, 214
calculating day intervals, 207–208
converting between dates and days, 201, 203

<tr> tag (HTML), 618
tr utility, 21
tr() function (Perl), 620
track_vars variable (PHP), 683, 738
TRADITIONAL SQL mode, 411
transaction() method (Ruby), 574

Index | 833

www.it-ebooks.info

http://www.it-ebooks.info/

transactions
choosing storage engines, 566
concurrency issues, 565
InnoDB tables and, 135
integrity issues, 565
Java support, 576
MyISAM tables and, 76, 135
performing from within programs, 569–571
Perl support, 571–573
PHP support, 574
Python support, 76, 575
Ruby support, 573
SQL support, 567–569

TransferLog directive, 718
transferring data (see exporting data; importing

data)
--transition option, 437
TRIGGER privilege, 309
triggers

about, 307
dynamic default column values, 315–317
logging changes to tables, 322–325
omitting from dump output, 781
preprocessing data, 332–334
privilege requirements, 309
rejecting data, 332–334
simulating function-based indexes, 317–320

--triggers option, 137
trim_whitespace() function, 417
triple equal (===) operator, 93
TRUNCATE TABLE statement, 453, 462
TRUNCATE() function, 543
try statement (Python), 38
TSV (tab-separated values) format

about, 369
producing output, 17
suppressing column headings, 20

type attribute (HTML), 669
TYPE attribute (Perl), 341
type_name element (Ruby), 344

U
-u (--username) option, 3, 8, 97
%U format specifier, 720
ucb2 character set, 140
ucs2 character set, 140
 tag (HTML), 613
ul() function (Perl), 613
uncertainty principle, 775

undef argument (Perl)
about, 92, 117
binding to placeholders, 85
do() method and, 45, 68

underscore (_), 149, 158, 360
Unicode character sets, 140
UNINSTALL PLUGIN statement, 762
unique element (Ruby), 344
UNIQUE keyword, 377, 451, 550–551
Unix epoch, 204, 208
Unix systems

configuring Apache, 582
error log, 764
invoking shell commands, 370
line-ending sequence in, 376
localhost and, 9
measuring time in, 204, 208
option file and, 13, 97
output column delimiters, 21
root user, 4
terminating sessions, 3
web security note, 584

unix_socket option
PHP support, 37
Python support, 39

UNIX_TIMESTAMP() function
adding date-and-time values, 215
converting intervals, 207
converting values, 201, 204

unordered lists, 613
UNSIGNED keyword, 450, 460
UPDATE privilege, 795
UPDATE statement

about, 66
determining number of rows affected, 337
hit counters, 714
LIMIT clause and, 124
logging changes to tables, 324
Perl support, 67
PHP support, 74
result sets and, 350
Ruby support, 72
security vulnerabilities, 692
session data and, 740
simulating TIMESTAMP properties, 320–

322
tracking row modification times, 193
triggers and, 307

uploadInfo() function (Perl), 696

834 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

uploading files, 694–700
upload_max_filesize variable (PHP), 698
upload_tmp_dir variable (PHP), 698
[:upper:] character class (POSIX), 163
--upper option, 405
UPPER() function, 153
Uptime status variable, 773–774
url() method (Perl), 651
urlencode() function (PHP), 602
urllib module (Python), 580, 590, 602
URLs

encoding special characters, 597–603
parameter separator characters, 681
pattern matching for, 424
sesion tracking and, 755

use function (Perl), 31
USE statement, 67
user accounts

account-creation helper procedure, 787
assigning and checking privileges, 788–790
creating, 786–787
disabling, 800
finding and fixing insecure, 796–800
login accounts and, 4
managing, 785–790
modifying “any host” accounts, 802
modifying “many host” accounts, 802
removing, 790
removing anonymous accounts, 801
renaming, 790
setting up, 2–4

User directive, 585
USER() function, 151
user-defined variables in statements, 22–24
--username (-u) option, 3, 8, 97
usernames

obtaining connection parameters, 95
pattern matching, 424
sorting by hidden values, 242

USING clause, 474, 477, 486
UTC time standard

converting values, 187
determining current date or time, 190
Unix epoch and, 204, 208

UTC_DATE function, 190
UTC_TIME() function, 190
UTC_TIMESTAMP() function, 190
utf16 character set, 140
utf16le character set, 140

utf32 character set, 140
utf8 character set, 140, 145, 146
utf8mb4 character set, 140

V
-v (--verbose) option, 22
%v format specifier, 723
validate_password plug-in, 791–793
validate_password_dictionary_file system vari‐

able, 792
VALIDATE_PASSWORD_STRENGTH() func‐

tion, 793, 795
validating data

about, 411–414
client-server considerations, 413
collecting web input, 680
on date or time subparts, 432–435
with lookup tables, 428–431
pattern matching and, 415–417
SQL mode and, 410–411
with table metadata, 425–428
on web forms, 689–690

value attribute (HTML), 655, 675
VARBINARY data type, 139, 145
VARCHAR data type, 139, 145, 719
variables

configuration, 52
environment, 52
setting explicitly, 24
status, 770
system, 759, 770
user-defined in statements, 22–24

VARIANCE() function, 513
variation, measures of, 513
VAR_POP() function, 513
VAR_SAMP() function, 513
--verbose (-v) option, 22
VERSION() function, 365–366
versions (server), applications adapting to, 364–

366
--vertical (-E) option, 14
vhost log format, 723
views

simplifying table access, 117
simplifying using summaries, 279

W
%W format sequence, 185

Index | 835

www.it-ebooks.info

http://www.it-ebooks.info/

-w option
Perl support, 31, 92
Ruby support, 33

\w pattern element (Perl), 416
\W pattern element (Perl), 416
WAR files, 593
--warn option, 438
wasNull() method (Java), 94
web forms

about, 647–650
checking values on, 429
collecting web input, 679–689
creating multiple-pick elements, 669–674
creating single-pick elements, 653–668
generating from scripts, 650–653
loading database content into, 674–679
navigating across pages, 703–708
processing file uploads, 694–700
storing web input in databases, 691–693
validating web input, 689–690
web-based database searches, 700–703

web input, 647
(see also web forms)
about, 647–650
collecting, 679–689
extraction conventions, 681–689
generating “click to sort” table headings,

708–712
navigating web pages, 703–708
storing in databases, 691–693
validating, 689–690
web page access counting, 712–716
web page access logging, 716
web page access logging with Apache, 717–

724
web programming

debugging scripts, 584
encoding special characters in output, 596–

603
running web scripts with Apache, 581–591
running web scripts with Tomcat, 591–596
web page generation, 579–581

web scripts
collecting web input, 679
debugging, 584
determining actions, 708–712
generating web forms, 650–653
running with Apache, 581–591
running with Tomcat, 591–596

session storage for Java, 748–756
session storage for Perl, 728–734
session storage for PHP, 738–748
session storage for Ruby, 734–738
trying to break, 692
web-based database searches, 700–703

WEEKDAY() function, 195–196, 221, 250
WHERE clause

aggregate functions and, 281
associating rows in multiple tables, 474–479
checking existence of tables, 355
cloning tables and, 128
column aliases and, 111
date or time condition, 228–231
HAVING clause and, 290
narrowing down result sets, 706
NULL values and, 484
obtaining table structure, 358
saving query results, 129
selecting specific columns, 106–108
selecting specific rows, 106–108
specifying database object names, 90
user-defined variables in, 22
views for table access, 118

WHILE statement, 310
whitespace

pattern identifying, 418
stripping from values, 416

Windows systems
configuring Apache, 582
continuation character in, 371
invoking shell commands, 370
line-ending sequence in, 376
pathname separators in, 11, 54, 374
setting file permissions, 13

WITH ROLLUP clause, 300–302
Workbench program (MySQL), 2
writing MySQL-based programs (see API oper‐

ations)

X
-X (--xml) option, 19
x repetition operator, 84
[:xdigit:] character class (POSIX), 163
XHTML, 578
--xml (-X) option, 19
XML documents

exporting query results as, 398–401
importing into MySQL, 401–404

836 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

producing, 18–20
XML::Generator::DBI module (Perl), 399
XML::Handler::YAWriter module (Perl), 399
XML::XPath module (Perl), 402
XSLT transforms, 19

Y
%Y format sequence, 184–186
%y format sequence, 185
YEAR() function

about, 184, 195–196

leap-year calculations and, 224
pattern matching and, 160

YY-MM-DD format, 422
yy_to_ccyy() function, 432

Z
zero parts in dates and times, 411
Zip codes, 419

Index | 837

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Paul DuBois is one of the primary contributors to the MySQL Reference Manual, a
renowned online manual that has supported MySQL administrators and database de‐
velopers for years. He is a member of the MySQL documentation team at Oracle Cor‐
poration and is also the author of MySQL (Addison-Wesley Professional); MySQL
Cookbook; Using csh & tcsh; Software Portability with imake; and MySQL and Perl for
the Web (New Riders).

Colophon
The animal on the cover of MySQL Cookbook, Third Edition is a green anole. These
common lizards can be found in the southeastern United States, the Caribbean, and
South America. Green anoles dwell in moist, shady enivornments, such as inside trees
and shrubs. They subsist on small insects like crickets, roaches, moths, grubs, and spi‐
ders.

Green anoles are slight in build, with narrow heads and long, slender tails that can be
twice as long as their bodies. The special padding on their feet enables them to climb,
cling to, and run on any surface. They range in size from six to eight inches long. Though,
as their name implies, green anoles are usually bright green, their color can change to
match their surroundings, varying among gray-brown, brown, and green. Male anoles
have pink dewlaps that they extend when courting or protecting their territory.

The cover image is from the Dover Pictorial Archive. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What’s in This Book
	MySQL APIs Used in This Book
	Version and Platform Notes
	Conventions Used in This Book
	The MySQL Cookbook Companion Website
	Recipe Source Code and Data
	MySQL Cookbook Companion Documents

	Obtaining MySQL and Related Software
	MySQL
	Perl Support
	Ruby Support
	PHP Support
	Python Support
	Java Support

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Using the mysql Client Program
	1.0. Introduction
	1.1. Setting Up a MySQL User Account
	Problem
	Solution
	Discussion
	See Also

	1.2. Creating a Database and a Sample Table
	Problem
	Solution
	Discussion

	1.3. What to Do if mysql Cannot Be Found
	Problem
	Solution
	Discussion

	1.4. Specifying mysql Command Options
	Problem
	Solution
	Discussion

	1.5. Executing SQL Statements Interactively
	Problem
	Solution
	Discussion

	1.6. Executing SQL Statements Read from a File or Program
	Problem
	Solution
	Discussion

	1.7. Controlling mysql Output Destination and Format
	Problem
	Solution
	Discussion

	1.8. Using User-Defined Variables in SQL Statements
	Problem
	Solution
	Discussion

	Chapter 2. Writing MySQL-Based Programs
	2.0. Introduction
	Assumptions
	MySQL Client API Architecture

	2.1. Connecting, Selecting a Database, and Disconnecting
	Problem
	Solution
	Discussion

	2.2. Checking for Errors
	Problem
	Solution
	Discussion

	2.3. Writing Library Files
	Problem
	Solution
	Discussion

	2.4. Executing Statements and Retrieving Results
	Problem
	Solution
	Discussion

	2.5. Handling Special Characters and NULL Values in Statements
	Problem
	Solution
	Discussion

	2.6. Handling Special Characters in Identifiers
	Problem
	Solution
	Discussion

	2.7. Identifying NULL Values in Result Sets
	Problem
	Solution
	Discussion

	2.8. Techniques for Obtaining Connection Parameters
	Problem
	Solution
	Discussion

	2.9. Conclusion and Words of Advice

	Chapter 3. Selecting Data from Tables
	3.0. Introduction
	3.1. Specifying Which Columns and Rows to Select
	Problem
	Solution
	Discussion

	3.2. Naming Query Result Columns
	Problem
	Solution
	Discussion

	3.3. Sorting Query Results
	Problem
	Solution
	Discussion

	3.4. Removing Duplicate Rows
	Problem
	Solution
	Discussion
	See Also

	3.5. Working with NULL Values
	Problem
	Solution
	Discussion
	See Also

	3.6. Writing Comparisons Involving NULL in Programs
	Problem
	Solution
	Discussion

	3.7. Using Views to Simplify Table Access
	Problem
	Solution
	Discussion

	3.8. Selecting Data from Multiple Tables
	Problem
	Solution
	Discussion

	3.9. Selecting Rows from the Beginning, End, or Middle of Query
 Results
	Problem
	Solution
	Discussion
	See Also

	3.10. What to Do When LIMIT Requires the “Wrong” Sort Order
	Problem
	Solution
	Discussion

	3.11. Calculating LIMIT Values from Expressions
	Problem
	Solution
	Discussion

	Chapter 4. Table Management
	4.0. Introduction
	4.1. Cloning a Table
	Problem
	Solution
	Discussion

	4.2. Saving a Query Result in a Table
	Problem
	Solution
	Discussion

	4.3. Creating Temporary Tables
	Problem
	Solution
	Discussion

	4.4. Generating Unique Table Names
	Problem
	Solution
	Discussion

	4.5. Checking or Changing a Table Storage Engine
	Problem
	Solution
	Discussion

	4.6. Copying a Table Using mysqldump
	Problem
	Solution
	Discussion

	Chapter 5. Working with Strings
	5.0. Introduction
	5.1. String Properties
	5.2. Choosing a String Data Type
	Problem
	Solution
	Discussion

	5.3. Setting the Client Connection Character Set
	Problem
	Solution
	Discussion

	5.4. Writing String Literals
	Problem
	Solution
	Discussion
	See Also

	5.5. Checking or Changing a String’s Character Set or Collation
	Problem
	Solution
	Discussion

	5.6. Converting the Lettercase of a String
	Problem
	Solution
	Discussion

	5.7. Controlling Case Sensitivity in String Comparisons
	Problem
	Solution
	Discussion

	5.8. Pattern Matching with SQL Patterns
	Problem
	Solution
	Discussion

	5.9. Pattern Matching with Regular Expressions
	Problem
	Solution
	Discussion

	5.10. Breaking Apart or Combining Strings
	Problem
	Solution
	Discussion

	5.11. Searching for Substrings
	Problem
	Solution
	Discussion

	5.12. Using Full-Text Searches
	Problem
	Solution
	Discussion
	See Also

	5.13. Using a Full-Text Search with Short Words
	Problem
	Solution
	Discussion

	5.14. Requiring or Prohibiting Full-Text Search Words
	Problem
	Solution
	Discussion

	5.15. Performing Full-Text Phrase Searches
	Problem
	Solution
	Discussion

	Chapter 6. Working with Dates and Times
	6.0. Introduction
	6.1. Choosing a Temporal Data Type
	Problem
	Solution
	Discussion

	6.2. Using Fractional Seconds Support
	6.3. Changing MySQL’s Date Format
	Problem
	Solution
	Discussion

	6.4. Setting the Client Time Zone
	Problem
	Solution
	Discussion
	See Also

	6.5. Shifting Temporal Values Between Time Zones
	Problem
	Solution
	Discussion

	6.6. Determining the Current Date or Time
	Problem
	Solution
	Discussion

	6.7. Using TIMESTAMP or DATETIME to Track Row-Modification Times
	Problem
	Solution
	Discussion
	See Also

	6.8. Extracting Parts of Dates or Times
	Problem
	Solution
	Discussion

	6.9. Synthesizing Dates or Times from Component Values
	Problem
	Solution
	Discussion

	6.10. Converting Between Temporal Values and Basic Units
	Problem
	Solution
	Discussion

	6.11. Calculating Intervals Between Dates or Times
	Problem
	Solution
	Discussion

	6.12. Adding Date or Time Values
	Problem
	Solution
	Discussion

	6.13. Calculating Ages
	Problem
	Solution
	Discussion

	6.14. Finding the First Day, Last Day, or Length of a Month
	Problem
	Solution
	Discussion
	See Also

	6.15. Calculating Dates by Substring Replacement
	Problem
	Solution
	Discussion

	6.16. Finding the Day of the Week for a Date
	Problem
	Solution
	Discussion

	6.17. Finding Dates for Any Weekday of a Given Week
	Problem
	Solution
	Discussion

	6.18. Performing Leap-Year Calculations
	Problem
	Solution
	Discussion
	See Also

	6.19. Canonizing Not-Quite-ISO Date Strings
	Problem
	Solution
	Discussion

	6.20. Selecting Rows Based on Temporal Characteristics
	Problem
	Solution
	Discussion

	Chapter 7. Sorting Query Results
	7.0. Introduction
	7.1. Using ORDER BY to Sort Query Results
	Problem
	Solution
	Discussion

	7.2. Using Expressions for Sorting
	Problem
	Solution
	Discussion

	7.3. Displaying One Set of Values While Sorting by Another
	Problem
	Solution
	Discussion

	7.4. Controlling Case Sensitivity of String Sorts
	Problem
	Solution
	Discussion

	7.5. Date-Based Sorting
	Problem
	Solution
	Discussion

	7.6. Sorting by Substrings of Column Values
	Problem
	Solution
	Discussion

	7.7. Sorting by Fixed-Length Substrings
	Problem
	Solution
	Discussion

	7.8. Sorting by Variable-Length Substrings
	Problem
	Solution
	Discussion

	7.9. Sorting Hostnames in Domain Order
	Problem
	Solution
	Discussion

	7.10. Sorting Dotted-Quad IP Values in Numeric Order
	Problem
	Solution
	Discussion

	7.11. Floating Values to the Head or Tail of the Sort Order
	Problem
	Solution
	Discussion

	7.12. Defining a Custom Sort Order
	Problem
	Solution
	Discussion

	7.13. Sorting ENUM Values
	Problem
	Solution
	Discussion

	Chapter 8. Generating Summaries
	8.0. Introduction
	8.1. Basic Summary Techniques
	Problem
	Solution
	Discussion
	See Also

	8.2. Creating a View to Simplify Using a Summary
	Problem
	Solution
	Discussion

	8.3. Finding Values Associated with Minimum and Maximum Values
	Problem
	Solution
	Discussion
	See Also

	8.4. Controlling String Case Sensitivity for MIN() and MAX()
	Problem
	Solution
	Discussion

	8.5. Dividing a Summary into Subgroups
	Problem
	Solution
	Discussion

	8.6. Summaries and NULL Values
	Problem
	Solution
	Discussion

	8.7. Selecting Only Groups with Certain Characteristics
	Problem
	Solution
	Discussion

	8.8. Using Counts to Determine Whether Values Are Unique
	Problem
	Solution
	Discussion

	8.9. Grouping by Expression Results
	Problem
	Solution
	Discussion

	8.10. Summarizing Noncategorical Data
	Problem
	Solution
	Discussion

	8.11. Finding Smallest or Largest Summary Values
	Problem
	Solution
	Discussion

	8.12. Date-Based Summaries
	Problem
	Solution
	Discussion

	8.13. Working with Per-Group and Overall Summary Values
 Simultaneously
	Problem
	Solution
	Discussion

	8.14. Generating a Report That Includes a Summary and a List
	Problem
	Solution
	Discussion

	Chapter 9. Using Stored Routines, Triggers, and Scheduled Events
	9.0. Introduction
	9.1. Creating Compound-Statement Objects
	Problem
	Solution
	Discussion

	9.2. Using Stored Functions to Encapsulate Calculations
	Problem
	Solution
	Discussion

	9.3. Using Stored Procedures to “Return” Multiple
 Values
	Problem
	Solution
	Discussion

	9.4. Using Triggers to Implement Dynamic Default Column Values
	Problem
	Solution
	Discussion

	9.5. Using Triggers to Simulate Function-Based Indexes
	Problem
	Solution
	Discussion

	9.6. Simulating TIMESTAMP Properties for Other Date and Time
 Types
	Problem
	Solution
	Discussion

	9.7. Using Triggers to Log Changes to a Table
	Problem
	Solution
	Discussion

	9.8. Using Events to Schedule Database Actions
	Problem
	Solution
	Discussion

	9.9. Writing Helper Routines for Executing Dynamic SQL
	Problem
	Solution
	Discussion

	9.10. Handling Errors Within Stored Programs
	Detecting End-of-Data Conditions
	Catching and Ignoring Errors
	Raising Errors and Warnings

	9.11. Using Triggers to Preprocess or Reject Data
	Problem
	Solution
	Discussion

	Chapter 10. Working with Metadata
	10.0. Introduction
	10.1. Determining the Number of Rows Affected by a Statement
	Problem
	Solution
	Discussion

	10.2. Obtaining Result Set Metadata
	Problem
	Solution
	Discussion

	10.3. Determining Whether a Statement Produced a Result Set
	Problem
	Solution
	Discussion

	10.4. Using Metadata to Format Query Output
	Problem
	Solution
	Discussion

	10.5. Listing or Checking Existence of Databases or Tables
	Problem
	Solution
	Discussion

	10.6. Accessing Table Column Definitions
	Problem
	Solution
	Discussion

	10.7. Getting ENUM and SET Column Information
	Problem
	Solution
	Discussion

	10.8. Getting Server Metadata
	Problem
	Solution
	Discussion
	See Also

	10.9. Writing Applications That Adapt to the MySQL Server Version
	Problem
	Solution
	Discussion

	Chapter 11. Importing and Exporting Data
	11.0. Introduction
	General Import and Export Issues
	File Formats
	Notes on Invoking Shell Commands

	11.1. Importing Data with LOAD DATA and mysqlimport
	Problem
	Solution
	Discussion
	See Also

	11.2. Importing CSV Files
	Problem
	Solution
	Discussion

	11.3. Exporting Query Results from MySQL
	Problem
	Solution
	Discussion
	See Also

	11.4. Importing and Exporting NULL Values
	Problem
	Solution
	Discussion

	11.5. Writing Your Own Data Export Programs
	Problem
	Solution
	Discussion

	11.6. Converting Datafiles from One Format to Another
	Problem
	Solution
	Discussion

	11.7. Extracting and Rearranging Datafile Columns
	Problem
	Solution
	Discussion

	11.8. Exchanging Data Between MySQL and Microsoft Excel
	Problem
	Solution
	Discussion
	See Also

	11.9. Exporting Query Results as XML
	Problem
	Solution
	Discussion

	11.10. Importing XML into MySQL
	Problem
	Solution
	Discussion

	11.11. Guessing Table Structure from a Datafile
	Problem
	Solution
	Discussion

	Chapter 12. Validating and Reformatting Data
	12.0. Introduction
	12.1. Using the SQL Mode to Reject Bad Input Values
	Problem
	Solution
	Discussion

	12.2. Validating and Transforming Data
	Problem
	Solution
	Discussion

	12.3. Using Pattern Matching to Validate Data
	Problem
	Solution
	Discussion

	12.4. Using Patterns to Match Broad Content Types
	Problem
	Solution
	Discussion

	12.5. Using Patterns to Match Numeric Values
	Problem
	Solution
	Discussion

	12.6. Using Patterns to Match Dates or Times
	Problem
	Solution
	Discussion
	See Also

	12.7. Using Patterns to Match Email Addresses or URLs
	Problem
	Solution
	Discussion

	12.8. Using Table Metadata to Validate Data
	Problem
	Solution
	Discussion

	12.9. Using a Lookup Table to Validate Data
	Problem
	Solution
	Discussion

	12.10. Converting Two-Digit Year Values to Four-Digit Form
	Problem
	Solution
	Discussion

	12.11. Performing Validity Checking on Date or Time Subparts
	Problem
	Solution
	Discussion

	12.12. Writing Date-Processing Utilities
	Problem
	Solution
	Discussion

	12.13. Importing Non-ISO Date Values
	Problem
	Solution
	Discussion

	12.14. Exporting Dates Using Non-ISO Formats
	Problem
	Solution
	Discussion

	12.15. Epilogue

	Chapter 13. Generating and Using Sequences
	13.0. Introduction
	13.1. Creating a Sequence Column and Generating Sequence Values
	Problem
	Solution
	Discussion

	13.2. Choosing the Definition for a Sequence Column
	Problem
	Solution
	Discussion

	13.3. The Effect of Row Deletions on Sequence Generation
	Problem
	Solution
	Discussion

	13.4. Retrieving Sequence Values
	Problem
	Solution
	Discussion

	13.5. Renumbering an Existing Sequence
	Problem
	Solution
	Discussion

	13.6. Extending the Range of a Sequence Column
	Problem
	Solution
	Discussion

	13.7. Reusing Values at the Top of a Sequence
	Problem
	Solution
	Discussion

	13.8. Ensuring That Rows Are Renumbered in a Particular Order
	Problem
	Solution
	Discussion

	13.9. Sequencing an Unsequenced Table
	Problem
	Solution
	Discussion

	13.10. Managing Multiple Auto-Increment Values Simultaneously
	Problem
	Solution
	Discussion

	13.11. Using Auto-Increment Values to Associate Tables
	Problem
	Solution
	Discussion

	13.12. Using Sequence Generators as Counters
	Problem
	Solution
	Discussion
	See Also

	13.13. Generating Repeating Sequences
	Problem
	Solution
	Discussion

	Chapter 14. Using Joins and Subqueries
	14.0. Introduction
	14.1. Finding Matches Between Tables
	Problem
	Solution
	Discussion

	14.2. Finding Mismatches Between Tables
	Problem
	Solution
	Discussion
	See Also

	14.3. Identifying and Removing Mismatched or Unattached Rows
	Problem
	Solution
	Discussion

	14.4. Comparing a Table to Itself
	Problem
	Solution
	Discussion

	14.5. Producing Master-Detail Lists and Summaries
	Problem
	Solution
	Discussion

	14.6. Enumerating a Many-to-Many Relationship
	Problem
	Solution
	Discussion

	14.7. Finding Per-Group Minimum or Maximum Values
	Problem
	Solution
	Discussion
	See Also

	14.8. Using a Join to Fill or Identify Holes in a List
	Problem
	Solution
	Discussion

	14.9. Using a Join to Control Query Sort Order
	Problem
	Solution
	Discussion

	14.10. Referring to Join Output Column Names in Programs
	Problem
	Solution
	Discussion

	Chapter 15. Statistical Techniques
	15.0. Introduction
	15.1. Calculating Descriptive Statistics
	Problem
	Solution
	Discussion

	15.2. Per-Group Descriptive Statistics
	Problem
	Solution
	Discussion

	15.3. Generating Frequency Distributions
	Problem
	Solution
	Discussion

	15.4. Counting Missing Values
	Problem
	Solution
	Discussion

	15.5. Calculating Linear Regressions or Correlation Coefficients
	Problem
	Solution
	Discussion

	15.6. Generating Random Numbers
	Problem
	Solution
	Discussion

	15.7. Randomizing a Set of Rows
	Problem
	Solution
	Discussion

	15.8. Selecting Random Items from a Set of Rows
	Problem
	Solution
	Discussion

	15.9. Calculating Successive-Row Differences
	Problem
	Solution
	Discussion

	15.10. Finding Cumulative Sums and Running Averages
	Problem
	Solution
	Discussion

	15.11. Assigning Ranks
	Problem
	Solution
	Discussion

	15.12. Computing Team Standings
	Problem
	Solution
	Discussion

	Chapter 16. Handling Duplicates
	16.0. Introduction
	16.1. Preventing Duplicates from Occurring in a Table
	Problem
	Solution
	Discussion
	See Also

	16.2. Dealing with Duplicates When Loading Rows into a Table
	Problem
	Solution
	Discussion
	See Also

	16.3. Counting and Identifying Duplicates
	Problem
	Solution
	Discussion

	16.4. Eliminating Duplicates from a Table
	Problem
	Solution
	Discussion

	Chapter 17. Performing Transactions
	17.0. Introduction
	17.1. Choosing a Transactional Storage Engine
	Problem
	Solution
	Discussion

	17.2. Performing Transactions Using SQL
	Problem
	Solution
	Discussion

	17.3. Performing Transactions from Within Programs
	Problem
	Solution
	Discussion

	17.4. Using Transactions in Perl Programs
	Problem
	Solution
	Discussion

	17.5. Using Transactions in Ruby Programs
	Problem
	Solution
	Discussion

	17.6. Using Transactions in PHP Programs
	Problem
	Solution
	Discussion

	17.7. Using Transactions in Python Programs
	Problem
	Solution
	Discussion

	17.8. Using Transactions in Java Programs
	Problem
	Solution
	Discussion

	Chapter 18. Introduction to MySQL on the Web
	18.0. Introduction
	18.1. Basic Principles of Web Page Generation
	Problem
	Solution
	Discussion

	18.2. Using Apache to Run Web Scripts
	Problem
	Solution
	Discussion

	18.3. Using Tomcat to Run Web Scripts
	Problem
	Solution
	Discussion

	18.4. Encoding Special Characters in Web Output
	Problem
	Solution
	Discussion

	Chapter 19. Generating Web Content from Query Results
	19.0. Introduction
	19.1. Displaying Query Results as Paragraphs
	Problem
	Solution
	Discussion

	19.2. Displaying Query Results as Lists
	Problem
	Solution
	Discussion

	19.3. Displaying Query Results as Tables
	Problem
	Solution
	Discussion

	19.4. Displaying Query Results as Hyperlinks
	Problem
	Solution
	Discussion

	19.5. Creating Navigation Indexes from Database Content
	Problem
	Solution
	Discussion
	See Also

	19.6. Storing Images or Other Binary Data
	Problem
	Solution
	Discussion
	See Also

	19.7. Serving Images or Other Binary Data
	Problem
	Solution
	Discussion

	19.8. Serving Banner Ads
	Problem
	Solution
	Discussion

	19.9. Serving Query Results for Download
	Problem
	Solution
	Discussion

	Chapter 20. Processing Web Input with MySQL
	20.0. Introduction
	20.1. Writing Scripts That Generate Web Forms
	Problem
	Solution
	Discussion
	See Also

	20.2. Creating Single-Pick Form Elements from Database Content
	Problem
	Solution
	Discussion

	20.3. Creating Multiple-Pick Form Elements from Database Content
	Problem
	Solution
	Discussion

	20.4. Loading Database Content into a Form
	Problem
	Solution
	Discussion

	20.5. Collecting Web Input
	Problem
	Solution
	Discussion

	20.6. Validating Web Input
	Problem
	Solution
	Discussion

	20.7. Storing Web Input in a Database
	Problem
	Solution
	Discussion
	See Also

	20.8. Processing File Uploads
	Problem
	Solution
	Discussion

	20.9. Performing Web-Based Database Searches
	Problem
	Solution
	Discussion

	20.10. Generating Previous-Page and Next-Page Links
	Problem
	Solution
	Discussion

	20.11. Generating “Click to Sort” Table Headings
	Problem
	Solution
	Discussion

	20.12. Web Page Access Counting
	Problem
	Solution
	Discussion

	20.13. Web Page Access Logging
	Problem
	Solution
	Discussion

	20.14. Using MySQL for Apache Logging
	Problem
	Solution
	Discussion

	Chapter 21. Using MySQL-Based Web Session Management
	21.0. Introduction
	Session Management Issues

	21.1. Using MySQL-Based Sessions in Perl Applications
	Problem
	Solution
	Discussion

	21.2. Using MySQL-Based Storage in Ruby Applications
	Problem
	Solution
	Discussion

	21.3. Using MySQL-Based Storage with the PHP Session Manager
	Problem
	Solution
	Discussion

	21.4. Using MySQL for Session-Backing Store with Tomcat
	Problem
	Solution
	Discussion

	Chapter 22. Server Administration
	22.0. Introduction
	22.1. Configuring the Server
	Problem
	Solution
	Discussion

	22.2. Managing the Plug-In Interface
	Problem
	Solution
	Discussion

	22.3. Controlling Server Logging
	Problem
	Solution
	Discussion

	22.4. Rotating or Expiring Logfiles
	Problem
	Problem
	Discussion

	22.5. Rotating Log Tables or Expiring Log Table Rows
	Problem
	Problem
	Discussion

	22.6. Monitoring the MySQL Server
	Problem
	Solution
	Discussion

	22.7. Creating and Using Backups
	Problem
	Solution
	Discussion

	Chapter 23. Security
	23.0. Introduction
	23.1. Understanding the mysql.user Table
	23.2. Managing User Accounts
	Problem
	Solution
	Discussion

	23.3. Implementing a Password Policy
	Problem
	Solution
	Discussion

	23.4. Checking Password Strength
	Problem
	Solution
	Discussion

	23.5. Expiring Passwords
	Problem
	Solution
	Discussion

	23.6. Assigning Yourself a New Password
	Problem
	Solution
	Discussion

	23.7. Resetting an Expired Password
	Problem
	Solution
	Discussion

	23.8. Finding and Fixing Insecure Accounts
	Problem
	Solution
	Discussion

	23.9. Disabling Use of Accounts with Pre-4.1 Passwords
	Problem
	Solution
	Discussion

	23.10. Finding and Removing Anonymous Accounts
	Problem
	Solution
	Discussion

	23.11. Modifying “Any Host” and “Many Host”
 Accounts
	Problem
	Solution
	Discussion

	Index
	About the Author

